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Abstract— This paper addresses the state and sensor fault generated residuals defines the effects associated with the
estimation for nonlinear systems represented by Takagi-Sugeno fault. This strategy proved its efficiency for the detectiom
(T-S) models. The considered faults are time-varying and with s |ation part, but, it requires the same number of obssrver
multiplicative effect on the sensor output signals. The proposed tout l'\/l ’ it should be highlighted th
estimation procedure is based firstly on the sector nonlinearity as outpu S'_ oreover, it shou e hig _'9 ted t at. most
approach using the convex po|yt0pic transformation where the of the COI’]SIdered sensor faultS are addltlve ones, l.e. the
original system is equivalently rewritten as a Takagi-Sugeno measured outputs are linear in respect to the faults. The
system with unmeasurable premise variables and, secondly on few available works on muiltiplicative faults use a sliding
th? design L?\illan th.Ser;(er allogmg tRe fa“'}_ e?_tlmatlfo?h bY  mode observer and are based on their re-modelling into the
solving an optimization problem. An application o e .. .
proposed approach to a simplified model of an activated sludge framework of gddmve -fz.aults and then apply previous works
reactor model is proposed. on reconstructing additive faults (see [12]).

Index Terms— Sensor faults estimation, Takagi-Sugeno mod- In the present work, is tackled a simultaneous state and

els, sector nonlinearity approach, convex polytopic transforma- muiltiplicative sensor fault observer design for nonlinggs-

tion, state and fault observer, linear matrix inequality. tems represented by T-S models with unmeasurable premise
variables. Based on the sector nonlinearity transformatio
I. INTRODUCTION (SNT) [13], [8], both state observer with sensor fault teler

Due to an increasing demand for higher performanceance and estimation accuracy and time-varying fault oleserv
industrial processes tend to be, more and more safetyatritic(for detection, isolation and estimation at once) are desig
robust and reliable. For this reason, state and fault estim&he proposed method has the advantage to be analytical and
tion, and more generaly diagnosis, especially the modedystematic without any loss of information since it corssist
based ones, receive considerable interest from the contiol rewriting the time-varying sensor fault and the system
community. nonlinearities in a polytopic form allowing to transformeth
In the literature, the available works either address tlodpr original nonlinear system into a T-S model based on the
lems of both sensor fault tolerance and estimation accurasgctor nonlinearity approach and the convex polytopicstran
(see [6] for example), where the Extended Kalman Filter iformation. The T-S model obtained with this transformation
used as state estimator, or sensor redundancy managentes the major interest to exactly represent the system utitho
logic to maintain estimation functionality in nonlinearssy any loss of informations or any approximation.
tems. In this kind of approach, only the state estimation i§he proposed method is an extention to the sensor fault
considered without any detection or estimation of the sensestimation of the author’'s previous work presented in [5]
fault. However, in the Fault Detection and Diagnosis (FDDand [4]. This procedure allows to design a state and fault
design, both fault detection and isolation are consideredpserver by minimizing theZ, gain from the fault to the
usually by characterizing the normal behaviour of sensatate and fault estimation errors. Using the Lyapunov theor
readings, and identify significant deviation from this natm the ¥ gain minimization is expressed as a LMI constraints.
situation as faults [10]. The paper is organized as follows. Section Il introduces the
In [2] for example, a strategy for detecting and isolatingl-S representation of the nonlinear system with multiplica
sensor faults using a bank of residuals within a generalizdétye sensor fault. In section |IIl, joint state and unknowm
observer scheme (GOS) is presented. This scheme providi#ge-varying fault estimation is proposed for T-S systems
an estimator dedicated to a particular sensor, this esiatwvith unmeasurable premise variables. An application of the
being driven by all outputs except that of the consideregroposed approach to a simplified model of an activated
sensor. In [7], the authors proposed methods for state estiudge reactor model with some simulation results are given
mation and fault diagnosis for nonlinear systems representin section IV. Conclusions are summarized in section V.
by Takagi-Sugeno (T-S) models. In [3] and [1], both sensor
fault and unknown input estimation were considered.

The main aim of the bank of observers is to generate an

incidence matrix or a coupling graph between the fault and A first contribution of this work is to model nonlinear

the residuals. In fact, a signal that is obtained from th#me-varying systems using the T-S representation. An effi-
cient way consists in rewriting the original nonlinear gyst
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allows to describe the exact nonlinear behaviour of a sys- ﬁjl(f-(t))Jrﬁjz(fj(t)) =1 Wt
tem, under the condition that its nonlinearities are bodnde

This is reasonable as variables of physical systems are reaefplacmg (6) in (5),
and always bounded. See for example [11], [13] and the

references therein. F() = Z Z
The T-S representation is very interesting in the senseitthat ==
simplifies the mathematical developments for observer adfi order to write F(t) as a simple polytopic matrix, the
controller design compared to the original nonlinear medelconvex sum property of the functiong!(fj(t)) can be
Moreover, it allows to extend the use of some tools developekploited (see [5] for calculation details):

it becomes:

) FEF; 8)

in the linear framework to the nonlinear systems, for the an _
stability study, the control design and the observer sysithe F(t) = I (f))F; 9)
In the present paper, the T-S models with multiplicativestim =1
varying sensor fault are considered. In order to designrd joiwith m
AR . B g
statg and fault obseryer, each time-varying sensor fault is a4 (f (1) = I—l I (fi(t)
rewritten under a particular form. Kt (10)
Let us consider the nonlinear T-S system with multiplicativ = & ok
, : - Fi=> fi'F
time-varying sensor fault represented by equation (1) &
: _ where thep;(f(t)) satisfy the convex sum property.
X = zlu' X(O)(Ax(t) + Biu(t)) €)) In the following, f(t) is the fault vector of components
yt) = X(t) fi(t),j=1,...,m The |nd|cesok equal to 1 or 2, indicate

which partmon of thekth parameter;@k or [ ) is involved
in the j!" submodel. The relation between tff€ submodel
and thea" indices are given by the following equation

{ Zu. @) =270 42" P00 40— (24224 27

. (11)
Osu@M)=1 i=L...r1 Finally, using equations (10) and (3), (1) becomes:
It is importnt to note that in the remaining of the paper,

The weighting function;ui(f(t)) of ther submodels satisfy
the convex sum property

the weighting functions depend on the state variatite. Xt) = ZM t) +Bju(t))
This case is more difficult to deal with and then less studied (12)
than the one with measurable premise variables, but nbtural yt) = Z [ (f(t
appears when the T-S system is obtained with the SNT.
The matriceC(t) is defined as follows ~ _
Ci=C+F,C (13)
Ct)=(m+F()C (3) [1l. STATE AND SENSOR FAULT OBSERVER
s.t. F(t) e R™™ defined by: Based on the obtained T-S model (12), a simultaneous state
- and sensor fault observer may be designed and implemented.
F(t) = diag(f (1)) ) An %, attenuation approach will be proposed to minimize

where diagf (t)) refers to a diagonal matrix with the termsthe effect of the time-varying fault on the state and fauloer
fj(t) (sensor faults) on its diagondk.(t) is also expressed €stimation.

as The state and sensor fault observer is defined by
m
_ . X . r
—hon © (k)= Y wE0) (AR + But) + Li(y(t) - y(1)))
i=
with Fj matrices of dimensiolR™™ and where the element f'“(t) = r L (R()) (Ki (y(t) —9(1)) — ai (1))

of coordinate(i,i) is equal to 1 and O elsewhere. The terms =
fj(t) are time-varying unknown parameters and represent | _ = . . = <
multiplicative sensor faults. Each fault component is un- y(t) = Z H; (F(1)Ci%(t)
known but bounded where the lower boufﬁiand the upper (14)
one fJ-1 are known. Thusfj(t) can be written as: where Lj € R ™M K. ¢ R ™M and a; € R ™M are the
oy~ 1, ~2,¢ 2 . 2 1 gains to be determined such that the estimated state arnd faul
fi(O) = g () 7+ F(FO) 7, £i(0) € [ F7] - (6) converge to the system state and fault.

with Let us define the state and fault estimation eegt) and
er(t) as
N fity— 2  _ f1—fi(t) _ ¢
= 1O ey O, &) = XO-R0



Their dynamics cannot be easily computed directly froniReplacing (25) in (24), the dynamics of the state estimation
(15) since in (12) the weighting functions depend on therror is given by
unmeasurable variablesf (¢) and x(t)). Because of that,

r 2m
based on th ty of th hting functi
asadon e cones sum Bropery o WG RASIos. )5 5 O (1A LG
_ r X (BA(t) — LiAC(t))x(t) +AB(t)u(t))
x(t):i;[ui(x(t))(A;x(t)+Biu(t))+ From equations (25) and (14), the dynamics of the fault
(Hi(x(t)) — pi(X(t))) (AX(t) +Biu(t))] estimation is given by
om o o poom
Z [ (FO)Cx(t) + (B (F(t)) — [ (T(1))Cyx(t) e (t) = zzIJi()A((t))ﬁj(f(t))(—KiGjes((t)—Gief(t)
) (16) Tk |
This form allows a better comparison xft) with X(t), since FO) ~KACEHX(E) +aif (1) 27)

Hi(X(t)) and fij(f(t)) not only appears in (14), but also in b6 16 the coupling between the erragt) andex(t), it is

(16). Let us define: convenient to consider the augmented vecea(s) and w(t)
r

AA(t) = _Z[Hi (X(t)) — Wi(R())]A = /ZA(t)EA  (17) X(t)
; ealt) = ( o ) o) = | 1) (28)
AB(t) = Zx (i (X(t)) — Hi(X())]Bi = #Zp(t)Es  (18) u(t)
2'; From (26), (27) and (28), it follows
aCt) =y (Bi(F©) - B(f©))C =CZct)Ec  (19) com
=1 €a(t) =3 > Hi(X(t)H;(T(1) (Pijea(t) +Wit)w(t)) (29)
with I=1=1
d:{ A A J 20 = g0, . 30 with _
B= B Br |,Zs(t) =diaga(t),. .., &(t)), o — ( A-LC; © )
c=[C Can ]..Zc(t) = ciag &i(1). .. (1)), T -KCj  —ay (30)
Ea=[ln - Inc ] Es=[lny - In ] Wi(t) = ( AA()—LAC(t) 0 0 AB(t) >
Ec = [ lom Iom T ! —KiAC(t) ai | 0
Gi(t) = wi(X(t)) — Hi(X(t)), SJ() m(f ())—ﬁj(f(t)) Considering (29), the objective is to design a joint state
(20)  and fault observer with a minima¥#, gain of the transfer
Thanks to property (2), it follows from w(t) to es(t). The computation of the observer gains
1<3(t)<1-1< 3 t) <1 21) is detailed in the next theorem.
1< <1,-1<3(t) <

Theorem 1. There exists a joint robust state and multi-
which implies from definition (20) plicative sensor fault observer (14) for a nonlinear systgm
T T T with an % gain from w(t) to e,(t) bounded byB (8 > 0)
IAOZaM) =1, Zp®)Ze(t) <1, ZcM)Zc®) <1 22) it there exists matrice® = P >0, R =P >0, 'y, Iy,
Using (17), (18) and (19), the system (16) is then written ass, M4 > 0, @i, Ki, R and scalarg3, A1, Aic >0, Ac >0

an uncertain system given by: andAg > 0 solutions of the optimization problem (31) under
; LMI constraints (32) and (33) (see next page)
- ZM (X)) (A +DA())x(t) + (B + AB(t))u(t)) _ min B (31)
P, P2,R K, @i,A1,A1c,A2¢ A8
ZIJJ ))(Cj +AC(t))X(t) fori=1,...,r andj=1,2"
(23) M < Bl for k=1,2,3,4 (32)
From equations (23), (14) and (15), the dynamics of the state
estimation error is given by with
Qi = PIA +ATPL—RC; —CTR +1p,
Z“'( () DA(t)X(t) o . ! . (34)
(24) Q%= —T1+MELEA+A1cELEc +AxcElEc
( (1) - (t))+AB( ) ( ) The observer gains are given by

The output errory(t ) y(t) is then calculated as follows L =P IR
i=n
{ Ki = P, 'K; (35)

Z A () (Ciet) +ACH)X(1)  (25) — P, lq



i 0 0 0 0 P/ P2 RE O
¥ —di—a +lm 0 @ P 0 0 0 0 K%
* * Q¥ o0 0 0 0 0 0 0
* * x -l O 0 0 0 0 0
* * * x  —I3 0 0 0 0 0 <0 (33)
* * * * * —F4+)\BEE Eg O 0 0 0
* * * * * * L 0 0 0
* * * * * * 0 —Agl 0 0
* * * * * * 0 0 —Agcl 0
* * * * * * 0 0 0 —Axl
Proof: In the remaining of the paper, the following Qi =PA +ATPL—RC; —CIR +1p, (45)

lemma is used:

Lemma 1. [14] Consider two matricesX and Y with
appropriate dimensions, a time-varying matritg) and a
positive scalak. The following property is verified

As (43) is time depending, it is convenient to look for bound
to the matrix2(t). For that purpose, based on (17) and (18),
the time-varying term of (43) can be expressed as:

XTATOY +YTAOX <eXTX+e7YTY  (36) PLo/
for AT(DA(t) <. 8
Let us consider the following quadratic Lyapunov function 2t) = 0 ZA(t)( 0 0O Ex, 00O )
V(ea(t)) = €] (t)Pea(t), P=PT >0 (37) 0
Using (29), its time derivative is given by b2 0
1
. r 2m —~ ~
Viea) =y 3 mEOE (1) [0 (@)"P 0
=11 gt)(0 0 0 0 0 E 46
Py et el OPY D@D+ o W ORe] | 0 [0 °) 49
(38) 0
It is known thate,(t) asymptotically converges toward zero 0
when w(t) = 0 and that the%, gain from w(t) to ey(t) is PLi%
bounded byg if the following inequality holds PK;%
Vieat) +efOeat) - M0 <0 (@) +| o |5)(0 0 ~E 0 0 0)
with 0
N=diaglk), FTk<pB I, fork=1,234 (40) 0
An adequate choice df allows to attenuate the transfer from Using lemma 1 and property (21), there exists positive ssala
some components ab(t) to ey(t). A1, s, Aic and Axc, such that
From (38), (39) becomes:
" X e(t)T 210 00 0 O
Z;m(k(t))m(f(t»( ) 022000 0
e 2(t)+ 97 (t 0 0290 0 0 47
<( ¢ijP+P¢ij+lznxPwi(t))><ea(t))<o O+20<169 0 000 o (“7)
Wi (t)P - w(t) 00000 O
. (41) 0 0 00 O0AsElEs
The Lyapunov matriXP is chosen as _
P = diag(P,, P,) (a2) it
1_ -1 T -1 T
From (15), (30), (40) and (42), (41) holds if 2 =X (jlﬂ)fflppﬁ ; %BT Frlf‘% Pt
FRUURPY 1c) Pl i P1
wRO)E(FO) (Q)+20)+27(1) <0 (43) 22— ALPKEETKTR, (48)
with: 23 = MELEa+ (A1c+Ax)ELEc
Qi —éjTKiT 0 0 0 O fori=1,...,randj=1,...,2". X
« —oi—0a; +lm| 0 @ P O From inequality (47), since;(X(t)) and f1;(f(t)) satisfy the
Qi—=| * * Q¥ 0 0 O (44) convex sum property, with the variable changes (35), the LMI
" % * *x -, 0 0 (33) implies (43) and (39). As a consequence, Hegain
* * x x —[3 0 of the transfer fromw(t) to ey(t) is bounded byg, which
* * * *x  x —Iq4 achieves the proof. [ ]




IV. NUMERICAL EXAMPLE where the scalargl, 2, 2 andz are defined as

In this section, the proposed approach is applied to a
biological wastewater treatment plant. A reduced form of
an activated sludge reactor model is considered with only

the carbon pollution and two state variables. ) .
. . . 'he submodels are defined by the pairs,B;) with i =
Starting from the nonlinear equations of the system, a -E{,...,4. Due to the choice of premise variables, all e

S representation is given. Multiplicative sensor fault ar . T .
considered. The objective is to synthesize an observer matrr:c&s/. are equal 18" = [ 0 d ] The matrices; are

order to simultaneously estimate the system states and Hee

7= mavzy (t), Z= minz, (t)
2 = maxz:(t), Z = minz(1) 58

fault. A= z z A = z 3
The process consists in mixing used waters with a rich ">~ \ 0 —cA+2 )>™2"\ 0 —-cB+2
mixture of bacteria in order to degrade the organic matter
[9]. Under specific assumptions, some simplifications can be z z z z

; i Az = 1 Aq=
made and the nonlinear system can be represented with the 0 —czz+z§ ’ 0 —cz§+z§
following equations [5]:

The T-S model of the system with the multiplicative sensor
x1(t) = a>)<(12((tt>)x+zl()t> —x1(t)u(t) fault is obtained by an interpolation of the four previous
(49) submodels for the state and two submodels for the output
folt) =~ 1 (0t

. : . 4 2
with x1(t) andxz(t), the biomass and substrat concentratlor;((t) =S pi(z() (AX(t) + Bu(t)); y(t) = Z i (f1.(t))Cix(t)
respectively, and wher b andd are known parameters. The i; =

input u(t) represents the dwell-time in the treatment plant. B B (57)
The measured output is the biomass concentraygh) £ with Cy=( 1+f2 0), Co=( 1+ 0)
x1(t)). The weighting functiong; (f(t)) are calculated from (7) and
It is assumed that a bounded multiplicative sensor féwft)  pi(z(t)) as the following:
ffects th t t h that:
affects the outpuy(t) such tha pa(z(t)) = Fra(z(t)) Faa(z2(t))
y(t) = (1+ f1(t))xa(t) (50) c
t)) = t t

As previously explainedfi(t) can also be written as: He(2(1) = Fu(zi(t) Fa(z(1) (58)

fa(t) = [F(fo(t)) £+ HR(F(t)) 2, fu(t) € [f2, f]] (B1) pa(z(t)) = Fia(z1(t)) Fa(z2(1))
with f2 = 0.125 f! = 0.625, [il(f1(t)) and ﬁ_lz(fl(t)_) are a(Z(t)) = Fra(za(t)) Foo(za(t))
defined by (7). Parametels c, d have been identified and ) L . . o
set tob = 0.07, c= 0.7 andd = 2.5. As mentioned at the begining of this section, the objective i

to synthesize a robust state and fault observer applying the
proposed approach. To illustrate the time varying faukff
on the system, figure 1 depicts the output with and without

From the system nonlinearities, let us consider the folhgwi
premise variables:

a(t)=—-ult), znt)= ﬂ (52) the sensor fault. The system input, the state variables and
X(t) +b their estimates, the time-varying fault and its estimate ar
From (49) and (52), the following quasi-LPV form is ob-depicted in the figures 2, 3 and 4 respectively. The initial
tained: conditions are taken ag0) = ( 0.1 15 ) for the system

o (nlt)  n(t) 0 andx(0) = ( 0.09 23 ), f1(0) =0 for the state and fault
X(t)( 0 —czt)+zlt) X+ d ut)  (s3) observer respectively. From the depicted figures, one can

Since a T-S model is obtained in a compact set of the sta‘f'é’nCIUde on the efficiency of the synthetized state observer
space, maximum and minimum values that occuz i) and since the two states are perfectly estimated as well as the
2(t) may be calculated using the knowledge of the domaifime-varying multiplicative sensor faul(t).

of variation Ofu(t): Z]_(t) S [—l, —02] andzz(t) S [00047 15] V. CONCLUSION

Using the convex polytopic transformation, two partitidos

. : In the present paper, a new systematic procedure is pre-
each premise variable are constructed as follows: P pap y P P

sented to deal with the state and multiplicative sensott faul

21(t) = F11(z1)Z + Fi2(z1)7 g4 estimation for nonlinear systems. It consists in transfogm
25(t) = Fo1(2) B+ Fon(22) 24 (54) the original system into a Takagi-Sugeno model, based on
1 the sector nonlinearity approach and the convex polytopic
with Fuu(z) = Zl(t)—zi Fio(z1) = z—2n(t) transformation. This transformation has the major interes
-z’ 74-z (55) 10 exactly represent the system without any loss of infor-
nt) -2 Z—2n(t) mations. The considered procedure is the following: from

Fu(z2) = » F2(22) = A2 the nonlinear time-varying equations of the process, aajlob

3-2



T-S model of the system is proposed. The proposed state

5 : : : : : N — and fault observer is then designed by solving an LMI
R o optimization problem, i.e. by minimizing th&, gain from

the augmented input to the estimation errors. The chosen
application example is an activated sludge reactor with
multiplicative sensor fault on the output. From the nordine
equations of the system, a T-S model of the system is derived.
The proposed observer is synthetized and the obtainedsesul
illustrate its performance.
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Fig. 1. Output with and withoufy (t)
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Fig. 3. System states and their estimates
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Fig. 4. Time-varying faultf;(t) (blue) and its estimate (red)



