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Abstract—This work concerns the model reference tracking
control problem for nonlinear systems represented by Takagi-
Sugeno (T-S) models, with a guaranteed L2 performance to
attenuate the tracking error for bounded reference inputs. The
objective is to make the system state follow as closely as possible
the model reference state. The control scheme is based on
a parallel distributed compensation controller fed by a state
observer for Takagi-Sugeno systems with unmeasurable premise
variables. The observer/controller synthesis is formulated in
terms of linear matrix inequalities. Systems with noise output
measurements are also envisaged with the use of filter. Simulation
example are given to illustrate the design procedures and tracking
performance of the proposed approach.

Keywords—Takagi-Sugeno systems, observer-based control, ref-
erence tracking

I. INTRODUCTION

In the control theory, the tracking control design is an
important subject especially for its practical applications. For
nonlinear systems design, numerous methods were introduced,
like the exact feedback linearization, the sliding mode and the
adaptive control.
The feedback linearization technique has been introduced
to deal with nonlinear systems [1]. However, because of
its complicated control algorithm, the fact that the stability
of the controller is not guaranteed for nonminimum phase
systems and its application to complex nonlinear systems is
tedious. The sliding mode control presents the advantage of
the robustness to uncertainties [2] but is too sensitive to the
chattering phenomenon.
An interesting and efficient way to estimate and control
complex nonlinear systems is to write them in a simpler form,
like the Takagi-Sugeno (T-S) model. Originally introduced
by [3], the T-S representation allows to exactly describe
nonlinear systems, under the condition that the nonlinearities
are bounded. This is reasonable since state variables as well as
parameters of physical systems are bounded, see for example
[4], [5], [6] and the references therein.
Despite an abundant literature on stability conditions of T-
S models, few authors have dealt with the tracking problem
recently. Some works are concerned with state feedback, H∞
performances [7], [8] and output feedback [9]. Mostly available
results for Parallel Distributed Compensation (PDC) structure
are formuled as Bilinear Matrix Inequalities (BMI) and two
step algorithm is generally used [10].
In the present work, the nonlinear tracking control problem is
expressed in terms of Linear Matrix Inequality (LMI). Based

on the T-S and PDC structures, with a suitable choice of the
reference model, a L2 tracking performance related to tracking
error is formulated. Then a T-S observer-based controller is
developed to minimize the tracking error. The contribution
of the proposed approach compared to the previous works,
is the statement of an LMI formulation for the problem of
trajectory tracking for nonlinear systems represented by T-S
models, with L2 performance and state feedback control. The
adopted strategy is based on a descriptor approach allowing to
reduce the computational cost by avoiding the crossing terms
between the feedback gains and the Lyapunov matrices in the
closed-loop dynamics.
The synthetized controller is based on a state observer. It is also
important to highlight that the unmeasurable premise variables
case is considered here, whereas in most of the previous works
[9], [10] the premise variables as supposed to be available.
The paper is presented as follows: in section II, the tracking
criteria as well as the observer design and the tracking control
law are introduced. In section III, in order to minimize the
tracking error using an exact estimation of the system state,
a static PDC observed state feedback tracking control is
formulated in terms of LMI. In section IV a numerical example
is presented to illustrate the effectiveness of the proposed
approach. In section V, the influence of an output measurement
noise is taken into account and minimized when designing
the observer and controller. A numerical example and some
simulation results are given in section VI. Conclusions are
exposed in section VII.

II. PROBLEM STATEMENT

A. Tracking criteria

In order to design a model reference tracking control
law for nonlinear systems, a T-S representation is considered.
The T-S modeling allows the representation of the behavior
of nonlinear systems by the interpolation of a set of linear
submodels. Each submodel contributes to the global behavior
of the nonlinear system through a weighting function µi(ξ(t))
[6]. The T-S structure is given by ẋ(t) =

n∑
i=1

µi(ξ(t))(Aix(t) +Biu(t))

y(t) = Cx(t)

(1)

where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu the control
input and y(t) ∈ Rm the system output. In this paper, a focus is
made on the T-S with premise variables ξ(t) ∈ Rq depending



on the state variable x(t) and thus being unmeasurable. In
this case, let us denote µi(ξ(t)) = hi(x(t)). These weighting
functions satisfy the so-called convex sum property

n∑
i=1

hi(x(t)) = 1

0 ≤ hi(x(t)) ≤ 1, i = 1, . . . , n

(2)

The following stable linear reference model is considered [10]:

ẋr(t) = Arxr(t) +Brur(t) (3)

where xr(t) is the reference state to be followed by x(t) and
ur(t) is the bounded reference input. The matrices Ar and Br
are designed according to the desired performances of the time
response of the reference model.
The tracking error is defined by:

er(t) = x(t)− xr(t) (4)

Then the objective is to design a PDC controller, stabilizing the
nonlinear system (1) and ensuring the following L2 tracking
performance [10], [11], [12]:∫ tf

0

eTr (t)Qer(t)dt ≤ η2
∫ tf

0

uTr (t)ur(t)dt (5)

where Q is a positive definite weighting matrix and η the pre-
scribed attenuation level. The matrix Q is chosen accordingly
to the state components for which some specific following is
desired.
In (5), the upper bound of the L2 gain from ur(t) to er(t)
denoted by η quantifies the effect of the reference input on
the weighted tracking error. Obviously, the objective is to
minimize η.

B. Observer design

In the present work, the case where the state variables
are not available for the feedback control with unmeasurable
premise variable is considered. Therefore, the following T-S
observer is considered to deal with the state estimation of T-S
nonlinear system (1): ˙̂x(t) =

n∑
i=1

hi(x̂(t))(Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) = Cx̂(t)
(6)

where x̂(t) ∈ Rnx is the estimated system state and Li ∈
Rnx×m are the observer gains.
The reader can note that the selected observer (6) is a classical
proportional one. A more general observer like a proportional
integral or a multi-integral may also be used.
Let us define the state estimation error ex(t) as

ex(t) = x(t)− x̂(t) (7)

Its dynamics cannot be easily computed directly from (7)
since in equation (1) the weighting functions depend on the
unmeasurable variable x(t) whereas those of (6) depend on
its estimate x̂(t). Because of that, based on the convex sum

property of the weighting functions, the state equation (1) need
to be rewritten as follow [13]

ẋ(t) =

n∑
i=1

[hi(x̂(t))(Aix(t) +Biu(t))+

(hi(x(t))− hi(x̂(t))(Aix(t) +Biu(t))] (8)

This form allows a better comparison of x(t) with x̂(t), since
hi(x̂(t)) not only appears in (6), but also in (8). Let us define:

∆A(t) =

n∑
i=1

[hi(x(t))− hi(x̂(t)]Ai

= AΣA(t)EA

(9)

and

∆B(t) =

n∑
i=1

[hi(x(t))− hi(x̂(t)]Bi

= BΣB(t)EB

(10)

with

A = [ A1 . . . An ] ,ΣA(t) = diag(δ1(t)Inx
, . . . , δn(t)Inx

),

B = [ B1 . . . Bn ] ,ΣB(t) = diag(δ1(t)Inu , . . . , δn(t)Inu),

EA = [ Inx . . . Inx ]
T
, EB = [ Inu . . . Inu ]

T

δi(t) = hi(x(t))− hi(x̂(t))
(11)

where diag(A1, . . . , An) refers to a block diagonal matrix with
the square matrices A1, . . . , An on its diagonal.
From (2) and (11), it follows:

−1 ≤ δi(t) ≤ 1 (12)

implying

ΣTA(t)ΣA(t) ≤ I, ΣTB(t)ΣB(t) ≤ I (13)

Using (9) and (10), the system (8) is then written as an
uncertain system given by:

ẋ(t) =

n∑
i=1

hi(x̂(t))(Ai + ∆A(t))x(t) + (Bi + ∆B(t))u(t))

(14)
From equations (14), (7) and (6), the dynamics of the state
estimation error is given by

ėx(t) =

n∑
i=1

hi(x̂(t)) ((Ai − LiC)ex(t)

+∆A(t)x(t) + ∆B(t)u(t))

(15)

C. Tracking control

The control structure is choosen as a PDC law [14], sharing
the same weighting functions as those of the system observer:

u(t) = −
n∑
i=1

hi(x̂(t))Ki(xr(t)− x̂(t)) (16)

where Ki ∈ Rnu×nx are the controller gains.
The study objective is to compute the controller gains Ki

as well as the observer gains Li ensuring the asymptotic
stability of the closed-loop model (18)-(see the next section)
and guaranteeing the L2 tracking performance (5).



III. T-S STATE FEEDBACK TRACKING CONTROL DESIGN

The aim of the control input (16) in system equation (1) is
to make the system state x(t) track the reference state xr(t)
(3) as closely as possible.
To achieve this purpose, the descriptor approach is considered.
Based on redundancy property, the closed loop system is
represented as an implicit or singular system [15], [16]. This
approach is well known to relax and reduce the computational
cost of LMI conditions by avoiding the appearance of crossing
terms between the feedback gains and the Lyapunov matrices
in the closed loop dynamics. As a consequence, the number of
LMI decreases and relaxed conditions are obtained [17], [18],
[19].
The control law (16) is then written as follows

0.u̇(t) = −
n∑
j=1

hi(x̂(t))Ki(xr(t)− x̂(t))− u(t) (17)

From definitions (4), (15), (3) and (17), considering the aug-
mented vector xa(t) =

(
eTr (t) eTx (t) xTr (t) uT (t)

)T
,

its dynamic may be written as the following:

Eẋa(t) =

n∑
i=1

hi(x̂(t))(Ai(t)xa(t) +Bur(t)) (18)

with

Ai(t)=


Ai + ∆A(t) 0 Ai −Ar + ∆A(t)Bi + ∆B(t)

∆A(t) Ai − LiC ∆A(t) ∆B(t)

0 0 Ar 0

Ki −Ki 0 −Inu



E =


Inx

0 0 0

0 Inx
0 0

0 0 Inx 0

0 0 0 0

 , B =


−Br

0

Br
0


(19)

Note that with the augmented vector xa(t), the tracking criteria
(5) becomes:∫ tf

0

xTa (t)Qaxa(t)dt ≤ η2
∫ tf

0

uTr (t)ur(t)dt (20)

with Qa = diag(Q, 0, 0, 0). The solution to the tracking
problem (computation of the gains Ki and Li) is given by
the following theorem:

Theorem 1. There exist a PDC state feedback controller (16)
and an observer (6) for a nonlinear system described by a T-S
model (1) guaranteeing the L2 tracking performance (5) for
a prescribed value η2, if there exists matrices P1 = PT1 > 0,
P2 = PT2 > 0, P3 = PT3 > 0, P4 > 0, Fi, Ri, positive
scalars λ11, λ13, λ15, λ21, λ23 and λ24 satisfying the LMI (21) for
i = 1, . . . , n, with

M1
i = ATi P1 + P1Ai +Q+ (λ11 + λ21)ETAEA

M2
i = P2Ai +ATi P2 − CTFTi − FiC

M3 = ATr P3 + P3Ar + (λ13 + λ23)ETAEA

M4 = −P4 − PT4 + (λ14 + λ24)ETBEB

The controller and observer gains are given (i = 1, . . . , n) by

Ki = (PT4 )−1Ri

Li = P−12 Fi
(22)

Remark 1. The proposed tracking problem solution is based
on an L2 attenuation with a prescribed value η2. One can also
ensure the tracking with the smallest admissible attenuation by
solving the optimization problem (23)

min
{P1, P2, P3,P4, Fi, Ri, λ1

1, λ
1
3, λ

1
5, λ

2
1, λ

2
3, λ

2
4}
η (23)

such that condition (21) is guaranteed with η = η2.

Proof:

Let us consider the following Lyapunov function

V (t) = xTa (t)ETPxa(t) (24)

with the condition

ETP = PTE ≥ 0 (25)

From (25) and (19), the matrix P is chosen as a block diagonal
matrix P = diag(P1, P2, P3, P4) with

P1 = PT1 > 0, P2 = PT2 > 0, P3 = PT3 > 0

Using (18), the time derivative of V (t) is the following:

V̇ (t) = ẋTa (t)ETPxa(t) + xTa (t)PTEẋa(t)

=

n∑
i=1

hi(x̂(t))(xTa (t)(A
T

i (t)P + PTAi(t))xa(t)

+xTa (t)PTBur(t) + uTr (t)B
T
Pxa(t))

(26)
To ensure the stability of the closed loop system (18) and
the L2 attenuation (20), with the Lyapunov function (24), the
condition to verify is:

V̇ (t) + xTa (t)Qaxa(t)− η2uTr (t)ur(t) < 0 (27)

From equations (26), (19) and (20), (27) is written as:
n∑
i=1

hi(x̂(t))
(
xTa (t) uTr (t)

)
(
A
T

i (t)P + PTAi(t) +Qa PTB

B
T
P −η2I

)(
xa(t)

ur(t)

)
< 0

(28)
which is satisfied if:(

A
T

i (t)P + PTAi(t) +Qa PTB

B
T
P −η2I

)
< 0 (29)

In order to solve the matrix inequality above, a solution
consists into decomposing the matrix into two terms: the
constant term and the time dependent one. Then, considering
the definitions (9) and (10) with property (13), the time
dependent term will be bounded.
Using definition (19), the BMI to solve is then

Ai +Q(t) +QT (t) < 0 (30)

with Ai and Q(t) defined as:

Ai =


M

1

i 0 P1(Ai −Ar) RTi + P1Bi −P1Br

0 M2
i 0 −RTi 0

∗ ∗ M
3

i 0 P3Br

∗ ∗ ∗ −P4 − PT4 0

∗ ∗ ∗ ∗ −η2Inu


(31)





M1
i 0 P1(Ai −Ar) RT

i + P1Bi −P1Br P1A P1A P1B 0 0 0

∗ M2
i 0 −RT

i 0 0 0 0 P2A P2A P2B
∗ ∗ M3 0 P3Br 0 0 0 0 0 0

∗ ∗ ∗ M4 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −η2Inu 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −λ1
1Innx 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −λ1
3Innx 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1
4Innu 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2
1Innx 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2
3Innx 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2
1Innu



< 0

(21)

with

M
1

i = ATi P1 + P1Ai +Q

M2
i = P2Ai +ATi P2 − CTFTi − FiC

M
3

i = ATr P3 + P3Ar

Ri = PT4 Ki

Fi = P2Li

(32)

and

Q(t) =


P1∆A(t) 0 P1∆A(t) P1∆B(t) 0

P2∆A(t) 0 P2∆A(t) P2∆B(t) 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 (33)

Using the time-varying terms structure defined in (9) and (10),
Q(t) is written as follows:

Q(t) = XAΣA(t)Y TA +XBΣB(t)Y TB (34)

with

XA =


P1A
P2A

0

0

0

 , XB =


P1B
P2B

0

0

0



YA =


ETA
0

ETA
0

0

 , YB =


0

0

0

ETB
0


Lemma 1. [20] For any matrices X , Y , Σ(t) with
Σ(t)ΣT (t) ≤ I and any positive scalar λ, it holds:

XΣ(t)Y T + Y ΣT (t)XT ≤ λ−1XTX + λY TY

Based on the property given in the lemma 1, the term

Q(t) +QT (t) can be bounded as follows:

Q(t) +QT (t) <


Q1 0 0 0 0

0 Q2 0 0 0

0 0 Q3 0 0

0 0 0 Q4 0

0 0 0 0 0

 (35)

with
Q1 = (λ11 + λ21)ETAEA+

((λ11)−1 + (λ13)−1)P1AATP1 + (λ14)−1P1BBTP1

Q2 = ((λ21)−1 + (λ23)−1)P2AATP2 + (λ24)−1P2BBTP2

Q3 = (λ13 + λ23)ETAEA

Q4 = (λ14 + λ24)ETBEB

Then, replacing (31) and (35) in (30) and applying a Schur
complement, the condition (27) ensuring the L2 tracking per-
formance with the state estimation simultaneously is implied
by LMI (21), which ends the proof.

IV. NUMERICAL SIMULATION

The proposed control law and observer design ensuring
the model reference tracking is illustrated by the following
academic example.
Let us consider the nonlinear T-S system (1) with n = 2, and

A1 =

 −1 1 0

−6 −5 −1

3 0 −1

 , A2 =

 −1 1 0

−3 −5 −1

−1 −1 −2


B1 =

 0 0

0.4 0.1

0 0.2

 , B2 =

 0 0

−0.2 −1

1 0.5


C = ( 1 0 0 )

(36)
The weighting functions depend on the system states and are
defined as follows

h1(x(t)) = 2−sin(x1(t))−tanh(x2(t))
4

h2(x(t)) = 1− h1(x(t))
(37)

The reference model (3) is defined by the following matrices:

Ar =

 −1 1 0

−2 −8 −1

−1 −2 −5

 , Br =

 0 0

1 1

1 2

 (38)



and the input ur(t) which is known and bounded (see figure
3).
The observer and controller are respectively defined by equa-
tions (6) and (16), their gains are calculated by solving the
LMI problem given by (21). The obtained results are :

K1 =

(
20.6280 −381.3725 −47.2350

10.0786 −90.8162 −137.3001

)

K2 =

(
13.4233 −320.8239 −858.9901

−56.9571 863.5566 66.2848

)

L1 = ( −0.6914 −3.2299 3.1567 )
T

L2 = ( −0.6954 −0.1777 −0.8158 )
T

(39)

Figures 1 and 2 depict the system and observer states (respec-
tively denoted x and x̂), and the system and reference states
(respectively denoted x and xr). Figure 3 depicts the reference
input and the tracking control (respectively denoted ur and u).
The weighting functions hi(x)(i = 1, 2) and hi(x̂)(i = 1, 2)
are depicted in figure 4.
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Fig. 1. System and observer states

Figure 1 shows the tracking state trajectory and its estimate
with initial condition x(0) = ( 0.1 0.1 0 )

T , observer state
x̂(0) = ( −0.1 −0.1 −1 )

T and the model reference state
xr(0) = ( 0.2 0 0 )

T . The tracking performances were
fixed by choosing Q = 10−3I3 and optimizing the attenuation
level η2.
The depicted figures show that the state trajectory follow the
model reference with an efficient estimation of the system state
despite the fact that the weighting functions have unmeasurable
premise variables.

V. THE MEASUREMENT NOISE CASE

In order to improve the efficiency of the proposed approach,
we consider the presence of measurement noise. The system
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Fig. 2. System and model reference states
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Fig. 4. The weighting functions µi(x)(i = 1, 2) and µi(x̂)(i = 1, 2)



is then described by the following equations: ẋ(t) =

n∑
i=1

hi(x(t))(Aix(t) +Biu(t))

y(t) = Cx(t) +Gb(t)

(40)

where b(t) is the noise measurement and matrices Ai, Bi and
C have already been defined in (1).
The model reference and state observer are defined as in
equations (3) and (6).
Let us consider the augmented vectors xa(t)

xa(t) =
(
eTr (t) eTx (t) xTr (t) uT (t)

)T
(41)

and ua(t) now takes into account the noise b(t)

ua(t) =
(
uTr (t) bT (t)

)T
(42)

Using the descriptor approach of section III, It follows:

Eẋa(t) =

n∑
i=1

hi(x̂(t))(Ai(t)xa(t) +Biua(t)) (43)

with

Ai(t)=


Ai + ∆A(t) 0 Ai −Ar + ∆A(t)Bi + ∆B(t)

∆A(t) Ai − LiC ∆A(t) ∆B(t)

0 0 Ar 0

Ki −Ki 0 −Inu



E =


Inx 0 0 0

0 Inx
0 0

0 0 Inx
0

0 0 0 0

 , Bi =


−Br 0

0 −LiG
Br 0

0 0


(44)

The objective is to attenuate the effect of noise on the state
estimation and the tracking such that the system state is
ensured to be as close as possible to the reference state. The
computation of the observer and controller gains is detailed in
the next theorem

Theorem 2. There exist a PDC state feedback controller (16)
and an observer (6) for a nonlinear system described by a T-
S model (40) and subject to noise measurement guaranteeing
the L2 tracking performance (5) with a prescripted value η2,
if there exists matrices P1 = PT1 > 0, P2 = PT2 > 0, P3 =
PT3 > 0, P4 > 0, Fi, Ri, positive scalars λ1 and λ2 satisfying
the linear matrix inequalities (21) for i = 1, . . . , n. with

M1
i = ATi P1 + P1Ai +Q+ (λ11 + λ21)ETAEA

M2
i = P2Ai +ATi P2 − CTFTi − FiC

M3 = ATr P3 + P3Ar + (λ13 + λ23)ETAEA

M4 = −P4 − PT4 + (λ14 + λ24)ETBEB

The controller and observer gains are given (i = 1, . . . , n) by

Ki = (PT4 )−1Ri

Li = P−12 Fi
(46)

Remark 2. Same remark as in the previous section can be
made concerning the optimization of the attenuation value η2.

Proof: The proof of Theorem 2 is based on the same
development as the previous proof and is thus omitted.

VI. NUMERICAL SIMULATION

Let us consider the same numerical example as in section
IV with a measurement noise defined by a normal distribution
with zero mean and standard deviation 20% of the output
magnitude affecting the system (36) with G = 1.
Applying theorem 2, the observer and controller gains are
given by:

K1 =

(
6.5964 −661.8742 −153.4759

50.6975 −183.0979 −236.4476

)

K2 =

(
−31.6748 −61.0740 −1338.78

−41.4662 1519.11 214.5846

)

L1 = ( −0.3159 −0.9728 1.2097 )
T

L2 = ( −0.3331 0.2301 −1.0032 )
T

(47)

In order to show the efficiency of the proposed noise attenu-
ation, the gains of the observer (6) and of the controller (16)
where first computed without taking into account the noise
(applying theorem 1) and the obtained results are displayed on
figure 5. The state trajectories obtained with the same inputs,
but using the observer/controller computed from theorem 2
allowing the noise attenuation, are displayed on figure 6. One
can see the better matching of x̂(t) and x(t) to xr(t) in the
second case.

From the depicted figures, one can see that, if the noise
is not taken into account, it affects and even degrades the
model reference tracking. Whereas, when it is included in the
controller and observer synthesis, even if the measurements are
affected by noises, acceptable state tracking and estimation are
obtained.
For the considered example, in order to quantify the obtained
improvement for the tracking error, the following criterion is
considered. Let us denote Φi =

∑
t(xri(t) − x̂i(t)) for the

state estimate obtained from theorem 2 (results depicted in
figure 6) and Φi =

∑
t(xri(t)− x̂i(t)) for the results obtained

without taking into account the noise in the development
(results depicted in figure 5).
The comparative criterion τi for each state is defined as:

τi =
Φi − Φi

Φi
100% (48)

and is equal to τ1 = 33.97%, τ2 = 58.05% and τ3 = 28.62%
respectively for each state.

VII. CONCLUSION

In the present paper, the problem of model reference
tracking of nonlinear systems represented by a T-S structure
has been considered. Based on a Parallel Distributed
Compensation state feedback law, the tracking error is
reduced in terms of an L2 gain attenuation. The contribution
of the presented approach is that it is based on the descriptor
strategy, avoiding the crossing terms between the feedback
gains and the Lyapunov matrices and reducing the number of
LMI to solve. As a consequence, relaxed LMI conditions are
obtained.
The second point is about the state observer synthesis. One
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M1
i 0 P1(Ai −Ar) RT

i + P1Bi −P1Br 0 P1A P1A P1B 0 0 0

∗ M2
i 0 −RT

i 0 −FiG 0 0 0 P2A P2A P2B
∗ ∗ M3 0 P3Br 0 0 0 0 0 0 0

∗ ∗ ∗ M4 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −η2Inu 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −η2Iny 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −λ1
1Innx 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1
3Innx 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1
4Innu 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2
1Innx 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2
3Innx 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2
1Innu



< 0

(45)
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Fig. 5. System, observer and model reference states (theorem 1 with noise)

can note that the general case of unmeasurable premise
variable depending on the system state is considered here for
observer/controller design.
The simultaneous observation and control problem have been
formulated in terms of LMI and a numerical example with
convincing results was presented to illustrate the efficiency of
the proposed method even in the presence of measurement
noise.
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