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Abstract—This paper addresses the stabilization of nonlinear
systems described by Takagi-Sugeno models affected by input
actuator saturation. A parallel distributed compensation design
is used for the state feedback controller. Stabilization conditions
in the sense of the Lyapunov method are derived and expressed as
a linear matrix inequality problem. The obtained gains depend
on the actuator saturation limits. A cart-pendulum example is
presented to illustrate the effectiveness of the proposed approach.
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I. INTRODUCTION

Actuator saturation or control input saturation is probably
one of the most usual nonlinearity encountered in control
engineering due to the physical impossibility of applying
unlimited control signals and/or safety constraints.
In general, there are two main design strategies to deal with
actuator saturations. The first strategy is a two-step approach
in which a nominal linear controller is first constructed by
ignoring the actuator saturation. Then, after this controller has
been designed, usually using standard linear design tools, a
so called anti-windup compensator is designed to handle the
saturation constraints [1], [2], [3], [4]. A typical anti-windup
scheme consists in augmenting a nominal pre-designed linear
controller with a compensator based on the discrepancy be-
tween unsaturated and saturated control signals fed to the plant
[5]. The second strategy considers the saturation constraint
from the beginning of the design task. Several approaches were
developed, one of them is the invariant sets framework, which
has been significantly developed in control engineering over
the last decades, see [6], [7]. This framework ensures that
every state trajectory that starts inside the invariant set will
not exceed it, i.e. the system states will be bounded inside this
set.
An interesting approach for the determination of the invariant
sets framework was applied in [8] and [9]. This approach
consists in the so-called polytopic rewriting of the saturation
constraint. This polytopic representation is then used to deter-
minate (maximize) the largest invariant set in which the system
states remain bounded.
In the contrary of the previous method, that most likely ensures
to never reach the saturation level in order to preserve the
closed loop performances, in this paper, we explicitly consider
the saturation constraint, and even admit its occurrence. In fact,
the authors use the Takagi-Sugeno (T-S) representation of the
saturation (as well known as the polytopic representation) to
integrate the limitation constraints into the control synthesis,

such that the system stability is ensured and the control gains
are calculated depending on the saturation level.
The authors would like to precise that even if the expressions
of the T-S saturation has some similarity to the polytopic
one used in [8] and [9], the development, control strategy
and objectives are completely different since in the proposed
approach the invariant sets are never considered; moreover the
objective is the stabilization of nonlinear systems represented
with the Takagi-Sugeno (T-S) models and the synthesis of a
state feedback controller by parallel distributed compensation
(PDC) with control gains explicitly depending on the satu-
ration level. The controller is subject to actuator saturation
and the input saturation is directly taken into account in the
controller design. Stabilization conditions are derived from the
Lyapunov method and expressed as linear matrix inequalities
(LMI). A cart-pendulum example is considered to illustrate
the effectiveness of the proposed approach. The nonlinear
equations of the cart-pendulum are given and, using the Sector
Nonlinearity Transformation (SNT) [10], [11], a T-S model
of the system is deduced and used. The system is subject
to actuator saturations, it will be shown that these input
constraints may cause the instability of the nonlinear system,
but with the proposed approach the stability of the closed-loop
system is ensured.
The rest of this paper is organized as follows. Section 2
introduces the Takagi-Sugeno structure for modeling and some
preliminary results, mathematical notations and a brief descrip-
tion of the saturation. It is followed by the representation of the
nonlinear saturation by a T-S structure in section 3. In section
4 is designed a state feedback control law depending on the
saturation bounds. A numerical example and some simulation
results are given in section 5. Conclusions and future works
are exposed in section 6.

II. PRELIMINARIES

A. Takagi-Sugeno structure for modeling

Initially introduced in [12], the T-S models represent a
simple and accurate method to study the nonlinear behaviors.
The T-S modeling allows to represent the behavior of nonlinear
systems by the interpolation of a set of linear submodels [10],
[13], [14]. Each submodel contributes to the global behavior
of the nonlinear system through a weighting function µi(ξ(t)).
The T-S structure is given by




ẋ(t) =

n∑
i=1

µi(ξ(t))(Aix(t) +Biu(t))

y(t) =

n∑
i=1

µi(ξ(t))(Cix(t) +Diu(t))

(1)

where x(t) ∈ Rnx is the system state variable, u(t) ∈ Rnu is
the control input and y(t) ∈ Rm is the system output. ξ(t) ∈
Rq is the decision variable vector assumed to be measurable
(as the system output) or known (as the system input). The
weighting functions µi(ξ(t)) of the n submodels satisfy the
convex sum property

n∑
i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1, i = 1, . . . , n

(2)

In the remaining of the paper, the following lemmas are used:

Lemma 1. Consider two matrices X and Y with appropriate
dimensions and G a symmetric positive definite matrix. The
following property is verified

XTY + Y TX ≤ XTGX + Y TG−1Y (3)

Lemma 2. (Congruence) Consider two matrices X and Y , if
X is positive (resp. negative) definite and if Y is a full column
rank matrix, then the matrix Y XY T is positive (resp. negative)
definite.

B. Mathematical notations

The following notations are used throughout the paper: a
block diagonal matrix with the square matrices A1, . . . , An
on its diagonal is denoted diag(A1, . . . , An). For any matrix,
M , S(M) is defined by S(M) = M + MT .The smallest and
largest eigenvalues of the matrix M are respectively denoted
λmin(M) and λmax(M). The saturation function for a signal
ν(t) is defined by (4), where νmax and νmin denote the
saturation levels.

sat(ν(t)) :=


ν(t) if νmin ≤ ν(t) ≤ νmax
νmax if ν(t) > νmax
νmin if ν(t) < νmin

(4)

III. PROBLEM STATEMENT

A. Takagi-Sugeno saturation control

The main idea of this work is to model the nonlinear
actuator saturation using the Takagi-Sugeno representation
(section II-A) and then propose a PDC control law ensuring
stability of the closed loop system. For that, it is proposed to
re-write the saturation equation (4) for each component of the
control input vector under a particular form.
Let us consider a control input vector u(t) ∈ Rnu , defined by

u(t) = ( u1(t) . . . unu(t) )
T (5)

The control input under actuator saturation constraint is given
by

usat(t) =
(
u1
sat(t) . . . unu

sat(t)
)T

(6)

where ujsat = sat(uj(t)), for j = 1, . . . , nu.
Considering the three parts of the saturated signal (4), each
component of the vector usat(t) is written as

ujsat(t) =

3∑
i=1

µji (uj(t)) (λjiuj(t) +γji ), j = 1, . . . , nu (7)

with
λj1 = 0 λj2 = 1 λj3 = 0 (8)

γj1 = ujmin γj2 = 0 γj3 = ujmax (9)

and the weighting functions defined by
µ1(uj(t)) =

1−sign(uj(t)−uj
min)

2

µ2(uj(t)) =
sign(uj(t)−uj

min)−sign(uj(t)−uj
max)

2

µ3(uj(t)) =
1+sign(uj(t)−uj

max)
2

(10)

Based on the convex sum property of the weighting functions
(2), the control input vector u(t) ∈ Rnu subject to actuator
saturation can be written in order to have the same activation
functions for all the input vector components as:

usat(t) =

(
3∑
i=1

µ1
i (λ

1
iu1(t) + γ1

i )

)
×

 nu∏
k=2

3∑
j=1

µkj (uk(t))


...(

3∑
i=1

µ`i(λ
`
iu`(t) + γ`i )

)
×

 nu∏
k=1,k 6=`

3∑
j=1

µkjuk(t)


...(

3∑
i=1

µnu
i (λnu

i unu
(t) + γnu

i )

)
×

nu−1∏
k=1

3∑
j=1

µkjuk(t)




(11)

For nu inputs, 3nu submodels are obtained. Thus, it is im-
portant to note that (11) is an analytical expression of the
actuators saturation directly expressed in term of the control
variable, that can also be expressed as

usat(t) =

3nu∑
i=1

µi(t)(Λiu(t) + Γi) (12)

The global weighting functions µi(t), the matrices Λi ∈
Rnu×nu and vectors Γi ∈ Rnu×1 are defined as follows

µi(t) =

nu∏
j=1

µj
σj
i

(uj(t))

Λi = diag(λj
σj
i

)

Γi =
[
γ1
σ1
i
, . . . , γnu

σnu
i

]T (13)

where the indexes σji (i = 1, . . . , 3nu and j = 1, . . . , nu),
equal to 1, 2 or 3, indicate which partition of the j th input
(µj1, µ

j
2 or µj3) is involved in the i th submodel.

The relations between i the number of the submodel) and the
σji indices are given by the following equation



i = 3nu−1σ1
i+3nu−2σ2

i+. . .+30σnu
i −(31+32+. . .+3nu−1)

The indices σji are such that ((σ1
i − 1), . . . , (σnu

i − 1))
correspond to (i-1) in base 3.
An illustrative example is given for two inputs (nu = 2), with

usat(t) =
(
u1
sat(t) u2

sat(t)
)T

(14)

Since three partitions are defined for each input, the Takagi-
Sugeno model for usat(t) is then represented by 32 submodels

usat(t) =

9∑
i=1

µi(t)(Λiu(t) + Γi) (15)

with the parameters µi, Λi and Γi given by the following table

submodel i (σ1
i , σ

2
i ) µi(t) Λi Γi

1 (1, 1) µ1
1µ

2
1 diag(λ1

1, λ
2
1)

[
γ1
1 γ2

1

]T
2 (1, 2) µ1

1µ
2
2 diag(λ1

1, λ
2
2)

[
γ1
1 γ2

2

]T
3 (1, 3) µ1

1µ
2
3 diag(λ1

1, λ
2
3)

[
γ1
1 γ2

3

]T
4 (2, 1) µ1

2µ
2
1 diag(λ1

2, λ
2
1)

[
γ1
2 γ2

1

]T
5 (2, 2) µ1

2µ
2
2 diag(λ1

2, λ
2
2)

[
γ1
2 γ2

2

]T
6 (2, 3) µ1

2µ
2
3 diag(λ1

2, λ
2
3)

[
γ1
2 γ2

3

]T
7 (3, 1) µ1

3µ
2
1 diag(λ1

3, λ
2
1)

[
γ1
3 γ2

1

]T
8 (3, 2) µ1

3µ
2
2 diag(λ1

3, λ
2
2)

[
γ1
3 γ2

2

]T
9 (3, 3) µ1

3µ
2
3 diag(λ1

3, λ
2
3)

[
γ1
3 γ3

3

]T
TABLE I. WEIGHTING FUNCTIONS, MATRICES Λi AND Γi , FOR

nu = 2

B. Problem statement

Let us now consider a T-S nonlinear system represented by
the following state equation

ẋ(t) =

n∑
i=1

µi(ξ(t))(Aix(t) +Biu(t)) (16)

The control input u(t) is subject to actuator saturation, then
the system (16) becomes

ẋ(t) =

n∑
i=1

µi(ξ(t))(Aix(t) +Biusat(t)) (17)

From (12), equation (17) can be written as

ẋ(t) =

n∑
i=1

3nu∑
k=1

µi(ξ(t))µ
sat
k (t)(Aix(t) +Bi(Λku(t) + Γk))

(18)
with n the number of sub-models, nu the dimension of
the input vectors, µi(ξ) and ξ respectively are the system
weighting functions and the measurable decision variables.
µsatk , Λk and Γk are respectively the saturation weighting
functions and the parameters defined by equations (13).

IV. SATURATED STATE FEEDBACK CONTROL INPUT

The objective is to design a stabilizing time-varying state
feedback controller ensuring the stability of the system, even
in the presence of control input saturation. The solution is
obtained by representing the saturation as a T-S system and
by solving an optimization problem under LMI constraints.
In the nominal case, if no saturation is affecting the system
(1), the well-known following PDC (Parallel distributed com-
pensation) can be applied

u(t) = −
n∑
j=1

µj(ξ(t))Kjx(t) (19)

Using the quadrative Lyapunov function

V (x(t)) = xT (t)Px(t), P = PT > 0 (20)

the stability of the closed-loop system is obtained by comput-
ing the gains Kj from [10]

P1A
T
i +AiP1−RTj BTi −BiRj < 0 i = 1, . . . , n; j = 1, . . . , n

(21)
with Kj = P−1

1 Rj (where P1 = P−1).

In the presence of input saturation, the gains computed
from (21) do not ensure the closed-loop stability. The objective
is then to design a nonlinear state feedback controller (19) in
order to guarantee the stability of the saturated system (18)
such that the control gains Ki depend on the saturation limits.
By replacing the control law (19) in the T-S system (18), the
obtained closed-loop system is the following

ẋ(t) =

n∑
i=1

n∑
j=1

3nu∑
k=1

µi(ξ(t))µj(ξ(t))µ
sat
k (t)

((Ai −BiΛkKj)x(t) +BiΓk) (22)

The determination of the controller gains is now detailed.

Theorem 1. There exists a time-varying state feedback con-
troller (19) for a saturated input system (18) ensuring that the
system state converges toward an origin-centred ball of radius
bounded by β if there exists P1 = PT1 > 0, R, Σk = ΣTk > 0
solutions of the following optimization problem

min
P1, R,Σk

β (23)

s.t. (
Qijk I

I −βI

)
< 0 (24)

with

Qijk =

(
S(AiP1 −BiΛkRj) I

I −Σk

)
(25)

and
ΓTkB

T
i ΣkBiΓk < β (26)

for i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , 3nu .
The controller gains are given by

Kj = P−1
1 Rj (27)

Proof:



Let us define the quadratic Lyapunov function (20).
According to (22) and (20), the time derivative of V (x(t)) is
given by

V̇ (x(t)) =

n∑
i=1

n∑
j=1

3nu∑
k=1

µi(ξ(t))µj(ξ(t))µ
sat
k (t)(

S(xT (t)PBiΓk + xT (t)P (Ai −BiΛkKj)x(t))
) (28)

Using Lemma 1, it follows that

S(xT (t)PBiΓk) ≤ ΓTkB
T
i ΣkBiΓk +xT (t)PΣ−1

k Px(t) (29)

The time derivative of the Lyapunov function (28) is bounded
as follows

V̇ (x(t)) ≤
n∑
i=1

n∑
j=1

3nu∑
k=1

µi(ξ(t))µj(ξ(t))µ
sat
k (t)(

xT (t)(S(P (Ai−BiΛkKj)+PΣ−1
k P )x(t)+ΓTkB

T
i ΣkBiΓk

)
(30)

Let us define

Qijk = S(P (Ai −BiΛkKj)) + PΣ−1
k P (31)

ε = min
i=1:n,j=1:n,k=1:3nu

λmin(−Qijk) (32)

δ = max
i=1:n,k=1:3nu

ΓTkB
T
i ΣkBiΓk (33)

Since Σk > 0 and from equation (30), according to Lyapunov
stability theory [15], V̇ (t) < −ε ‖ x ‖2 +δ. It follows that
V̇ (t) < 0 for 

Qijk < 0

and
‖ x ‖2> δ

ε

(34)

which means that x(t) is uniformly bounded and converges to
a small origin-centered ball of radius

√
δ
ε .

Applying Lemma 2, Qijk < 0 is equivalent to

S(P−1ATi − P−1KT
j ΛTkB

T
i ) + Σ−1

k < 0 (35)

Using the variable changes{
P1 = P−1

Rj = KjP1
(36)

condition (35) is linearized as

S(P1A
T
i −RTj ΛTkB

T
i ) + Σ−1

k < 0

i = 1, . . . , n; j = 1, . . . , n; k = 1, . . . , 3nu (37)

Applying Schur’s complement to (37), it becomes

Qijk =

(
S(P1A

T
i −RTj ΛTkB

T
i ) I

I −Σk

)
< 0 (38)

As the weighting functions satisfy (2) and Σk > 0, if (38)
is satisfied for i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , 3nu ,
and ‖ x ‖2> δ

ε , then V̇ (x(t)) < 0, which implies that x(t)

converges to an origin centered ball of radius
√

δ
ε .

The objective is now to minimize the radius
√

δ
ε . Firstly δ

is bounded by β (33) and the LMIs (26). From (24), with a
Schur complement, it obviously follows that

(1/β) I < −Qijk, i = 1, . . . , 3nu (39)

implying that all the eigenvalues of (−Qijk) are larger that
1/β. As a consequence 1/β < ε holds, and finally the radius
is bounded by β.

Remark 1. It is important to highlight that the proposed
approach ensures the stability of nonlinear systems that may be
destabilized by saturated control with a control proportional
to the saturation limits. If the submodels are initially unstable,
the proposed approach is not suitable since the LMI condition
cannot be fulfilled. Thus, to overcome the submodels stability
constraint, a solution would be to consider a dynamic output
feedback control instead of the state feedback one [16].

V. NUMERICAL EXAMPLE

Let us consider a nonlinear cart-pendulum system
illustrated in figure 1.

Fig. 1. Cart-pendulum system

The pendulum rotates in a vertical plan around an axis
located on a cart. The cart can move along a horizontal rail,
lying in the rotation plane. The state of the system is a vector
x = ( x1 x2 x3 x4 )

T where x1 = z(t) is the cart
position, x2 = ż(t) the cart velocity, x3 = θ(t) is the angle
between the downward direction and the pendulum (x2 = 0
for the upright position of the pendulum), and x4 = θ̇(t) is the
pendulum angular velocity. A control force F (t) parallel to the
rail is applied to the cart. The pendulum mass and cart mass
are denoted m = 1Kg and M = 5Kg respectively. l = 0.1m
is the pendulum length and I the moment of inertia of the
pendulum with respect to its axis on the cart. The cart friction
is composed of the viscous friction proportional to the cart
velocity fż(t) (f = 100N/m/s), a friction proportional to
the cart position ksz(t) (ks = 0.001N/rad/s) and a friction
torque in the angular motion of the pendulum proportional to
the angular velocity kθ̇(t) (k = 0.003N/rad/s). The state



equations are as follows:

(m+M)z̈(t) + ksz(t) + fż(t)−mlθ̈(t)cos(θ(t))
+mlθ̇2(t)sin(θ(t)) = F (t)

−mlz̈(t)cos(θ(t)) + (ml2 + I)θ̈(t)

+kθ̇(t) +mglsin(θ(t)) = 0
(40)

In order to ensure the nonlinear system stability, the system
equations (40) is written under a T-S from by applying the
sector nonlinearity approach which allows to exactly represent
the nonlinear system without any loss of information. Since
the transition from the nonlinear system to the T-S one is not
the main subject of this paper and for place limitation, only
the main steps are given.
First, the quasi-LPV form (quasi-linear with parameter vary-
ing) is derived

ẋ(t) = A(x(t))x(t) +B(x(t))u(t) (41)

with :

x(t) =
(
z(t) ż(t) θ(t) θ̇(t)

)T
, u(t) = F (t) (42)

A(x(t)) =


0 1 0 0

−ks/(m+M) a1(t) a2(t) a3(t)

0 0 0 1

a7(t) a4(t) a5(t) a6(t)


B(t) = ( 0 b1(t) 0 b2(t) )

T

(43)
and the parameters ai(t) and bi(t) are defined as follows:

a1(t) = − f
m+M −

mlfz1(t)z22(t)
m+M

a2(t) = −mlz3(t)z4(t)
m+M −

m2l2z22(t)z1(t)z3(t)z4(t)
m+M −mlgz1(t)z2(t)z3(t)

a3(t) = kz1(t)

a4(t) = −fz1(t)z2(t)

a5(t) = −mlz1(t)z2(t)z3(t)z4(t)− (m+M)gz1(t)z3(t)

a6(t) = −k(m+M)
ml z1(t)

a7(t) = −ksz1(t)z2(t)

b1(t) = 1
m+M + ml

m+M z2
2(t)z1(t)

b2(t) = z1(t)z2(t)
(44)

with the following non-linearity :
z1(t) = 1

−mlcos2(x3(t))+(l+I/ml)(m+M)

z2(t) = cos(x3(t))

z3(t) = sin(x3(t))
x3

z4(t) = x2
4(t)

(45)

The reader will note that the nonlinearities choice
(z1(t), z2(t), z1(t) and z4(t)) is not unique and that the
premise variables are bounded and given by the angle and
speed limitation. Now, the convex polytopic transformation is
applied

zi(t) = Fi1(t)zi1 + Fi2(t)zi2, i = 1, . . . , 4 (46)

with

zi1 = max zi(t), zi2 = min zi(t), i = 1, . . . , 4 (47){
Fi1(t) = zi(t)−zi2

zi1−zi2
Fi2(t) = zi1−zi(t)

zi1−zi2

(48)

The two partitions Fi1(t) and Fi2(t) of each premise variable
zi(t), i = 1, 2, 3, 4 will contribute to the reconstruction of each
weighting function of the T-S model. The sub-model number
depends on the non-linearities, such that r = 24 = 16.
The T-S model is then given by the following equations:

ẋ(t) =

16∑
i=1

µi(t)(Aix(t) +Biu(t)) (49)

with 
µi(t) =

16∏
j=1

Fj,σj
i
(zj(t))

Ai = A(z1,σ1
i
, z2,σ2

i
, z3,σ3

i
, z4,σ4

i
)

Bi = B(z1,σ1
i
, z2,σ2

i
, z3,σ3

i
, z4,σ4

i
)

(50)

σji may take the value 1 or 2 and represents the number of the
jth partition.
In order to simplify the LMI implementation, it is assumed that
the control gains Kj are equal for all the submodels. Then, two
control laws are proposed:

u(t) = −Knx(t) and u(t) = −KTSx(t) (51)

for the nominal controller (without input saturation) and the
proposed T-S controller respectivelly.
The nominal control gain calculated from (21) is equal to:

Kn = ( 3.4068 −95.7038 −29.8001 3.8235 ) (52)

Considering the saturation levels equal umin = 0 and umax =
3, The control gain KTS is then calculated by solving the LMI
given by theorem 1 and is equal to:

KTS = ( 0.0003 5.9835 0.6139 −0.0024 ) (53)

For an initial position x0 = ( 0 0 π/12 0 )
T , figure 2

shows the system states for the following three cases: xn for
the nominal case without saturation, xnsat is the system states
with saturated nominal control, it is clear from the depicted
figure that the saturation has a destabilizing effect on the
system. And finally xsatTS denotes the system state obtained
with the proposed T-S approach.
From the depicted figures, it is clear that with the proposed

T-S approach the system stability is ensured as well as the
convergence to an origin centered-ball. However, since we
considered the same gain for all the 16 sub-models, the
obtained solution is slightly conservative, which may justify
the oscillatory response for the third and fourth state.
In order to relax these constraints, the nonlinear system may
be simplified by considering the small angles approximations:
cos(θ) ≈ 1 and sin(θ) ≈ θ. Hence, instead of the four previous
non-linearities, only one is considered, namely: z4(t) = x2

4(t)
and a T-S system with two sub-models is then defined with
the T-S controller is then given by

u(t) = −
2∑
i=1

µi(ξ(t))KiTSx(t) (54)
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Fig. 2. System states

with

K1TS = ( 0.0127 −15.0442 15.8757 0.7854 )

K2TS = ( 0.0079 −19.0341 8.7667 0.5326 )
(55)

As seen on Figure 3, displaying the obtained state responses,
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Fig. 3. System states

it is clear that the system states are stable with less oscillations
and converge to an origin centered ball.

VI. CONCLUSIONS

Considering the saturation nonlinearity, a nonlinear system
can be represented in an augmented T-S form. It is important
to note that, using the proposed representation of the actuator

saturation, these saturations are expressed in terms of the con-
trol variables and of the saturation limits. As a consequence,
these limits are taken into account when solving the LMI
optimization problem and when computing the gains of the
controller. Moreover, the proposed Takagi-Sugeno approach
allows to extend the use of linear tools, namely the LMI
formalism, to a nonlinear control problem.
As an illustrative example, the state feedback controller design
was applied to a cart-pendulum nonlinear T-S system. The ob-
tained results show the effectiveness of the proposed approach
for the studied example.
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