
State, unknown input and uncertainty estimation for nonlinear systems
using a Takagi-Sugeno model

Anca Maria Nagy-Kiss1,∗, Georges Schutz1 and José Ragot2

Abstract— The paper addresses a systematic procedure to
deal with the state, unknown input and parameter uncertainty
estimation for nonlinear time-varying systems. This is realized
by designing a robust observer for dynamic nonlinear systems
using a Takagi-Sugeno (T-S) multi-model (MM) approach with
nonlinear outputs. The method applies the technique of de-
scriptor systems by considering unknown inputs and parameter
uncertainty as auxiliary state variables. This approach allows
to apply the tools of the linear automatic to dynamic non-
linear systems by using the Linear Matrix Inequalities (LMI)
optimization. The observer estimates the previous mentioned
variables and minimizes the effect of external disturbances
on the estimation error. The model uncertainties are included
in the model in a polynomial way which allows to consider
the model uncertainty estimation as a fault detection problem.
The residual sensitivity to faults while maintaining robustness
according to a noise signal is handled by H∞/H− approach.

I. INTRODUCTION

Most of the fault diagnosis methods for dynamic nonlinear
systems (see [1], [2], [3], [4] and the reference therein) treat
external faults (sensor/actuator). Only a few works exist on
system faults caused by internal process modification [5],
[6], [7], [8], due to modeling uncertainties or parameter
varying. In the literature, the term uncertainty is related to
the model parameters (model parameter uncertainty [5], [7]),
to the model inputs (input uncertainty [9]) or to the computer
implementation (model technical uncertainty [10]).

In the present work, the authors focus on the firstly
mentioned class of uncertainty, model parameter uncertainty,
needed to represent accurately the system behavior. This
turns into using time-varying parameters in the model and
leads to more challenging problems in the estimation process
than using time invariant parameters. The main difficulty
comes from the lack of knowledge on the parameter evolu-
tion. For the joint state and unknown parameter estimation,
an idea is to consider the extended system, obtained by ap-
pending the unknown parameters into the state vector. Con-
ventional observers, essentially developed for time invariant
systems, cannot be used in this case. Adaptive observers
developed for joint estimation have been presented [5], but
only for linear systems. Extensions to nonlinear systems
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with unknown constant parameters have been developed in
[7], [11]. In [6] robust fault detection for continuous-time
switched delay systems is designed, the model uncertainties
are norm-bounded and are considered in the model structure
in an additive way, which restricts the study to quite a
small class of systems. Recent work [8] focus on nonlinear
systems with non measurable time-varying parameters that
are considered model disturbances acting on the system
evolution. The parameters are expressed as functions of their
upper and lower bounds, according to the sector nonlinearity
transformation [12].

In the field of observer design for fault diagnosis, the ex-
tension of linear methods for nonlinear systems is generally
a difficult problem. Additionally, the complex behaviors of
real systems demand a representation in a large operational
domain involving nonlinear relations between the process
variables, the model parameters, the control inputs and the
external perturbations. Thus, it is a need to build models
that can operate over a wide range of operating conditions.
The T-S model has proven to be a powerful tool in the
analysis/synthesis of nonlinear control and fault detection
[13] and also in the representation of nonlinear systems on
a compact set of the state space (chapter 14 of [12]). A
methodology to rewrite dynamic nonlinear systems into T-
S model is addressed in [14] and used in [15] for observer
design of descriptor systems; this rewriting method will be
called in this article to design dynamic nonlinear systems. In
most works concerning the T-S models, the authors assume
linear outputs in the T-S model, which is obviously the
simplest case. A few works are devoted to the nonlinear
output situation [16] and will be considered in the present
work.

The main contribution of this paper is to propose a
methodology to estimate state variables, model parameter
uncertainties and unknown inputs for nonlinear systems, pre-
sented under a perturbed T-S multi-model formulation using
robust residual generators. The modeling uncertainties occur
in the system as polynomials which represents a more general
class of uncertainties than those used in the majority of the
published publications. The polynomial model uncertainties
are then considered multiplicative faults, which transforms
the model uncertainty estimation in a fault detection problem.
In most of the existing research based on T-S models [17],
[18], modeling uncertainties are considered in the model
structure additively [19] and are norm bounded [20], [19],
which restricts the study to small class of systems. Recent
work, based on T-S descriptor systems for discrete-time [21],
treats systems affected by sensor faults and bounded distur-
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bances but does not take into account model uncertainties
neither nonlinear outputs. Up to the author’s knowledge,
this is the first contribution where the model uncertainty,
unknown input and state estimation problem is treated in
such a way for the nonlinear systems.

Robust fault detection observers with respect to external
disturbances have been introduced over the years [22], based
on H∞ norm optimization techniques. A robust observer
attenuating the impact of external disturbances while remain-
ing sensitive to model uncertainties is proposed in this work.
In a classical framework, the H∞ norm maximizes the effect
of the fault on the residual, but it can be reformulated as
a minimization problem. The residual sensitivity to model
uncertainties while maintaining robustness according to ex-
ternal disturbances motivates to introduce mixed H∞/H−

approach for fault detection observer design. Thus, the robust
residual generation can be considered a multi objective
optimization problem. The linear matrix inequality (LMI)
approach has been widely used for various types of filtering
problems [23], [24] thanks to the ease in incorporating sev-
eral design objectives in his formulation. This motivates us
to consider the LMI tool for our methodology development.
Thus, the sufficient conditions for H∞ and H− indexes are
derived in the LMI framework.

The paper is organized as follows: section II illustrates
the problem formulation by giving some preliminaries on
the system structure, the robustness and the sensitivity con-
ditions, section III gives the fault detection observer result.
A numerical example is proposed in section IV in order to
illustrate the effectiveness of the proposed method.

Notation 1.1: The star symbol ∗ in a symmetric matrix
denotes the transposed block in the symmetric position. I and
0 are the identity matrix and the null matrix of appropriate
dimensions, respectively. MT and M−1 are the transpose
and the inverse of matrix M, respectively. For the sake of
simplicity, an abbreviated form will be used for µi(ξ (t))

not
=

µi(t), where ξ is the measurable premise variable vector.

II. UNCERTAIN TAKAGI-SUGENO MODEL FORMULATION

A. Problem statement

Model uncertainty generally refers to a difference between
the system model and the reality. It can be caused by changes
within the process itself or in the environment around it. Let
us consider a nonlinear dynamic model taking into account
these changes as follows:

ẋ(t) = f (x(t),u(t),θ(t),d(t),w(t))
y(t) = g(x(t),u(t),θ(t),d(t)) (1)

where x ∈Rn is the state, u ∈Rnu is the input, y ∈Rny is the
output, d ∈Rnd is the unknown input, w∈Rnw is the external
disturbance and θ ∈Rnθ is the modeling uncertainty. f and g
are continuous nonlinear functions. Let us consider that the
system (1) is equivalently rewritten as the T-S multi-model:

ẋ(t) =
r

∑
i=1

µi(t) [Ai(θ(t))x(t)+Bi(θ(t))u(t)+Eid(t)+Fiw(t)]

y(t) =C(θ(t))x(t)+Gd(t) (2)

where r is the number of linear sub-models in the T-S
MM form, Ai(θ(t)), Bi(θ(t)) and C(θ(t)) are time varying
matrices of appropriate dimensions, Ei, Fi and G are constant
matrices of appropriate dimensions and where the weighting
functions µi have the following property:

r

∑
i=1

µi(t) =1, µi(t)≥ 0,∀t ∈ R (3)

The T-S multi-model (2) is equivalent to the system (1) and
is obtained by using the general methodology described in
[14], where no uncertain system is considered. For instance,
a slightly different T-S MM form is used here in (2), since
the sub-models are linear parameter varying with matrices
Ai(θ(t)) and Bi(θ(t)) depending on the uncertain parameter
θ(t). In most studies [17], [20], [19], [25] the modeling
uncertainties are norm bounded and are expressed additively
in the state matrix of the dynamic nonlinear model [25].

In this paper, a more general class of modeling uncer-
tainties is considered as follows. The uncertainties θ(t) =
[

θ1(t),θ2(t), · · ·θnθ (t)
]T occur in a polynomial way in the

T-S multi-model (2):

Ai(θ(t)) =Ai,0 +
nA

∑
j=1

θA j(t)Ai, j (4a)

Bi(θ(t)) =Bi,0 +
nB

∑
j=1

θB j(t)Bi, j (4b)

C(θ(t)) =C0 +
nC

∑
j=1

θC j(t)Cj (4c)

where nA, nB, nC ≤ nθ , θA(t), θB(t) and θC(t) are unknown
time functions representing subsets of parameters of θ(t) to
be estimated, matrices Ai, j (i = 1, · · · ,r, j = 0, · · · ,nA), Bi, j
(i = 1, · · · ,r, j = 0, · · · ,nB) and Cj ( j = 0, · · · ,nC) are con-
stants known matrices and of appropriate dimensions. This
type of uncertainties is directly related to malfunctions in the
process that cause changes in the model parameters. They
are also called multiplicative faults and are characterized by
their direct influence on the system stability. One of the main
objectives of the paper is to be able to estimate the model
parameter changes with the final goal to adapt control law
strategies for real process. Let us replace the matrices (4) in
the system (2)

ẋ(t) =
r

∑
i=1

µi(t)

[(

Ai,0 +
nA

∑
j=1

θA j(t)Ai, j

)

x(t)

+

(

Bi,0 +
nB

∑
j=1

θB j(t)Bi, j

)

u(t)+Eid(t)+Fiw(t)

]

(5)

y(t) =

(

C0 +
nC

∑
j=1

θC j(t)Cj

)

x(t)+Gd(t)

Remark 2.1: Let us introduce the following change of
variables

{

Ψ : Rnθ → R
n f

f = Ψ(θ) (6)
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Ψ(θ(t)) =Φ(θ(t)) [Mx(t)+Nu(t)]

M = [

×nA
︷ ︸︸ ︷

In · · · In

×nB
︷ ︸︸ ︷

0 · · · 0

×nC
︷ ︸︸ ︷

In · · · In ]T

N = [

×nA
︷ ︸︸ ︷

0 · · · 0

×nB
︷ ︸︸ ︷

Inu · · · Inu

×nC
︷ ︸︸ ︷

0 · · · 0 ]T

Φ(θ(t)) = diag [θA1(t)In , · · · ,θAnA(t)In, θB1(t)Inu , · · ·

· · · ,θBnB(t)Inu , θC 1(t)In , · · · ,θC nC(t)In
]

In conformity with the change of variables (6), the system
(5) can be written as

ẋ(t) =
r

∑
i=1

µi(t)
[

Ai,0x(t)+Bi,0u(t)+ Ēid̄(t)+Fiw(t)
]

y(t) =C0x(t)+ Ḡ0d̄(t) (7)

where

Ēi =
[

Ei Ai,1 · · ·Ai,nA Bi,1 · · ·Bi,nB 0n,nC ·n
]

(8)

Ḡ0 =
[

G 0ny,nA·n 0ny,nB·nu C1 · · ·CnC

]

(9)

with d̄(t) = [dT (t) f T (t)]T . In the following, the vector
f ∈ R

n f is considered as a fault signal. In this manner, the
modeling uncertainties θ are transformed in faults f by using
algebraic techniques. In the following we will refer only at
faults by keeping in mind the modeling uncertainties.

Remark 2.2: Let us decompose the matrix Ḡ0 as follows

Ḡ0 = Ḡ+G1 (10a)

Ḡ =
[

G ΓA ΓB C1 · · · CnC

]

(10b)

G1 =
[

0 −ΓA −ΓB 0 · · · 0
]

(10c)

where ΓA ∈ Rny×nA·n and ΓB ∈ Rny×nB·nu are given full
column rank matrices. This decomposition ensures the full
column rank property for the output matrix Ḡ, required in
the proposed estimation methodology.
In order to estimate the state x, the unknown input d and
the fault f , an observer based on the technique of descriptor
systems is synthesized. By using the remark 2.2, the T-S
model (7) is rewritten as

Ẽ ˙̃x(t) =
r

∑
i=1

µi(t)
[

Ãix̃(t)+ B̃iu(t)+ Ẽid̄(t)+ G̃xs(t)+ F̃iw(t)
]

y(t) = C̃x̃(t) (11)

=C∗x̃(t)+ xs(t)

where

xs(t) = Ḡd̄(t), x̃(t) =
[

x(t)
xs(t)

]

(12)

and with the following matrix definitions

Ẽ =

[

In 0
0 0ny

]

, Ãi =

[

Ai,0 0
0 −Iny

]

, (13a)

B̃i =

[

Bi,0
0ny

]

, Ẽi =

[

Ēi
0ny

]

, (13b)

G̃ =

[

0n
Iny

]

, F̃i =

[

Fi
0ny

]

, C∗ =
[

C0 G∗
]

, (13c)

G∗ = G1
(

ḠT Ḡ
)−1

ḠT , C̃ =
[

C0 Iny

]

(13d)

In this paper, an observer that uses the input u, the output y
and xs as unknown input is considered, with the following
structure

Eż(t) =
r

∑
i=1

µi(t)
[

Kiz(t)+ B̃iu(t)
]

(14a)

ˆ̃x(t) = z(t)+Ly(t) (14b)

ŷ(t) =C∗ ˆ̃x(t)

=C x̂(t) (14c)

where z ∈ Rn+ny is an auxiliary state vector of the observer,
ˆ̃x(t) is the state estimation of the system (11).

The observer gains E, Ki and L are to be determined.
Let us define the residual vector r as follows

r(t) =V [y(t)− ŷ(t)] (15)

where V is the residual weighting matrix.
Let us define the error state e(t) as follows

e(t) =x̃(t)− ˆ̃x(t) (16)

In the following the error dynamic is determined by sub-
stituting z(t) = ˆ̃x(t)−Ly(t) in (14a) and by subtracting the
result from system (11)

(

Ẽ +ELC̃
)

˙̃x(t)−E ˙̃̂x(t) =
r

∑
i=1

µi(t)
[(

Ãi +KiLC∗
)

x̃(t)−Ki ˆ̃x(t)+

(

KiL+ G̃
)

xs(t)+ F̃iw(t)+ Ẽid̄(t)
]

(17)

The dynamic of the error reduces to

Eė(t) =
r

∑
i=1

µi(t)
[

Kie(t)+ F̃iw(t)+ Ẽid̄(t)
]

(18)

if the following conditions are fulfilled

E =Ẽ +ELC̃

Ki =Ãi +KiLC∗, KiL =−G̃ (19)

The conditions (19) are respected for

Ki =

[

Ai 0
−C −Iny

]

, L =

[

0
Iny

]

, E =

[

In +XC X
YC Y

]

(20)

The matrices X and Y with appropriate dimensions are to be
determined.

Then, the error dynamic system is given by

ė(t) = Sµ e(t)+ Ẽd
µ d̄(t)+Ew

µ w(t) (21a)

r(t) =V
[

C∗e(t)+ Ḡ d̄(t)
]

(21b)

By using the dynamic of the error (18) and the matrices
definitions (13) the compact form definition for Sµ , Ẽd

µ and
Ẽw

µ is obtained

Sµ =
r

∑
i=1

µi(t)Si, Ẽd
µ =

r

∑
i=1

µi(t)Ẽd
i , Ẽw

µ =
r

∑
i=1

µi(t)Ẽw
i (22)
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where

Si =

[

Ai +XY−1C XY−1

−CAi −
(

Y−1 +CXY−1
)

C −
(

Y−1 +CXY−1
)

]

Ẽd
i =

[

Ẽi
CẼi

]

, Ew
i =

[

Ki
CKi

]

(23)

The system (21) can be written under the compact form

r(t) = Trdd̄(t)+Trww(t) (24)

where Trd stands for the transfer function from the fault d̄ to
the residual r and Trw stands for the transfer function from
the disturbance w to the residual and are defined by

Trd :=

[

Sµ Ẽd
µ

VC∗ V Ḡ

]

, Trw :=

[

Sµ Ew
µ

VC∗ 0

]

(25)

The matrices X and Y are to be determined in order to design
the observer (14) and to guarantee the non singularity of the
matrix E. Thus, the observer design reduces to find matrices
Y and X (i.e. observer gain E) and V such that the matrices Si
are quadratically asymptotically stable and that the generated
residual r is sensitive to faults d̄ and robust with respect to
disturbances w.

Definition 2.1: [4] The observer (14) is asymptotically
stable with the H∞/H− performances if there exists two
positive scalars γd and γw such that the following conditions
hold

‖Trd(s)‖− > γd (26)

‖Trw(s)‖∞ < γw (27)

The goal is to find admissible filter (14) that minimize γw
and maximize γd (i.e. an observer that ensures robustness
with respect to disturbances w and sensitivity to faults d̄).
Various mixed H∞/H− optimization criteria have been
recommended [26], such as: γw/γd , aγw − bγd , γ2

w − γ2
d ,

αγ2
w+(1−α)γ2

d etc. Here, the last criterion will be used. The
coefficient α is selected in order to balance the compromise
between the robustness with respect to disturbance and the
sensitivity to fault.

B. H∞ robustness conditions

In this section, only robustness with respect to disturbance
is considered by using the H∞ performance.

Lemma 2.1: If there exist P symmetric positive definite
and scalar γw > 0 such that the following conditions are
satisfied
[

ST
i P+PSi +C∗TV TVC∗ PEw

i

∗ −γ2
wI

]

< 0, i = 1, · · ·r (28)

then the system (24) with d̄ = 0 (r(t) = Trww(t)) is stable
with γw disturbance attenuation (27).

Proof: The condition (27) can be easily formulated as
(28) using the bounded real lemma. See, for example [23].

In the following result, robustness conditions with respect
to disturbances w are derived in terms of linear matrix
inequalities (LMI).

Theorem 2.1: If there exists symmetric matrices P1 and
P2, matrices Z1, Z2 and V and positive scalar γw such that
the following conditions are satisfied for i = 1, · · · ,r

M1,i =









∆1, i ∆2, i P1Fi CTV T

∗ −Z2 −ZT
2 −P2CFi G∗TV T

∗ ∗ −γ̄wI 0

∗ ∗ ∗ −I









≤ 0 (29)

where

∆1, i =P1Ai +AT
i PT

1 −Z1C−CT ZT
1 (30a)

∆2, i =Z1 −AT
i CT P2 −CT ZT

2 (30b)

Then the estimation error (21) with d̄ = 0 is asymptotically
stable with the performance (27) and the observer (14) is
completely defined by (20) with

Y =
(

P−1
2 Z2 −CP−1

1 Z1
)−1

(31a)

X =P−1
1 Z1Y (31b)

Proof: From (28), by using the Schur complement and
based on lemma 2.1, the following nonlinear inequality is
obtained







ST
i P+PSi PEw

i C∗TV T

∗ −γ2
wI 0

∗ ∗ −I






< 0

Let us define P = diag(P1,P2). Using (23), the following
matrix inequality is obtained









Ψ1, i Ψ2, i P1Fi CTV T

∗ Ψ3, i −P2CFi G∗TV T

∗ ∗ −γ2
wI 0

∗ ∗ ∗ −I









< 0 (32)

where

Ψ1, i =P1Ai +AT
i PT

1 −P1XY−1C− (P1XY−1C)T

Ψ2, i =P1XY−1 − (CAi)
T P2 −CT (Y−1 +CXY−1)T P2

Ψ3, i =−P2(Y−1 +CXY−1)− (Y−1 +CXY−1)T P2

Due to the coupling between P1, P2, X and Y , conditions
(32) are nonlinear. In order to obtain the LMIs, the following
variable changes are introduced

Z1 =P1XY−1 (33)

Z2 =P2(Y−1 +CXY−1) (34)

γ̄w =γ2
w (35)

By using (33) and (34), the matrices X and Y can be
determined as defined in (31). The LMIs (29) are obtained,
which completes the proof.
Since Ḡ is supposed of full column rank, in conformity with
the remark 2.2, the fault estimation is obtained by using (12)

ˆ̄d(t) =
(

ḠT Ḡ
)−1

ḠT [On Iny

]
ˆ̃x(t) (36)
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C. H− sensitivity conditions

In this section, the sensitivity of the residual r to faults d̄ is
discussed. In faulty case without disturbance w, the residual
signal (24) is reduced to

r(t) = Trdd̄(t) (37)

Theorem 2.2: If there exist symmetric positive definite
matrices P1 and P2, matrices Z1 and Z2 and V and positive
scalar γd such that the following inequalities are satisfied for
i = 1, · · · ,r

M2,i =









∆1, i ∆2, i −P1Ēi CTV T

∗ −Z2 −ZT
2 −P2CĒi G∗TV T

∗ ∗ −γ̄dI ḠTV T

∗ ∗ ∗ −I









≤ 0 (38)

with ∆1, i and ∆2, i defined in (30), then the estimation error
(37) is asymptotically stable with the performance (26).

Proof: Let us choose the Lyapunov function as

V (t) =e(t)T Pe(t) (39)

where P is symmetric positive definite matrix. By consider-
ing (37), we design the performance index

J− =
∫ ∞

0
rT (t)r(t)dτ − γ2

d

∫ ∞

0
d̄T (t)d̄(t)dτ

=
∫ ∞

0

(

rT (t)r(t)− γ2
d d̄T (t)d̄(t)−

dV (t)
dτ

)

dτ +V (t)

=
∫ ∞

0

[
(

C∗e(t)+ Ḡ d̄(t)
)T V TV

(

C∗e(t)+ Ḡ d̄(t)
)

− γ2
d d̄T (t)d̄(t)−

r

∑
i=1

µi(t)(Sie(t))T Pe(t)

−
r

∑
i=1

µi(t)e(t)T PSie(t)

]

dτ +V (t)

=−
∫ ∞

0

r

∑
i=1

µi(t)

[

e(t)

d̄(t)

]T

Ωi

[

e(t)

d̄(t)

]

dτ +V (t)

with

Ωi =

[

ST
i P+PSi − (VC∗)TVC∗ −PẼd

i +(VC∗)T (V Ḡ)

∗ −γ2
d I − (V Ḡ)T (V Ḡ)

]

If Ωi ≤ 0 then J− ≥ 0. With P = diag(P1,P2), γ̄d = γ2
d and

the convex property (3), with (23) and (31) we get






∆1, i −CTV TVC ∆2, i −P1Ēi +CTV TV Ḡ

∗ −Z2 −ZT
2 −P2CĒi +G∗TV TV G∗T

∗ ∗ −γ̄dI − ḠTV TV Ḡ






≤ 0

(40)

By using the bounded real lemma [23] and the Schur
complement we get the LMIs (38). The observer (14) is
completely defined by (20), with (31).

III. H∞/H− FAULT DETECTION OBSERVER DESIGN

Theorem 3.1: Consider a positive parameter α . The robust
observer (14) is obtained by finding symmetric positive
definite matrices P1, P2, matrices Z1, Z2 and V and positive
scalars γ̄d and γ̄w solution of the following optimization
problem

min
P1,P2,Z1,Z2,V,γ̄d ,γ̄w

αγ̄d +(1−α)γ̄w (41)

such that the conditions (29) and (38) hold. The fault is
estimated by (36). The observer gains are defined by (20)
with (31). The attenuation levels are given by

γw =
√

γ̄w and γd =
√

γ̄d (42)

Remark 3.1: As stated in the beginning of the paper, the
polynomial model uncertainties θ are considered multiplica-
tive faults f by using the change of variables (6). In addition
to that, the unknown inputs d have been inserted in the
fault vector d̄ using algebraic techniques. In this way, the
unknown input and model uncertainty estimation became a
fault detection problem. More specifically, a robust residual
observer has been proposed, in order to estimate the state
variables x and the faults d̄ by attenuating the effect of
external disturbances w while maintaining the sensitivity
to faults d̄. In fact, the fault signals d̄ give information
about the unknown inputs d and the model uncertainties
θ , in conformity with the change of variables presented
in the remark 2.1 and by taking into account (36). Hence,
estimating d̄ is equivalent to estimate the unknown inputs d
and the modeling uncertainties θA1 , · · · ,θAnA

, θB1 , · · · ,θBnB
,

by applying the inverse change of variables: θ̂ = Ψ−1( f̂ ).
Using (36) and f̂ = [0 In f ]

ˆ̄d, it is obtained:

θ̂(t) =Ψ−1
(

[0 In f ] ·
(

ḠT Ḡ
)−1

ḠT [On Iny ] ˆ̃x(t)
)

(43)

or, equivalently

Φ(θ̂(t)) = f̂ (t)q̂T (t)
(

q̂(t)q̂T (t)
)−1

(44a)

q̂(t) = Mx̂(t)+Nu(t) (44b)
The equation (44) is obtained by using the change of
variables (6), where the notation (44b) is used, as follows.
Let us remind that

Ψ(θ̂(t)) =Φ(θ̂(t))q̂(t) (45)

and replace Φ(θ̂(t)) = f̂ (t) in equation (45). By multiplying,
at the right side, the obtained equality with q̂T and then with
(

q̂q̂T
)−1, we obtain the equality (44a).

IV. NUMERICAL EXAMPLE

Let us illustrate the effectiveness of the proposed robust
fault detection method by considering the following aca-
demic example. Let us consider the T-S uncertain nonlinear
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system (2) defined by

Ai(θ(t)) = Ai,0 +θ1(t)Ai,1, for i = 1,2

Bi(θ(t)) = Bi,0 +θ2(t)Bi,2, for i = 1,2

C(θ(t)) = C0 +θ3(t)C3

θ j(t) = θ nom
j +δθ j(t), j = 1, ...,3

θ nom
1 = 0.2, θ nom

2 = 0.3, θ nom
3 = 0.1

δθ1(t) =

{

0.1sin(t −2), 2 ≤ t < 6

0, otherwise

δθ2(t) =

{

0.15sin(t −3.8), 3.8 ≤ t < 7.8

0, otherwise

δθ3(t) =

{

0.2(t −0.3), 1 ≤ t < 3

0, otherwise

A1,0 =






−2 −3 0
1 0 −5

0.1 0.5 −1




 ,B1,0 =






−1
−2
0




 ,A1,1 =






0 0 0
0 0.2 0
−1 0 0




 ,

B1,2 =







0

0

−0.5






, A2,0 =







−1 3 2

1 0 −2

0 0.2 −2.5






, B2,0 =







−2

1

1






,

A2,1 =







0 0 0

0 0.1 0

1 0 0






,B2,2 =







0

0

0.5






,E1 =







0.5

1

−1






,

E2 =







1

0.3

0.5






, F1 =







1

0

0






, F2 =







0

1

0






, C0 =

[

−1 1 1

1 0 1

]

,

C3 =

[

0 0.1 0

0.1 0 −0.2

]

, G =

[

1

0.5

]

(46)

The weighting functions are defined as follows

µ1(u(t)) =
0.5− tanh((u(t)−1)/10)

2
, µ2(u(t)) = 1−µ1(u(t))

Three parameter uncertainties are considered: θ1 and θ2 af-
fecting the system dynamic by being involved in the matrices
Ai(θ1) and Bi(θ2), and θ3 affects the output y through the
matrix C(θ). Matrices Ai(θ1), Bi(θ2) and C(θ) are defined
as in (4), with (46). The resolution of the LMIs deriving
from the optimization problem in theorem 3.1 with α = 0.75
occurs in γd = 0.224 and γw = 0.316 and the observer gain

matrices as follows

V =
[

0.14 −0.23
]

, Ki =

[

Ai,0 03,2

−C0 I2

]

E =












1.38 0.13 0.63 0.13 0.50

−0.18 2.08 1.97 1.07 0.89

0.14 −0.19 0.75 −0.19 −0.05

−0.03 0.03 0.03 0.03 −0.02

0.05 0.01 0.08 0.01 0.06












As illustrated in figures 1, 2, 3 the proposed method gives
good estimation of the state variables, the unknown inputs
but also of the parameter uncertainties.

0 2 4 6 8 10
−2
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2

 

 

x
1

0 2 4 6 8 10
−5

0

5

 

 

x
2

0 2 4 6 8 10
−1

0

1

 

 

x
3

Fig. 1. State estimation: real state x and its estimated x̂ (dotted lines)

V. CONCLUSIONS

This article designs state, unknown input and parameter
uncertainty estimation based on a H∞/H− robust fault
detection generator. The method applies the technique of de-
scriptor systems by considering unknown inputs and param-
eter uncertainty as auxiliary state variables. Robustness with
regard to external disturbances and sensitivity with respect
to parameter uncertainties and unknown inputs are realized
through robust fault detection observers. The robustness is
based on H∞ techniques, although the sensitivity regarding
model uncertainties and unknown inputs is expressed using
the H− index. The nonlinear system is modeled using T-S
multi-model approach which represents a very adequate and
general way to represent various kinds of systems.
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Fig. 2. Unknown input estimation
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Fig. 3. Parameter estimation: θ1(t), θ2(t), θ3(t)
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