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Abstract— This paper addresses the state and sensor fault
estimation for nonlinear systems represented by Takagi-Sugeno
(T-S) models. The considered faults are time-varying and with
multiplicative effect on the sensor output signals. The proposed
estimation procedure is based firstly on the sector nonlinearity
approach using the convex polytopic transformation where the
original system is equivalently rewritten as a Takagi-Sugeno
system with unmeasurable premise variables and, secondly on
the design of an observer allowing the fault estimation by
solving an LMI optimization problem. An application of the
proposed approach to a simplified model of an activated sludge
reactor model is proposed.

Index Terms— Sensor faults estimation, Takagi-Sugeno mod-
els, sector nonlinearity approach, convex polytopic transforma-
tion, state and fault observer, linear matrix inequality.

I. INTRODUCTION

Due to an increasing demand for higher performances,
industrial processes tend to be, more and more safety critical,
robust and reliable. For this reason, state and fault estima-
tion, and more generaly diagnosis, especially the model-
based ones, receive considerable interest from the control
community.
In the literature, the available works either address the prob-
lems of both sensor fault tolerance and estimation accuracy
(see [6] for example), where the Extended Kalman Filter is
used as state estimator, or sensor redundancy management
logic to maintain estimation functionality in nonlinear sys-
tems. In this kind of approach, only the state estimation is
considered without any detection or estimation of the sensor
fault. However, in the Fault Detection and Diagnosis (FDD)
design, both fault detection and isolation are considered,
usually by characterizing the normal behaviour of sensor
readings, and identify significant deviation from this normal
situation as faults [10].
In [2] for example, a strategy for detecting and isolating
sensor faults using a bank of residuals within a generalized
observer scheme (GOS) is presented. This scheme provides
an estimator dedicated to a particular sensor, this estimator
being driven by all outputs except that of the considered
sensor. In [7], the authors proposed methods for state esti-
mation and fault diagnosis for nonlinear systems represented
by Takagi-Sugeno (T-S) models. In [3] and [1], both sensor
fault and unknown input estimation were considered.
The main aim of the bank of observers is to generate an
incidence matrix or a coupling graph between the fault and
the residuals. In fact, a signal that is obtained from the
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generated residuals defines the effects associated with the
fault. This strategy proved its efficiency for the detectionand
isolation part, but, it requires the same number of observers
as outputs. Moreover, it should be highlighted that most
of the considered sensor faults are additive ones, i.e. the
measured outputs are linear in respect to the faults. The
few available works on multiplicative faults use a sliding
mode observer and are based on their re-modelling into the
framework of additive faults and then apply previous works
on reconstructing additive faults (see [12]).
In the present work, is tackled a simultaneous state and
multiplicative sensor fault observer design for nonlinearsys-
tems represented by T-S models with unmeasurable premise
variables. Based on the sector nonlinearity transformation
(SNT) [13], [8], both state observer with sensor fault toler-
ance and estimation accuracy and time-varying fault observer
(for detection, isolation and estimation at once) are designed.
The proposed method has the advantage to be analytical and
systematic without any loss of information since it consists
in rewriting the time-varying sensor fault and the system
nonlinearities in a polytopic form allowing to transform the
original nonlinear system into a T-S model based on the
sector nonlinearity approach and the convex polytopic trans-
formation. The T-S model obtained with this transformation
has the major interest to exactly represent the system without
any loss of informations or any approximation.
The proposed method is an extention to the sensor fault
estimation of the author’s previous work presented in [5]
and [4]. This procedure allows to design a state and fault
observer by minimizing theL2 gain from the fault to the
state and fault estimation errors. Using the Lyapunov theory,
theL2 gain minimization is expressed as a LMI constraints.
The paper is organized as follows. Section II introduces the
T-S representation of the nonlinear system with multiplica-
tive sensor fault. In section III, joint state and unknowm
time-varying fault estimation is proposed for T-S systems
with unmeasurable premise variables. An application of the
proposed approach to a simplified model of an activated
sludge reactor model with some simulation results are given
in section IV. Conclusions are summarized in section V.

II. PROBLEM STATEMENT: T-S MODELLING OF

MULTIPLICATIVE TIME -VARYING SENSOR FAULT

A first contribution of this work is to model nonlinear
time-varying systems using the T-S representation. An effi-
cient way consists in rewriting the original nonlinear system
in a simplier form, like the T-S one. Originaly introduced
by [11], the T-S representation is based on time-varying
interpolation between time invariant linear submodels and



allows to describe the exact nonlinear behaviour of a sys-
tem, under the condition that its nonlinearities are bounded.
This is reasonable as variables of physical systems are real
and always bounded. See for example [11], [13] and the
references therein.
The T-S representation is very interesting in the sense thatit
simplifies the mathematical developments for observer and
controller design compared to the original nonlinear models
Moreover, it allows to extend the use of some tools developed
in the linear framework to the nonlinear systems, for the
stability study, the control design and the observer synthesis.
In the present paper, the T-S models with multiplicative time-
varying sensor fault are considered. In order to design a joint
state and fault observer, each time-varying sensor fault is
rewritten under a particular form.
Let us consider the nonlinear T-S system with multiplicative
time-varying sensor fault represented by equation (1)





ẋ(t) =
r

∑
i=1

µi(x(t))(Aix(t)+Biu(t))

y(t) = C(t)x(t)
(1)

The weighting functionsµi(ξ (t)) of the r submodels satisfy
the convex sum property





r

∑
i=1

µi(ξ (t)) = 1

0≤ µi(ξ (t))≤ 1, i = 1, . . . ,r
(2)

It is importnt to note that in the remaining of the paper,
the weighting functions depend on the state variablex(t).
This case is more difficult to deal with and then less studied
than the one with measurable premise variables, but naturally
appears when the T-S system is obtained with the SNT.
The matriceC(t) is defined as follows

C(t) = (Im +F(t))C (3)

s.t. F(t) ∈ R
m×m defined by:

F(t) = diag( f (t)) (4)

where diag( f (t)) refers to a diagonal matrix with the terms
f j(t) (sensor faults) on its diagonal.F(t) is also expressed
as

F(t) =
m

∑
j=1

f j(t)Fj (5)

with Fj matrices of dimensionRm×m and where the element
of coordinate(i, i) is equal to 1 and 0 elsewhere. The terms
f j(t) are time-varying unknown parameters and represent
multiplicative sensor faults. Each fault component is un-
known but bounded where the lower boundf 2

j and the upper
one f 1

j are known. Thusf j(t) can be written as:

f j(t) = µ̃1
j ( f j(t)) f 1

j + µ̃2
j ( f j(t)) f 2

j , f j(t) ∈ [ f 2
j , f 1

j ] (6)

with

µ̃1
j ( f j(t)) =

f j(t)− f 2
j

f 1
j − f 2

j

, µ̃2
j ( f j(t)) =

f 1
j − f j(t)

f 1
j − f 2

j

(7)

µ̃1
j ( f j(t))+ µ̃2

j ( f j(t)) = 1, ∀t

Replacing (6) in (5), it becomes:

F(t) =
m

∑
j=1

2

∑
k=1

µ̃k
j ( f j(t)) f k

j Fj (8)

In order to write F(t) as a simple polytopic matrix, the
convex sum property of the functions̃µk

j ( f j(t)) can be
exploited (see [5] for calculation details):

F(t) =
2m

∑
j=1

µ̃ j( f (t))F j (9)

with 



µ̃ j( f (t)) =
m

∏
k=1

µ̃
σk

j
k ( fk(t))

F j =
m

∑
k=1

f
σk

j
k Fj

(10)

where theµ̃ j( f (t)) satisfy the convex sum property.
In the following, f (t) is the fault vector of components
f j(t), j = 1, . . . ,m. The indicesσ k

j equal to 1 or 2, indicate

which partition of thekth parameter (̃µk
1 or µ̃k

2) is involved
in the jth submodel. The relation between thejth submodel
and theσ k

j indices are given by the following equation

j = 2m−1σ1
j +2m−2σ2

j + . . .+20σm
j − (21+22+ . . .+2m−1)

(11)
Finally, using equations (10) and (3), (1) becomes:





ẋ(t) =
r

∑
i=1

µi(x(t))(Aix(t)+Biu(t))

y(t) =
2m

∑
j=1

µ̃ j( f (t))C̃ jx(t)
(12)

C̃ j =C+F jC (13)

III. STATE AND SENSOR FAULT OBSERVER

Based on the obtained T-S model (12), a simultaneous state
and sensor fault observer may be designed and implemented.
An L2 attenuation approach will be proposed to minimize
the effect of the time-varying fault on the state and fault error
estimation.
The state and sensor fault observer is defined by




˙̂x(t) =
r

∑
i=1

µi(x̂(t))(Aix̂(t)+Biu(t)+Li(y(t)− ŷ(t)))

˙̂f (t) =
r

∑
i=1

µi(x̂(t))(Ki(y(t)− ŷ(t))−αi f̂ (t))

ŷ(t) =
2m

∑
j=1

µ̃ j( f̂ (t))C̃ j x̂(t)

(14)
where Li ∈ R

nx×m, Ki ∈ R
m×m and αi ∈ R

m×m are the
gains to be determined such that the estimated state and fault
converge to the system state and fault.
Let us define the state and fault estimation errorex(t) and
e f (t) as

ex(t) = x(t)− x̂(t)
e f (t) = f (t)− f̂ (t)

(15)



Their dynamics cannot be easily computed directly from
(15) since in (12) the weighting functions depend on the
unmeasurable variables (f (t) and x(t)). Because of that,
based on the convex sum property of the weighting functions,
(12) is rewritten as follow




ẋ(t) =
r

∑
i=1

[µi(x̂(t))(Aix(t)+Biu(t))+

(µi(x(t))−µi(x̂(t)))(Aix(t)+Biu(t))]

y(t) =
2m

∑
j=1

[
µ̃ j( f̂ (t))C̃ jx(t)+(µ̃ j( f (t))− µ̃ j( f̂ (t)))C̃ jx(t)

]

(16)
This form allows a better comparison ofx(t) with x̂(t), since
µi(x̂(t)) and µ̃ j( f̂ (t)) not only appears in (14), but also in
(16). Let us define:

∆A(t) =
r

∑
i=1

[µi(x(t))−µi(x̂(t))]Ai = A ΣA(t)EA (17)

∆B(t) =
r

∑
i=1

[µi(x(t))−µi(x̂(t))]Bi = BΣB(t)EB (18)

∆C(t) =
2m

∑
j=1

(µ̃ j( f (t))− µ̃ j( f̂ (t)))C̃ j = C ΣC(t)EC (19)

with

A =
[

A1 . . . Ar
]
,ΣA(t) = diag(δ1(t), . . . ,δr(t)),

B =
[

B1 . . . Br
]
,ΣB(t) = diag(δ1(t), . . . ,δr(t)),

C =
[

C1 . . . C2m
]
,ΣC(t) = diag(δ̃1(t), . . . , δ̃2m(t)),

EA =
[

Inx . . . Inx

]T
, EB =

[
Inu . . . Inu

]T

EC =
[

I2m . . . I2m
]T

δi(t) = µi(x(t))−µi(x̂(t)), δ̃ j(t) = µ̃ j( f (t))− µ̃ j( f̂ (t))
(20)

Thanks to property (2), it follows

−1≤ δi(t)≤ 1,−1≤ δ̃ j(t)≤ 1 (21)

which implies from definition (20)

ΣT
A(t)ΣA(t)≤ I, ΣT

B(t)ΣB(t)≤ I, ΣT
C(t)ΣC(t)≤ I (22)

Using (17), (18) and (19), the system (16) is then written as
an uncertain system given by:




ẋ(t) =
r

∑
i=1

µi(x̂(t))((Ai +∆A(t))x(t)+(Bi +∆B(t))u(t))

y(t) =
2m

∑
j=1

µ̃ j( f̂ (t))(C̃ j +∆C(t))x(t)

(23)
From equations (23), (14) and (15), the dynamics of the state
estimation error is given by

ėx(t) =
r

∑
i=1

µi(x̂(t))(Aiex(t)+∆A(t)x(t)

−Li(y(t)− ŷ(t))+∆B(t)u(t))
(24)

The output errory(t)− ŷ(t) is then calculated as follows

y(t)− ŷ(t) =
2m

∑
j=1

µ̃ j( f̂ (t))(C̃ jex(t)+∆C(t)x(t)) (25)

Replacing (25) in (24), the dynamics of the state estimation
error is given by

ėx(t) =
r

∑
i=1

2m

∑
j=1

µi(x̂(t))µ̃ j( f̂ (t))((Ai −LiC̃ j)ex(t)+

(∆A(t)−Li∆C(t))x(t)+∆B(t)u(t))

(26)

From equations (25) and (14), the dynamics of the fault
estimation is given by

ė f (t) =
r

∑
i=1

2m

∑
j=1

µi(x̂(t))µ̃ j( f̂ (t))(−KiC̃ jex(t)−αie f (t)

ḟ (t)−Ki∆C(t)x(t)+αi f (t))
(27)

Due to the coupling between the errorse f (t) andex(t), it is
convenient to consider the augmented vectorsea(t) andω(t)

ea(t) =

(
ex(t)
e f (t)

)
, ω(t) =




x(t)
f (t)
ḟ (t)
u(t)


 (28)

From (26), (27) and (28), it follows

ėa(t) =
r

∑
i=1

2m

∑
j=1

µi(x̂(t))µ̃ j( f̂ (t))(Φi jea(t)+Ψi(t)ω(t)) (29)

with

Φi j =

(
Ai −LiC̃ j 0
−KiC̃ j −αi

)

Ψi(t) =

(
∆A(t)−Li∆C(t) 0 0 ∆B(t)

−Ki∆C(t) αi I 0

) (30)

Considering (29), the objective is to design a joint state
and fault observer with a minimalL2 gain of the transfer
from ω(t) to ea(t). The computation of the observer gains
is detailed in the next theorem.

Theorem 1: There exists a joint robust state and multi-
plicative sensor fault observer (14) for a nonlinear system(1)
with an L2 gain from ω(t) to ea(t) bounded byβ (β > 0)
if there exists matricesP1 = PT

1 > 0, P2 = PT
2 > 0, Γ1, Γ2,

Γ3, Γ4 > 0, α i, Ki, Ri and scalarsβ , λ1, λ1C > 0, λ2C > 0
andλB > 0 solutions of the optimization problem (31) under
LMI constraints (32) and (33) (see next page)

min
P1,P2,Ri,Ki,α i,λ1,λ1C,λ2C ,λB

β (31)

for i = 1, . . . ,r and j = 1,2m

Γk < β I for k = 1,2,3,4 (32)

with

Q11
i j = P1Ai +AT

i P1−RiC̃ j −C̃T
j RT

i + Inx

Q33 =−Γ1+λ1ET
A EA +λ1CET

C EC +λ2CET
C EC

(34)

The observer gains are given by




Li = P−1
1 Ri

Ki = P−1
2 Ki

αi = P−1
2 α i

(35)






Q11
i j −C̃T

j KT
i 0 0 0 0 P1A P1B RiC 0

∗ −α i −αT
i + Im 0 α i P2 0 0 0 0 KiC

∗ ∗ Q33 0 0 0 0 0 0 0
∗ ∗ ∗ −Γ2 0 0 0 0 0 0
∗ ∗ ∗ ∗ −Γ3 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Γ4+λBET

B EB 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −λ1I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −λBI 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 −λ1CI 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 −λ2CI




< 0 (33)

Proof: In the remaining of the paper, the following
lemma is used:

Lemma 1: [14] Consider two matricesX and Y with
appropriate dimensions, a time-varying matrice∆(t) and a
positive scalarε. The following property is verified

XT ∆T (t)Y +Y T ∆(t)X ≤ εXT X + ε−1Y TY (36)

for ∆T (t)∆(t)≤ I.
Let us consider the following quadratic Lyapunov function

V (ea(t)) = eT
a (t)Pea(t), P = PT

> 0 (37)

Using (29), its time derivative is given by

V̇ (ea(t)) =
r

∑
i=1

2m

∑
j=1

µi(x̂(t))µ̃ j( f̂ (t))
[
eT

a (t)((Φi j)
T P

+PΦi j)ea(t)+ eT
a (t)PΨi(t)ω(t)+ωT (t)ΨT

i (t)Pea(t)
]

(38)
It is known thatea(t) asymptotically converges toward zero
when ω(t) = 0 and that theL2 gain from ω(t) to ea(t) is
bounded byβ if the following inequality holds

V̇ (ea(t))+ eT
a (t)ea(t)−ωT (t)Γω(t)< 0 (39)

with
Γ = diag(Γk), Γk < β I, for k = 1,2,3,4 (40)

An adequate choice ofΓ allows to attenuate the transfer from
some components ofω(t) to ea(t).
From (38), (39) becomes:

r

∑
i=1

2m

∑
j=1

µi(x̂(t))µ j( f̂ (t))

(
ea(t)
ω(t)

)T

((
ΦT

i jP+PΦi j + I2nx PΨi(t)
ΨT

i (t)P −Γ

))(
ea(t)
ω(t)

)
< 0

(41)
The Lyapunov matrixP is chosen as

P = diag(P1,P2) (42)

From (15), (30), (40) and (42), (41) holds if

µi(x̂(t))µ̃ j( f̂ (t))
(
Qi j +Q(t)+Q

T (t)
)
< 0 (43)

with:

Qi j =




Q11
i j −C̃T

j K
T
i 0 0 0 0

∗ −α i −αT
i + Im 0 α i P2 0

∗ ∗ Q33 0 0 0
∗ ∗ ∗ −Γ2 0 0
∗ ∗ ∗ ∗ −Γ3 0
∗ ∗ ∗ ∗ ∗ −Γ4




(44)

Q11
i j = P1Ai +AT

i P1−RiC̃ j −C̃T
j RT

i + Inx (45)

As (43) is time depending, it is convenient to look for bound
to the matrixQ(t). For that purpose, based on (17) and (18),
the time-varying term of (43) can be expressed as:

Q(t) =




P1A

0
0
0
0
0




ΣA(t)
(

0 0 EA 0 0 0
)

+




P1B

0
0
0
0
0




ΣB(t)
(

0 0 0 0 0 EB
)

+




P1LiC

P2KiC

0
0
0
0




ΣC(t)
(

0 0 −Ec 0 0 0
)

(46)

Using lemma 1 and property (21), there exists positive scalars
λ1, λB, λ1C andλ2C, such that

Q(t)+Q
T (t)<




Q1 0 0 0 0 0
0 Q2 0 0 0 0
0 0 Q3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 λBET

B EB




(47)

with:

Q1 = λ−1
1 P1A A T P1+λ−1

B P1BBT P1+
(λ1C)

−1P1LiC C T LT
i P1

Q2 = λ−1
2C P2KiC C T KT

i P2

Q3 = λ1ET
A EA +(λ1C +λ2C)ET

C EC

(48)

for i = 1, . . . ,r and j = 1, . . . ,2m.
From inequality (47), sinceµi(x̂(t)) and µ̃ j( f̂ (t)) satisfy the
convex sum property, with the variable changes (35), the LMI
(33) implies (43) and (39). As a consequence, theL2-gain
of the transfer fromω(t) to ea(t) is bounded byβ , which
achieves the proof.



IV. N UMERICAL EXAMPLE

In this section, the proposed approach is applied to a
biological wastewater treatment plant. A reduced form of
an activated sludge reactor model is considered with only
the carbon pollution and two state variables.
Starting from the nonlinear equations of the system, a T-
S representation is given. Multiplicative sensor fault are
considered. The objective is to synthesize an observer in
order to simultaneously estimate the system states and the
fault.
The process consists in mixing used waters with a rich
mixture of bacteria in order to degrade the organic matter
[9]. Under specific assumptions, some simplifications can be
made and the nonlinear system can be represented with the
following equations [5]:





ẋ1(t) =
ax1(t)x2(t)

x2(t)+b − x1(t)u(t)

ẋ2(t) =−
cax1(t)x2(t)

x2(t)+b +(d − x2(t))u(t)

(49)

with x1(t) andx2(t), the biomass and substrat concentration
respectively, and wherea, b andd are known parameters. The
input u(t) represents the dwell-time in the treatment plant.
The measured output is the biomass concentration (y(t) =
x1(t)).
It is assumed that a bounded multiplicative sensor faultf1(t)
affects the outputy(t) such that:

y(t) = (1+ f1(t))x1(t) (50)

As previously explained,f1(t) can also be written as:

f1(t) = µ̃1
1( f1(t)) f 1

1 + µ̃2
1( f1(t)) f 2

1 , f1(t) ∈ [ f 2
1 , f 1

1 ] (51)

with f 2
1 = 0.125, f 1

1 = 0.625, µ̃1
1( f1(t)) and µ̃2

1( f1(t)) are
defined by (7). Parametersb, c, d have been identified and
set tob = 0.07, c = 0.7 andd = 2.5.
From the system nonlinearities, let us consider the following
premise variables:

z1(t) =−u(t), z2(t) =
ax1(t)

x2(t)+b
(52)

From (49) and (52), the following quasi-LPV form is ob-
tained:

ẋ(t) =

(
z1(t) z2(t)

0 −cz2(t)+ z1(t)

)
x(t)+

(
0
d

)
u(t) (53)

Since a T-S model is obtained in a compact set of the state
space, maximum and minimum values that occur inz1(t) and
z2(t) may be calculated using the knowledge of the domain
of variation ofu(t): z1(t)∈ [−1,−0.2] andz2(t)∈ [0.004,15].
Using the convex polytopic transformation, two partitionsfor
each premise variable are constructed as follows:

{
z1(t) = F11(z1)z2

1+F12(z1)z1
1

z2(t) = F21(z2)z2
2+F22(z2)z1

2

(54)

with F11(z1) =
z1(t)− z2

1

z1
1− z2

1

, F12(z1) =
z1
1− z1(t)

z1
1− z2

1

F21(z2) =
z2(t)− z2

2

z1
2− z2

2

, F22(z2) =
z1
2− z2(t)

z1
2− z2

2

(55)

where the scalarsz1
1, z2

1, z1
2 and z2

2 are defined as

z1
1 = max

u
z1(t), z2

1 = min
u

z1(t)

z1
2 = max

x
z2(t), z2

2 = min
x

z2(t)
(56)

The submodels are defined by the pairs(Ai,Bi) with i =
1, . . . ,4. Due to the choice of premise variables, all theBi

matrices are equal toBT =
[

0 d
]
. The matricesAi are

given by:

A1 =

(
z1
1 z1

2
0 −cz1

2+ z1
1

)
, A2 =

(
z1
1 z2

2
0 −cz2

2+ z1
1

)

A3 =

(
z2
1 z1

2
0 −cz1

2+ z2
1

)
, A4 =

(
z2
1 z2

2
0 −cz2

2+ z2
1

)

The T-S model of the system with the multiplicative sensor
fault is obtained by an interpolation of the four previous
submodels for the state and two submodels for the output
equations:

ẋ(t) =
4

∑
i=1

µi(z(t))(Aix(t)+Bu(t)); y(t) =
2

∑
j=1

µ̃ j( f1(t))C̃ jx(t)

(57)
with C̃1 =

(
1+ f 2

1 0
)
, C̃2 =

(
1+ f 1

1 0
)
.

The weighting functionsµ j( f (t)) are calculated from (7) and
µi(z(t)) as the following:

µ1(z(t)) = F11(z1(t)) F21(z2(t))

µ2(z(t)) = F11(z1(t)) F22(z2(t))

µ3(z(t)) = F12(z1(t)) F21(z2(t))

µ4(z(t)) = F12(z1(t)) F22(z2(t))

(58)

As mentioned at the begining of this section, the objective is
to synthesize a robust state and fault observer applying the
proposed approach. To illustrate the time varying fault effect
on the system, figure 1 depicts the output with and without
the sensor fault. The system input, the state variables and
their estimates, the time-varying fault and its estimate are
depicted in the figures 2, 3 and 4 respectively. The initial
conditions are taken asx(0) =

(
0.1 1.5

)
for the system

and x̂(0) =
(

0.09 2.3
)
, f̂1(0) = 0 for the state and fault

observer respectively. From the depicted figures, one can
conclude on the efficiency of the synthetized state observer,
since the two states are perfectly estimated as well as the
time-varying multiplicative sensor faultf1(t).

V. CONCLUSION

In the present paper, a new systematic procedure is pre-
sented to deal with the state and multiplicative sensor fault
estimation for nonlinear systems. It consists in transforming
the original system into a Takagi-Sugeno model, based on
the sector nonlinearity approach and the convex polytopic
transformation. This transformation has the major interest
to exactly represent the system without any loss of infor-
mations. The considered procedure is the following: from
the nonlinear time-varying equations of the process, a global
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Fig. 1. Output with and withoutf1(t)
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Fig. 2. System inputu(t)
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Fig. 3. System states and their estimates
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Fig. 4. Time-varying faultf1(t) (blue) and its estimate (red)

T-S model of the system is proposed. The proposed state
and fault observer is then designed by solving an LMI
optimization problem, i.e. by minimizing theL2 gain from
the augmented input to the estimation errors. The chosen
application example is an activated sludge reactor with
multiplicative sensor fault on the output. From the nonlinear
equations of the system, a T-S model of the system is derived.
The proposed observer is synthetized and the obtained results
illustrate its performance.
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