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Abstract— This paper addresses the design of adaptive ob-
server for uncertain descriptor multi-models (MM), affected by
unknown inputs (actuator faults) and subject to unknown model
parameter variations, in the context of fault tolerant control
(FTC) strategy. The FTC strategy contains two parts: the first
one aims to estimate the unmeasured states, the actuator faults
and the model parameter uncertainties thanks to an observer.
In the second part, a control law that takes into account the
faults, the uncertainties and the states, provided by the observer,
is proposed. This controller is able to compensate the actuator
faults even in the presence of parameter uncertainties. The
stability of the whole closed-loop system is studied by using the
Lyapunov theory. The stability conditions are then expressed
in terms of Linear Matrix Inequalities (LMIs). The model
parameters are time varying and are involved as polynomials
in the dynamic description of the nonlinear system, which
corresponds to a more general class of uncertainties in the
framework of real process modeling.

I. INTRODUCTION

Fault Tolerant Control (FTC) is one of the more interesting
topics in modern control engineering. It is often studied
simultaneously with control and supervision design systems
in order to anticipate faults that can occur in the system
and avoid some dangerous situations. Some approaches are
proposed to deal with the problem of fault tolerance, which
can be classified into two categories: Passive Fault Tolerant
Control (PFTC) and Active Fault Tolerant Control (AFTC).
The PFTC can be viewed as a robust control technique,
it takes a priori some knowledge on the possible faults
that may affect the system. The advantages of such an
approach are its design simplicity and only the bounds of
faults are required. However, the major disadvantages are
the degradation of the performances since the control law
is fixed and remains unchanged for all fault situations. In
addition, only a particular class of faults can be considered.
The AFTC is known as an active control since the structure of
the controller can be changed to adapt it to the faulty situation
at each time of fault occurrence. The active strategy requires
a fault diagnosis unit which allows to detect and isolate even
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estimate the faults magnitude over time. The information
provided by this unit are transmitted to the control unit in
order to adapt the control structure and the gain matrices
which allow to compensate the faults and preserve some
system performances. For interested readers, a good survey
on these two approaches can be found in the paper [1] and
the references therein.

The idea of AFTC mentioned above is exploited for dif-
ferent classes of linear and nonlinear systems. In the context
of nonlinear systems, one can cite the work about actuator
fault tolerant control for descriptor nonlinear systems with
Lipschitz nonlinearities considered in [2]. New fault tolerant
control strategies are proposed in [3] for Takagi-Sugeno (T-S)
models by using relaxed stability conditions based on Polya’s
theorem. Active fault tolerant control for actuator and sensor
faults was proposed recently in [4] for regular Takagi-Sugeno
models. An observer-based fault tolerant control design for a
class of LPV descriptor systems is presented in [5] for time-
varying faults, but with no model parameter uncertainties.

For the fault diagnosis unit, [6] proposed a robust sensor
Fault Detection and Isolation (FDI) observer for polytopic
descriptor Linear Parameter Varying (LPV) systems with
unmeasurable premise variables, by using unknown input
observer type.

Recent work [7] focuses on nonlinear systems with unmea-
surable time-varying parameters that are considered as model
disturbances acting on the system evolution. The parameters
are expressed as functions of their upper and lower bounds,
according to the sector nonlinearity transformation [8]. A
proportional integral observer is then proposed to estimate
state and model parameter for regular nonlinear systems.

Previous result [9] addresses the state estimation of sin-
gular nonlinear systems with unknown-input observer based
on multi-models with unmeasurable premise (scheduling)
variables. Based on this outcome, a robust adaptive unknown
inputs observer is proposed in this article, that estimates
states, actuator faults and model parameter uncertainties.
The model parameters are time varying and are involved
as polynomials in the description of the system dynamics,
situation corresponding to a more realistic modeling case
than previous results considering only constant and addi-
tive parametrization. In addition, the fault tolerant control
strategy proposed in this paper use unmeasurable premise
variables, comparing to other recent strategies using only
measurable premises [3], [4], [5].

The contributions of this paper are twofold: firstly, a
theoretical methodology is proposed for active fault toler-
ant control of nonlinear descriptor systems described by

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8684-2/$31.00 ©2015 AACC 5718



a Takagi-Sugeno representation with unmeasurable premise
variables, time varying uncertainties and external perturba-
tions. The approach is based on the design of an observer that
provides, simultaneously, an estimation of the state vector,
the unknown parameters variations and the actuator faults.
These information are then used by the control unit in order
to deliver the adequate control signals aiming to preserve
the stability and the performances of the system. Secondly,
the practical contribution is to apply the proposed fault
tolerant control strategy to the realistic model of a wastewater
treatment process (WWTP) modeled by an Activated Sludge
Model no.1 (ASM1). The measures used for the simulation
process are those of the European program benchmark Cost
624 for the evaluation of control strategies in WWTP [10].
Previous approach [11] propose estimation and diagnosis for
WWTPs using multi-models and gives encouraging results.
The choice of different variables involved in the proposed
strategy is made by taking into account the real conditions
properties of the Bleesbrück treatment station, Luxembourg.

Notation 1.1: For a given square matrix X , λmax(X) is the
maximum singular value of X , the matrix S(X) is defined
by S(X) = X +XT and ∗ inside a matrix denotes the terms
induced by the symmetry.

II. PROBLEM STATEMENT

A descriptor nonlinear system affected by unknown inputs,
actuator faults and subjected to model parameter uncertain-
ties is written as follows:

Eẋ(t) = g(x(t),u(t),d(t), f (t),θ(t)) (1a)

y(t) =Cx(t) (1b)

where E is a singular matrix (i.e. rank(E)≤ n), x ∈Rn is the
state, u ∈ Rnu is the input, y ∈ Rny is the output, f ∈ Rn f is
the actuator fault, d ∈ Rnd is the unknown input, which can
model some external perturbations and noises, θ ∈ Rnθ is
the modeling uncertainty, g is continuous nonlinear function
and C is a matrix with appropriate dimensions.

Let us consider that the system (1) is equivalently rewritten
as the T-S multi-model in a compact set of the state space:

Eẋ(t) =
r

∑
i=1

µi(ξ (t)) [Ai(θ(t))x(t)

+Bi(θ(t))(u(t)+ f (t))+Eid(t)] (2)

y(t) =Cx(t)

where r is the number of linear sub-models in the T-S MM
form, Ai(θ(t)) and Bi(θ(t)) are time varying matrices of ap-
propriate dimensions, Ei are constant matrices of appropriate
dimensions and where the weighting functions µi, depending
on unmeasurable premise variable ξ (t) (which is function
of the unmeasured state variables of the system), have the
following property:

r

∑
i=1

µi(ξ (t)) =1, µi(ξ (t))≥ 0,∀t ∈ R (3)

The equivalent rewriting between T-S multi-model (2) and
the system (1) can be obtained by using the methodology

proposed in [12], where no uncertain system and no actuator
fault is considered. For instance, a slightly different T-S MM
form is used in (2), since the sub-models are linear parameter
varying with matrices Ai(θ(t)) and Bi(θ(t)) depending on
the uncertain parameter θ(t).

In most studies [13] the modeling uncertainties are norm
bounded and are expressed additively in the state matrix of
the dynamic nonlinear model. In this paper, a more general
class of modeling uncertainties is considered, as follows:

θ(t) =
[

θ1(t),θ2(t), · · ·θnθ (t)
]T (4)

are bounded and occur in a polynomial way in (2):

Ai(θ(t)) =Ai,0 +
nθ

∑
j=1

θ j(t)Ai, j, (5a)

Bi(θ(t)) =Bi,0 +
nθ

∑
j=1

θ j(t)Bi, j (5b)

where matrices Ai, j, Bi, j (i = 1, · · · ,r, j = 1, · · · ,nθ ) are
constants known matrices and of appropriate dimensions.
This type of uncertainties is directly related to malfunctions
in the process that cause changes in the parameters and are
characterized by their direct influence on the system stability.

By using the sector nonlinearity approach as in [12], each
time varying parameter θ j(t) can be expressed as a multi-
model with two submodels as follows:

θ j(t) =µ̄1
j (θ j(t))θ 1

j + µ̄2
j (θ j(t))θ 2

j (6)

with the weighting functions depending on the upper θ 1
j and

lower θ 2
j bounds of θ j(t):

µ̄1
j (θ j(t)) =

θ j(t)−θ 2
j

θ 1
j −θ 2

j
and µ̄2

j (θ j(t)) =
θ 1

j −θ j(t)

θ 1
j −θ 2

j
(7)

The functions µ̄1
j (θ j(t)) ≥ 0 and µ̄2

j (θ j(t)) ≥ 0 satisfy the
convex sum property µ̄1

j (θ j(t)) + µ̄2
j (θ j(t)) = 1. By using

this convexity property and by replacing (6) in the expression
(5) of the matrices Ai(θ(t)) and Bi(θ(t)), the state equation
of system (2) is rewritten as follows

Eẋ(t) =
r,2nθ

∑
i, j

µiµ̄ j [Ai jx(t)+ Bi j (u(t)+ f (t))+Eid(t)] (8)

where the following notation is used

r,2nθ

∑
i, j

µiµ̄ j ≡
r

∑
i=1

2nθ

∑
j=1

µi(ξ (t))µ̄ j(θ(t)) (9)

and with

µ̄ j(θ(t)) =
nθ

∏
k=1

µ̄
σk

j
k (θk(t)) (10)

Ai j =Ai,0 +
nθ

∑
k=1

θ
σk

j
k Ai,k (11)

Bi j =Bi,0 +
nθ

∑
k=1

θ
σk

j
k Bi,k (12)
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where the index σ k
j ( j = 1, ...,2n, k = 1, ...,nθ ) equal 1 or 2

indicates which partition of the kth parameter (µ1
k or µ2

k ) is
involved in the jth model. For more details, see [12].

The new TS model (8) is characterized by constant ma-
trices Ai j, Bi j and Ei (i = 1, ...,r, j = 1, ...,2nθ ), which ease
the synthesis of adaptive observer and FTC approach.

Hypothesis 2.1: In this paper is assumed that:
1) The faults f and the uncertain parameters θ and their

first time derivatives are bounded

‖ f (t)‖ ≤ β1,
∥

∥ ḟ (t)
∥

∥≤ β2, 0 ≤ β1 < ∞,0 ≤ β2 < ∞
‖θ(t)‖ ≤ χ1,

∥

∥θ̇(t)
∥

∥≤ χ2, 0 ≤ χ1 < ∞,0 ≤ χ2 < ∞

where ‖.‖ defines the Euclidean norm.
2) rank(CBi j) = nu, i = 1, ...,r and j = 1, ...,2nθ

The main objective of the paper is to be able to estimate
the state, the actuator faults and the model parameter changes
with the final goal to adapt control law strategies such that the
system remains stable even in actuator fault case and be able
to minimize the unknown input effect and the actuator fault
influence on the system stability in the presence of parameter
uncertainties.

III. FAULT TOLERANT CONTROL APPROACH

A. Observer-based FTC synthesis

In order to simplify the implementation, the observer is
chosen to be a nonsingular multi-model:

ż(t) =
r

∑
i=1

2nθ

∑
j=1

µi(ξ̂ (t))µ̄ j(θ̂(t)) [Ni j z(t)+Gi j u(t)

+Li j ey(t)+Bi j f̂ (t)
]

x̂(t) =z(t)+T2y(t)
˙̂y(t) =Cx̂(t) (13)

ey(t) =y(t)− ŷ(t)

˙̂f (t) =Φ
r

∑
i=1

2nθ

∑
j=1

µi(ξ̂ (t))µ̄ j(θ̂(t))Fi j [ėy(t)+σey(t)]

˙̂θ(t) =
r

∑
i=1

2nθ

∑
j=1

µi(ξ̂ (t))µ̄ j(θ̂(t))
[

−αi jθ̂(t)+Pi j ey(t)
]

where x̂, ŷ, f̂ and θ̂ are respectively the estimates of the
state, the output, the actuator fault and the model parameters.
The system stability under control has to be insured despite
the presence of actuator faults, model parameter uncertainties
and unknown inputs. For this purpose, a robust fault detection
and isolation procedure is to be implemented, in order to
estimate states, faults and model parameters by minimizing
the effect of unknown inputs and faults on the estimation
error. In order to stabilize the system to the origin, an active
fault tolerant control is chosen as follows:

u(t) =−
r

∑
i=1

µi(ξ̂ (t))Kix̂(t)− f̂ (t) (14)

Thus, a solution to the active FTC problem is given by
finding Φ∈Rn f ×n f , the scalars αi j ∈R, the gains Ni j ∈Rn×n,
Gi j ∈Rn×nu , Li j ∈Rn×ny , Fi j ∈Rn f ×ny and Pi j ∈Rnθ×ny such

that the state estimation error converges towards zero if the
fault f is zero (or constant), or converges towards a set
around zero if f is time varying.

Let us define the state, fault and model parameter estima-
tion error:

ex(t) =x(t)− x̂(t) (15)

eθ (t) =θ(t)− θ̂(t) (16)

e f (t) = f (t)− f̂ (t) (17)

From (13) and (15), the state estimation obey to the following
differential equation system:

ėx(t) =T1Eẋ(t)− ż(t) (18)

since that for rank
[

E
C

]

= n, ∃ T1 ∈ Rn×n and T2 ∈ Rn×ny

nonsingular matrices s.t.
[

T1 T2
]

[

E
C

]

=In (19)

A particular solution of (19) is given by using the generalized
inverse matrix:

[

T1 T2
]

=

[

E
C

]+

(20)

For more details, please see [9].
In order to facilitate the calculation of the dynamic of

the state estimation error ex, the state equation of system
(8) -depending, for instance, on the premise ξ and on the
uncertain parameters θ - will be rewritten as a perturbed
multimodel as follows:

Eẋ(t) =
r,2nθ

∑
i, j

µ̂i ˆ̄µ j [Ai jx(t)+ Bi j (u(t)+ f (t))+Eid(t)+ω(t)]

(21)

where similar notation, as in (9), is used for the weighting
functions µ̂i and ˆ̄µ j -depending on the estimates ξ̂ and θ̂ -
and where the perturbation-like term is defined by:

ω(t) =
r,2nθ

∑
i, j

(

µiµ̄ j − µ̂i ˆ̄µ j
)

[Ai jx(t)+ Bi j (u(t)+ f (t))+Eid(t)]

Under the assumption that x(t), u(t), d(t) and f (t) are
bounded (this assumption is satisfied in the example
WWTP), the perturbation-like term ω is a small bounded
signal belonging to a set around the origin if the weighting
functions estimation error -that is directly related to the state
and parameter estimation- is ensured with a certain precision.

Starting with (18), the dynamic of ex is obtained after some
calculations, by using the expression (21), the state feedback
control law (14), the observer (13) and the definitions (15)
and (17):

ėx(t) =
r,2nθ ,r

∑
i, j,k

µ̂i ˆ̄µ j µ̂k
{

[T1Ai j −Ni j(In −T2C)− (T1Bi j −Gi j)Kk]

· x(t)+ [(T1Bi j −Gi j)Kk +Ni j −Li jC]ex(t)

+T1Eid(t)+T1ω(t)+(Gi j −Bi j) f (t)

+(T1Bi j −Gi j +Bi j)e f (t)
}

(22)
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If the following conditions hold ∀i = 1, · · ·r, j = 1, · · · ,2nθ :

T1Ai j −Ni j(In −T2C) =0 (23)

T1Bi j −Gi j =0 (24)

the state estimation error dynamic reduces to

ėx(t) =
r,2nθ

∑
i, j

µ̂i ˆ̄µ j [(Ni j −Li jC)ex(t)+Tiω̄(t)

+Mi j f (t)+Bi je f (t)
]

(25)

with Mi j = (T1 − In)Bi j, T̄i = T1
[

Ei In
]

and ω̄(t) =
[

dT (t) ωT (t)
]T an augmented perturbation vector putting

together the unknown input d and the perturbation ω .
In order to deal with nonlinear terms in the definition of
further stability conditions and avoid new invertible matrix
conditions, we define the matrix Ri j = Ni jT2. Thus, the
condition (23) yields to:

Ni j =T1Ai j +Ri jC (26)

B. State space dynamic equation

The dynamic of the closed loop system with the control
(14) is given by:

Eẋ(t) =
r,2n,r

∑
i, j,k

µ̂i ˆ̄µ j µ̂k
[

Ψi j k x(t)+Bi jKk ex(t)

+Bi j e f (t)+ Ēi ω̄(t)
]

(27)

where

Ψi j k =Ai j −Bi jKk (28)

Ēi =
[

Ei In
]

(29)

C. Stability analysis

In the context of a fault tolerant control by state-feedback,
the stability of the differential equations (25) and (27) has to
be ensured. The following well known results [14] will be
used for the stability conditions design.

Lemma 3.1: Given a symmetric positive matrix Q, the
following inequality holds:

2xT y ≤xT Qx+ yT Q−1y, for x,y ∈ R
n (30)

Lemma 3.2: Let us consider P a positive definite matrix
and Q a full column rank matrix. It follows that the matrix
QPQT is a positive definite matrix.
The Lyapunov method is generally used to prove stability of
dynamic systems. This method will be also used in this paper
to establish stability conditions of the closed loop system
-derived under Linear Matrix Inequalities formulation- and
ensure convergence of the state, uncertain parameter and fault
estimation error.

Let us consider V the following Lyapunov function de-
pending on x, ex, eθ and e f :

V (t) =xT (t)ET P1x(t)+ eT
x (t)P2ex(t)+ eT

θ (t)P3eθ (t)

+
1
σ eT

f (t)Φ−1e f (t) (31)

where P1, P2, P3 and Φ are symmetric and positive definite
matrices with appropriate dimensions. Using the equation
(25), the time derivative of V (t) is given by

V̇ (t) =
r,2nθ

∑
i, j

µ̂i ˆ̄µ j
{

(Eẋ(t))T P1x(t)+ xT (t)PT
1 Eẋ(t)

+ eT
x (t)[(Ni j −Li jC)T P2 +P2 (Ni j −Li jC)]ex(t)

+2eT
x (t)P2T̄iω̄(t)+2eT

x (t)P2Mi j f (t)

+2eT
x (t)P2Bi je f (t)+

2
σ eT

f (t)Φ−1ė f (t)

+ėT
θ (t)P3eθ (t)+ eT

θ (t)P
T
3 ėθ (t)

}

(32)

With ET P1 = PT
1 E ≥ 0, by using the equation of the closed

loop system (27), the definitions (16), (17) and the estimates
f̂ and θ̂ from (13), the time derivative of V becomes

V̇ (t) =
r,2nθ ,r

∑
i, j,k

µ̂i ˆ̄µ j µ̂k
{

xT (t)Πi jkx(t)+ eT
x (t)Ωi jex(t)

+2eT
x (t)P2Mi j f (t)+2eT

x (t)P2Bi je f (t)

+2eT
x (t)P2T̄iω̄(t)+2xT (t)P1Bi jKkex(t)

+2xT (t)P1Bi je f (t)+2xT (t)P1Ēiω̄(t)

+
2
σ eT

f (t)Φ−1 ḟ (t)−2eT
f (t)Fi jCσex(t)

−
2
σ eT

f (t)Fi jCΘi jex(t)−
2
σ eT

f (t)Fi jCTiω̄(t)

−
2
σ eT

f (t)Fi jCMi j f (t)−
2
σ eT

f (t)Fi jCBi je f (t)

+2eT
θ (t)P3θ̇(t)+2eT

θ (t)P3αi jθ(t)
−2eT

θ (t)P3αi jeθ (t)−2eT
θ (t)P3Pi jCex(t)

}

(33)

with

Πi jk =S(P1Ψi jk) (34a)

Θi j =Ni j −Li jC (34b)

Ωi j =S(P2Θi j) (34c)

Using lemma 3.1 and hypothesis 2.1 it follows that:

2eT
x (t)P2Mi j f (t)≤eT

x (t)Q1ex(t)+ f T (t)(MT
i jP2Q−1

1 P2Mi j) f (t)

≤eT
x (t)Q1ex(t)+η1,i j

η1,i j =β 2
1 λmax(MT

i jP2Q−1
1 P2Mi j) (35)

and similarly for:
2
σ eT

f (t)Φ−1 ḟ (t)≤
1
σ eT

f (t)Q2e f (t)+η2

η2 =
1
σ β 2

2 λmax(Φ−T Q−1
2 Φ−1) (36)

−
2
σ eT

f (t)Fi jCMi j f (t)≤
1
σ eT

f (t)Q2e f (t)+η2,i j

η2,i j =
1
σ β 2

1 λmax(MT
i jC

T FT
i j Q−1

2 Fi jCMi j) (37)

2eT
θ (t)P3θ̇(t)≤ eT

θ (t)Q3eθ (t)+η3

η3 = χ2
2 λmax(PT

3 Q−1
3 P3) (38)

2eT
θ (t)P3αi jθ(t)≤ eT

θ (t)Q3eθ (t)+η3,i j

η3,i j = χ2
1 λmax(αT

i j P
T
3 Q−1

3 P3αi j) (39)
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2eT
x (t)P2T̄iω̄(t)≤ eT

x (t)Q1ex(t)+η4,i

η4,i = δ 2λmax(T̄i
T P2Q−1

1 P2T̄i) (40)

2xT (t)P1Ēiω̄(t)≤ xT (t)Q4x(t)+η5,i

η5,i = δ 2λmax(ĒT
i P1Q−1

4 P1Ēi) (41)

−
2
σ eT

f (t)Fi jCTiω̄(t)≤
1
σ eT

f (t)Q2e f (t)+η6,i j

η6,i j =
1
σ δ 2λmax(T T

i CT FT
i j Q−1

2 Fi jCTi) (42)

Let us consider the scalar ε the maximum value over i and
j of the sum of all constant coefficients obtained in the right
hand of the inequalities (35) - (42):

ε =max
i, j

(η1,i j +η2 +η2,i j +η3 +η3,i j +η4,i +η5,i +η6,i j) (43)

Assumption 3.1: Assume it is possible to find Fi j and P2
such that

B
T
i jP2 =Fi jC (44)

With the assumption 3.1 and the definition (43) of ε , (33)
implies

V̇ (t)≤xT
a (t)

r,2nθ ,r

∑
i, j,k

µ̂i ˆ̄µ j µ̂k∆i jkxa(t)+ ε (45)

where xa(t) =
[

x(t)T ex(t)T e f (t)T eθ (t)T
]T and where

∆i jk =









Πi jk +Q4 P1Bi jKk
∗ Ωi j +2Q1
∗ ∗
∗ ∗

. . .

. . .

P1Bi j 0
− 1

σ ΘT
i jP2Bi j −(Pi jC)T P3

− 1
σ Fi jCBi j +

3
σ Q2 0

∗ −P3αi j +2Q3









(46)

Let us define the positive scalar τ as follows

τ =min
t>0

λmin

(

−
r,2nθ ,r

∑
i, j,k

µ̂i ˆ̄µ j µ̂k∆i jk

)

≤min
i, j,k

λmin
(

−∆i jk
)

(47)

Assumption 3.2: Let us consider that the following in-
equality holds

r,2nθ ,r

∑
i, j,k

µi(ξ̂ (t))µ̄ j(θ̂(t))µk(ξ̂ (t))∆i jk < 0 (48)

With the assumption 3.2, with the (45), (47) it is obtained

V̇ (t)<− τ ‖xa(t)‖
2 + ε (49)

It follows that V̇ (t)< 0 if τ ‖xa(t)‖
2 > ε , ∀t > 0.

In conformity with the stability Lyapunov theory, we can
deduce that the state x, the state estimation error ex, the fault
estimation error e f and the uncertain parameter estimation
error eθ converge to a small set around the origin. The
dimension of this set is depending on the scalar ε (43).

If the two assumptions, 3.1 and 3.2, made during the
previous calculations hold, then the stability and convergence
conditions are obtained, which completes the proof. Let
us derive in the following these conditions under the LMI
formulation.

D. The LMI formulation

Lemma 3.3: The following inequality holds for any scalar
ψ , X + 0 and Λ ≤ 0:

(

X +ψΛ−1)T Λ
(

X +ψΛ−1)≤ 0 ⇔

XΛX ≤−2ψX −ψ2Λ−1 (50)
Following the remarks of [14] and [3], it is difficult to
obtain a solution satisfying simultaneously to the equality
(44) and the inequality (48). The referred citations consider
the case where the indexes j and k are constants. The
remark stays available for j, k varying indexes. A solution
to overcome this difficulty is to reformulate the equality (44)
as an optimization problem:

min ν subject to
[

νI BT
i jP2 −Fi jC

∗ νI

]

> 0 (51)

The following indexed notation is used for the sake of
simplicity:

Yξ θ =
r,2nθ

∑
i, j

µi(ξ̂ )µ̄ j(θ̂)Yi j, Yξ θξ =
r,2nθ ,r

∑
i, j,k

µi(ξ̂ )µ̄ j(θ̂)µk(ξ̂ )Yi jk

where Yi j and Yi jk are known matrices. The inequality (48)
becomes:

∆ξ θξ =

[

Π̃ξ θξ Φξ θξ
∗ Λ̃ξ θ

]

< 0 (52)

where Πi jk, Ωi j and Θi j are defined in (34) and where

Π̃i jk =Πi jk +Q4

Φi jk =
[

P1Bi jKk P1Bi j 0
]

Λ̃i j =Λi j + Q̃ (53)

Q̃ =
1
σ diag(2σQ1, 3Q2, 2σQ3)

Λi j =





Ωi j − 1
σ ΘT

i jP2Bi j −(Pi j C)T P3

∗ − 1
σ Fi jCBi j 0

∗ ∗ −P3αi j





In order to deal with the nonlinear term P1Bi jKk appearing
in Φi jk, let us consider a matrix X + 0 defined as

X =

[

P−1
1 0
0 X1

]

, X1 =





P−1
1 0 0
0 I 0
0 0 I



 (54)

By calculating X∆ξ θξ X and using lemma 3.2, the inequality
(52) becomes:

[

P−1
1 Π̃ξ θξ P−1

1 P−1
1 Φξ θξ X1

∗ X1Λ̃ξ θ X1

]

<0 (55)

With lemma 3.3 (50) and Schur complement, the inequality
(55) holds if





P−1
1 Π̃ξ θξ P−1

1 P−1
1 Φξ θξ X1 0

∗ −2ψ1X1 ψ1I
∗ ∗ Λ̃ξ θ



<0 (56)

By applying the same principle with the nonlinear terms in
Λ̃ξ θ , let us define a matrix Z + 0 as follows

Z =





I 0 0
0 I 0
0 0 Z1



 , Z1 =





I 0 0
0 I 0
0 0 P−1

3



 (57)
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By pre- and post-multiplying the inequality (56) by Z, it
follows that (56) is equivalent with





P−1
1 Π̃ξ θξ P−1

1 P−1
1 Φξ θξ X1 0

∗ −2ψ1X1 ψ1I
∗ ∗ Z1Λ̃ξ θ Z1



<0 (58)

Using again the lemma 3.3 for the last term of the matrix in
inequality (58), with the scalar ψ3 and with Schur comple-
ment, it follows that the inequality (58) holds if








P−1
1 Π̃ξ θξ P−1

1 P−1
1 Φξ θξ X1 0 0

∗ −2ψ1X1 ψ1I 0
∗ ∗ −2ψ3Z1 ψ3I
∗ ∗ ∗ Λ̃ξ θ









<0 (59)

With the definitions of Π̃ξ θξ , Φξ θξ , Λ̃ξ θ and Ωξ θ given
by (53), (34), replacing Ni j by (26) and by introducing the
change of variables:

X1 = P−1
1 , X3 = P−1

3 , Mk = KkX1,

R̃i j = P2Ri j, L̃i j = P2Li j, (60)

α̃i j = X
−1

3 αi j, P̃i j = X
−1

3 Pi jC

the inequalities (62) are easily obtained, where

Wi jk =S(Ai jX1 −Bi jMk)−2ψ2X1

Si j =S(P2T1Ai j +(R̃i j − L̃i j)C)+
1
σ Q̃ (63)

Ti j =−
1
σ
(

Fi jCT1Ai j +B
T
i j(R̃i j − L̃i j)C

)

Theorem 3.1: Given the assumption 3.2 and given positive
scalars σ , ψ1, ψ3. If there exist symmetric and positive
definite matrices X1 ∈ Rn×n, P2 ∈ Rn×n, X3 ∈ Rnθ×nθ ,
Q̃ ∈ Rn×n, Q4 ∈ Rn×n, matrices Mk ∈ Rnu×n, Fi j ∈ Rnu×ny ,
P̃i j ∈Rn×nθ , α̃i j ∈Rnθ×nθ , R̃i j ∈Rn×ny , L̃i j ∈Rn×ny and ν > 0
solution to the optimization problem:

min ν subject to
[

νI BT
i jP2 −Fi jC

∗ νI

]

> 0 (64a)

Qi jk < 0 (64b)

X1ET = EX1 ≥ 0 (64c)

where Qi jk is defined in (62) with (63), then, the state
estimation error ex, the fault estimation error e f and the
parameter uncertainty estimation error eθ are bounded. In
addition to that, if the ḟ (t) = 0 and θ̇(t) = 0 (i.e. β = χ = 0)
then these variables converge towards zero. The gains of the
observer (13) and the fault tolerant control are given by:

Ni j =T1Ai j +P−1
2 R̃i jC, Gi j = T1Bi j, Li j = P−1

2 L̃i j,

αi j =X3α̃i j, Pi j = X3P̃i jC+, Ki = MiX1 (65)

where T1 and T2 are given in (20).

IV. WASTEWATER TREATMENT PLANT (WWTP)

A. Process description

The wastewater treatment with activated sludge is widely
used in the last two decades [15] and consists in mixing used
waters with a rich mixture of bacteria in order to degrade the

organic matter. In this work, a part of the COST Benchmark
is considered, based on the most common WWTP: a con-
tinuous flow activated sludge plant, performing nitrification
and de-nitrification. A configuration with a single tank with
a settler/clarifier was developed. The objective of this study
is to use the data generated by this benchmark.

For observer/controller design, models of reduced com-
plexity are generally used. A simplification with respect to
components [15] is considered here. Thus, the biological
removal of carbon and nitrogen from wastewater involving
the six components are considered: soluble carbon SS, partic-
ulate XS, dissolved oxygen SO, heterotrophic biomass XBH ,
ammonia SNH , nitrate SNO and autotrophic biomass XBA. The
following components are not considered: inert components
(SI , XI , XP) and the alkalinity (Salk). As in practical situation,
a single organic compound (denoted XDCO) will be consid-
ered by adding the soluble part SS and the particulate part
XS. The state vector is:

x = [XDCO, SO, SNH , SNO, XBH , XBA]
T (66)

It is supposed that the dissolved oxygen concentration at the
reactor input (SO,in) is null. In the same time, we can also
suppose that SNO,in ∼= 0 and XBA,in ∼= 0, which is in conformity
with the benchmark of European program Cost 624 [10].

In practice, the concentrations XDCO,in, SNH,in and XBH,in
are not measured on line. The system becomes unobservable
if these concentrations are all taken as unknown inputs. Thus,
an approximation often used in practice will be considered:
the daily mean value of the XDCO,in. The others can be taken
as unknown inputs, since four measurements are available
on line (XDCO, SO, SNH , SNO). Thus, the control vector and
the unknown input vector are taken under the form:

u = [XDCO,in, qa]
T , d = [SNH,in, XBH,in]

T (67)

Let us consider the ASM1 model with the state vector (66):

ẊDCO(t) =−
1

YH
[ϕ1(t)+ϕ2(t)]+(1− fP)[ϕ4(t)+ϕ5(t)]+D1(t)

ṠO(t) =
YH −1

YH
ϕ1(t)+

YA −4.57
YA

ϕ3(t)+D2(t)

ṠNH(t) =−iXB[ϕ1(t)+ϕ2(t)]−
(

iXB +
1

YA

)

ϕ3(t)

+(iXB − fP iXP)[ϕ4(t)+ϕ5(t)]+D3(t) (68)

ṠNO(t) =
YH −1
2.86YH

ϕ2(t)+
1

YA
ϕ3(t)+D4(t)

ẊBH(t) = ϕ1(t)+ϕ2(t)−ϕ4(t)+D5(t)

ẊBA(t) = ϕ3(t)−ϕ5(t)+D6(t)

where ϕ1(t), · · · ,ϕ5(t) ∈ R is given by:

ϕ1(t) = µH
XDCO(t)

KDCO +XDCO(t)
SO(t)

KOH +SO(t)
XBH(t)

ϕ2(t) =
µHηNOg XDCO(t)
KDCO +XDCO(t)

SNO(t)
KNO +SNO(t)

KOH

KOH +SO(t)
XBH(t)

ϕ3(t) = µA
SNH(t)

KNH,A +SNH(t)
SO(t)

KO,A +SO(t)
XBA(t) (69)

ϕ4(t) = bHXBH(t)
ϕ5(t) = bAXBA(t)
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Qi jk =

































Wi jk ψ2I Bi jMk Bi j 0 0 0 0 0 0 0
∗ −Q4 0 0 0 0 0 0 0 0 0
∗ ∗ −2ψ1X1 0 0 ψ1Inx 0 0 0 0 0
∗ ∗ ∗ −2ψ1Inu 0 0 ψ1Inu 0 0 0 0
∗ ∗ ∗ ∗ −2ψ1Inθ 0 0 ψ1Inθ 0 0 0
∗ ∗ ∗ ∗ ∗ −2ψ3Inx 0 0 ψ3Inx 0 0
∗ ∗ ∗ ∗ ∗ ∗ −2ψ3Inu 0 0 ψ3Inu 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −2ψ3X3 0 0 ψ3Inθ
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Si j Ti j −P̃i j
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

σ Fi jCBi j 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −α̃i j

































< 0 (62)

where KDCO = KS
XDCO

SS
= KS

fSS
. With f̃ = fR

1− fW
fR+ fW

, the vari-
ables D(t) expressing the input/output balance is defined by:

D1(t) =
qin(t)

V

[

XDCO,in(t)−XDCO(t)
]

D2(t) =
qin(t)

V
(−SO(t))+Kqa(t)

[

SO,sat −SO(t)
]

D3(t) =
qin(t)

V

[

SNH,in(t)−SNH(t)
]

, (70)

D4(t) =
qin(t)

V
[−SNO(t)]

D5(t) =
qin(t)

V

[

XBH,in(t)−XBH(t)+ f̃ XBH(t)
]

D6(t) =
qin(t)

V

[

−XBA(t)+ f̃ XBA(t)
]

(71)

For numerical applications, the following kinetic parameters
are used [15]: µH = 3.733[1/24h], µA = 0.3[1/24h], KS =
20[g/m3], fSS = 0.79, KOH = 0.2[g/m3], KOA = 0.4[g/m3],
KNO = 0.5[g/m3], KNH,A = 1[g/m3], bH = 0.3[1/24h], bA =
0.05[1/24h], ηNOg = 0.8. The stoichiometric parameters are
YH = 0.6[g cell formed], YA = 0.24[g cell], iXB = 0.086[g
N], iXP = 0.06[g N], fP = 0.1 and the oxygen saturation is
SO,sat = 10[g/m3] and the tank volume is V = 1333[m3].

B. Uncertain descriptor multi-model design

In order to obtain the descriptor form, the identification
of the slow and fast dynamics for the reduced ASM1 model
(68) is realized first, by using the homotopy method (please
see [9]). The method is essentially based on the eigenvalue
analysis of the linearized system. Here, only the result is
given, for the sake of brevity and lack of space. The ASM1
model (68) has one fast dynamic, XDCO, and five slow
dynamics, represented by the rest of the state variables. Thus,
the matrix E from (27) is given by: E = diag(0 1 1 1 1).
Taking into account the process equations (68), it is natural
to define the premise variables:

ξ1(t) =
qin(t)

V
, ξ2(t) =

XDCO(t)
KS +XDCO(t)

SO(t)
KOH +SO(t)

,

ξ3(t) =
XDCO(t)

KS +XDCO(t)
SNO(t)

KNO +SNO(t)
KOH

KOH +SO(t)
,

ξ4(t) =
1

KOA +SO(t)
SNH(t)

KNH,A +SNH(t)
XBA(t) (72)

depending on unmeasurable variables, the states x, and on
inputs u. The decomposition of the premises (72) is realized
by using the convex polytopic transformation, as in (6),

the scalars ξ 1
j and ξ 2

j are respectively the upper and lower
bounds of ξ j(t) and the functions µ̄1

j (ξ j(t)) and µ̄2
j (ξ j(t)) are

defined similarly as in (7). The r = 24 weighting functions
µi(ξ (t)) are obtained:

µi(ξ (t)) = µ̄σ1
i

1 (ξ1(t))µ̄
σ2

i
2 (ξ2(t))µ̄

σ3
i

3 (ξ3(t))µ̄
σ4

i
4 (ξ4(t))

(73)

Let us note that the indexes σ j
i (i = 1, ...,16, j = 1, ...,4)

previously used take values 1 or 2. The constant matrices Ai,
Bi and Ei defining the r = 16 submodels, are determined by

using the scalars ξ σ j
i

j and the matrices A, B and E:

Ai = A(ξ σ 1
i

1 ,ξ σ 2
i

2 ,ξ σ 3
i

3 ,ξ σ 4
i

4 ), Bi = B(ξ σ 1
i

1 ), Ei = Ē(ξ σ 1
i

1 ) (74)

where the matrices A[ai, j] ∈ R6×6, B[bi, j] ∈ R6×4 and
Ē[ei, j]∈R6×2 are defined by the coefficients a11(t) = a33(t) =
a44(t) =−ξ1(t), b2,2 = KSO,sat , b1,1(t) = e3,1(t) = e5,2(t) = ξ1(t),

a15(t) =−
µH

YH
ξ2(t)+(1− fP)bH −

µH ηNOg

YH
ξ3(t),

a16(t) = (1− fP)bA, a22(t) =−ξ1(t)−K qa −
4.57−YA

YA
µA ξ4(t),

a25(t) =
(YH −1)µH

YH
ξ2(t), a32(t) =−

(

iXB +
1

YA

)

µA ξ4(t),

a35(t) = (iXB − fP iXP)bH − iXB µH ξ2(t)− iXB µH ηNOg ξ3(t),

a36(t) = (iXB − fP iXP)bA, a42(t) =
1

YA
µAξ4(t),

a45(t) =
YH −1
2.86YH

µH ηNOg ξ3(t),

a55(t) = µH ξ2(t)−bH −ξ1(t) f̃ +µH ηNOg ξ3(t),

a62(t) = µA ξ4(t), a66(t) =−ξ1(t) f̃ −bA (75)

The other unmentioned coefficients are null.
Let us now consider that the parameters K = K(t), bH =
bH(t) and µA = µA(t) are time-varying. Thus, θ(t) from
(4) is θ(t) = [K(t), bH(t), µA(t)]T . In order to obtain the
polynomial form (5) for the matrices A and B, a separation of
the terms containing these varying parameters has to be done
in matrices (74); these time-varying terms will be included
in a new tilde matrix and put under the form ∑3

j=1 θ j(t)Ai, j

and ∑3
j=1 θ j(t)Bi, j, as in (5). The non-time-varying parameter

terms will be included in the matrices Ai,0 and Bi,0.
By analyzing (75), we deduce that the parameter K(t)

is involved in a22 and b22, the parameter bH(t) appears in
a15, a35 and a55, and µA(t) in a22, a32, a42 and a62. Thus,
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the matrices Ai, j and Bi, j are obtained similarly as Ai and
Bi from (74), by using some intermediary matrices Ã1[ã1,kl ]
and B̃1[b̃1,kl ] (multiplying K), Ã2[ã2,kl ] (multiplying bH ) and
Ã3[ã3,kl ] (multiplying µA) defined by: ã1,22 = qa, b̃1,22 =
SO,sat , ã2,15 = 1− fP, ã2,35 = iXB− fPiXP, ã2,55 =−1, ã3,22 =
4.57−YA

YA
ξ4(t), ã3,32 =−

(

iXB +
1

YA

)

ξ4(t), ã3,42 =
1

YA
ξ4(t) and

ã3,62 = ξ4(t). The other unmentioned coefficients are null.
Noticing that only Ã3 depends on ξ4(t), the matrices Ai, j
and Bi, j (i = 1, ...,r, j = 1, ...,3) are defined by:

Ai,1 = Ã1, Ai,2 = Ã2, Ai,3 = Ã3(ξ4,σ4
i
),

Bi,1 = B̃1, Bi,2 = 0, Bi,3 = 0

With these definitions and applying the sector nonlinearity
approach (6) - (7) for θ , the ASM1 model (68) can be put
under the form (8).

C. Active FTC based on adaptive observer

The proposed FTC is designed by solving the optimization
problem from theorem 3.1. The parameter values are chosen
to σ = 0.7, ψ1 = 25, ψ3 = 18 and Φ = 160. The gains of
the observer are not given here for space reasons. Figure
2 illustrates the results of the proposed control law ob-
tained after applying the optimization problem. The observer
rapidly and accurately estimates the faults and the parameter
uncertainties, as shown in figures 1. In this approach, the
adaptive observer may be considered as an FDI block for
diagnosis.
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Fig. 1. Actuator faults and uncertainty estimation

V. CONCLUSIONS

This paper presented a new active fault tolerant control
strategy for uncertain descriptor nonlinear systems repre-
sented by T-S models with unmeasurable premise variables
and subjected to actuator faults. The originality of this work
is the consideration of the estimation of the time varying
parameters which can be viewed as parametric faults. A new
adaptive observer is then proposed which provides, simulta-
neously, the estimation of states, faults and the time varying

0 0.5 1 1.5 2 2.5 3 3.5 4

−5

0

5

time(d)

 

 

States x(t)

Fig. 2. Fault tolerant control: system states

parameters (uncertainties). These estimated informations are
used by the controller in order to compensate efficiently
and robustly the faults even in the presence of time varying
uncertainties. The proposed strategy is then applied for a
real process of wastewater treatment. The obtained results
illustrate clearly the performances of the proposed approach.
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