
Fault detection and isolation with Interval Principal
Component Analysis

Anissa Benaicha
Research Unit ATSI

National Engineering School of Monastir
Rue Ibn El Jazzar, 5019 Monastir, Tunisia

Email: benaicha.anissa@gmail.com

Gilles Mourot
and José Ragot

Research Center for Automatic of Nancy
UMR 7039-University of Nancy

CNRS, 2, avenue of the Forêt of Haye
54516 Vandœuvre-Lès Nancy

Email: gilles.mourot@ensem.inpl-nancy.fr
Email: josé.ragot@ensem.inpl-nancy.fr

Kamel Benothman
Research Unit LARA-Automatic

National Engineering School of Tunis
BP 37, 1002 Tunis Belvédère, Tunisia

Email: kamelbenothman@yahoo.fr

Abstract—Diagnosis method based on Principal Component
Analysis (PCA) has been widely developed. However, this method
deals only with data which are described by single-valued
variables. The purpose of the present paper is to generalize
the diagnosis method to interval PCA. The fault detection is
performed using the new indicator [SPE]. To identify the faulty
variables, this work proposes a new method based on the
reconstruction principle to this indicator. It aims to solve an
interval linear system to obtain the reconstructed variables. The
analysis of the reconstruction conditions permits to determine
the useful directions. Then, the residuals structuring accordingto
these directions allows to identify the set of faulty variables. This
new diagnosis method based on interval PCA model is validated
by a simulation example.

Index Terms—interval PCA model, fault detection and isola-
tion, variable reconstruction, interval linear system.

I. I NTRODUCTION

Principal Component Analysis PCA is a widely used tech-
nique for sensor fault detection and isolation [1], [17], [16]
and more generally for the detection of aberrant information
[18]. PCA allows to develop an implicit model of the system
and reveals linear relationships between its variables without
making explicit model; this model can then be used to monitor
the system behavior or its components. The works in the field
of PCA are usually carried out under single-valued variables
(the data have punctual values). However, in real situations, the
use of single-valued variables is the result of a simplification
and can cause a severe loss of information [15].
The diagnosis technique using PCA may be extended to
data described by multivalued variables allowing to take
into account the concepts of imprecision, variation and data
confidence intervals. Several methods have been proposed for
the extension of PCA to a set of interval type data [3], [4].
This generalization must first, ensure the main functions of
the traditional PCA that aims to reduce the dimension and to
extract the main data structure. In addition, it must returnthe
information variation or the inaccuracy introduced by these
variables [4]. The results provided by interval PCA must
coincide with those from classic PCA. However, until now,
these methods are not applied to diagnosis procedures.

This work presents a new method for fault detection and
isolation from an uncertain PCA model of interval type. This
paper is organized as follows. Section 2 is a brief reminder
of the interval PCA. Section 3 is devoted to the extension of
the indicatorSPE [5], used in classical PCA, to detect fault
in interval PCA case. Section 4 focuses on the identification
of faulty variables using the reconstruction principle to the
proposed indicator[SPE]. The reconstruction method aims to
solve an interval linear system. Under certain conditions,the
structuring of the useful interval residuals can, then, be used
to isolate the faulty variables. The last section illustrates the
application of the methodological results on data from a linear
system whose measurements are corrupted by bounded errors
of interval type and affected by faults.

II. I NTERVAL PCA MODEL

Given the analytical approach proposed by Ragot el al. [11],
we can extend the PCA tools developed for singleton type data
to an interval PCA model.
Once the numberℓ ( ℓ < m) of components to retain in
the interval PCA model is determined (from a threshold
on the eigenvalues magnitude), by considering the interval
eignenvectors partitioning:

[P] =
[

ˆ[P] | ˜[P]
]
, ˆ[P] ∈ R

m×ℓ and ˜[P] ∈ R
m×(m−ℓ) (1)

we define the following matrices:

[Ĉ] = [P̂] [P̂]T (2)
˜[C] = Im− [Ĉ] (3)

which form the interval PCA of the process.
The diagonal terms[cii ], i = 1 . . . m of the matrix

[
Ĉ

]
(2) are

given by:

[cii ] =
ℓ

∑
k=1

[pik] [pik] (4)

Given the properties of interval arithmetic [14], we have:

[pih] [pih] ⊇ [pih]
2 (5)



As we seek to obtain the tightest enclosure of[cii ], these terms
are, then, given by:

[cii ] =
ℓ

∑
h=1

[pih]
2 (6)

a) Remark: The idempotence property of the matrices
[Ĉ] and [C̃] is not verified in the interval PCA, we note:

[
H̃

]
=

[
C̃

][
C̃

]
(7)

Thus, the two matrices (2) and (3) divide the data space
into two interval subspaces: the principal subspace spanned
by the ℓ first interval eigenvectors and the residual subspace,
spanned by them− ℓ last interval eigenvectors. From this
decomposition using interval type expressions, we can, then,
propose a diagnosis procedure i.e of measurement detection
reflecting an abnormal system behavior.

III. FAULT DETECTION

Similar to the traditional PCA, the faults presence is per-
formed through the detection indicators. In this section, we
propose to extend the detection indicatorSPE [5], used in the
classical PCA, to detect the faults presence from a PCA model
type interval.

The projection of the singleton measurements vectorx(k)
onto the residual subspace defined by the matrix[C̃] allows to
define the interval residual vector:

[x̃](k) = ˜[C]x(k) (8)

Remark: The measurements are considered here as sin-
gleton. However, the proposed procedure in the remainder of
this work immediately extends to measurements represented
by interval.

In the presence of faults affecting a subsetF of variables,
the singleton measurement vector is written as:

x(k) = x0(k)+δx∗(k)
︸ ︷︷ ︸

=x∗(k)

+ΞF f(k) (9)

where x0(k) denotes the true measurement vector,δx∗(k)
the variation vector due to noise measurement assumed to
be white,x∗(k) the fault-free measurement vector,f(k) ∈ R

f

( f ≥ 1) the fault magnitude vector, andΞF ∈ R
m× f the fault

direction matrix which is unknown. This orthonormal matrix
is formed with 0 to indicate a fault-free variable (respectively
with 1 for a faulty variable).
Refer to (9), the interval residual vector (8) is written:

[x̃] (k) =
[
C̃

]
x∗(k)+

[
C̃

]
ΞFf(k) (10)

The generalized detection indicator[SPE] is defined at instant
k by:

[SPE] (k) = [x̃]T(k) [x̃](k) (11)

Substituting (8) in (11) and taking into account the definition
(7), we have:

[SPE](k) = xT(k) ˜[H] x(k) (12)

To optimize the width of the indicator[SPE](k) (12), its
expression is given by:

[SPE] (k) =
m

∑
j=1

([x̃ j ] (k))
2 (13)

where[x̃ j ] (k) is the ith component of[x̃] (k) (10).
Given the properties of interval arithmetic [14], the system is
declared in failure mode at instantk, if the lower bound of
[SPE](k) (13) over the value 0, conjointly if its upper bound
exceeds its detection threshold adapted by training on nominal
data.

IV. FAULT ISOLATION BY RECONSTRUCTION

The detection phase must be completed by a phase fault
isolation inorder to identify the faulty variables. The variables
reconstruction and then their projection onto the residual
subspace allows this identification. The simultaneous recon-
struction of a set ofR variables consits in estimating the
variables of this set from the remaining variablesR and the
PCA model by minimizing their influence on the detection
index.
In this section, we try to establish the relation between the
reconstruction of a set of variables from an interval PCA model
and a remaining variables ( of singleton type) by minimizing
their influence on the proposed detection indicator[SPE]. The
reconstructed variables are obtained by solving an interval
linear system. Under reconstruction conditions, the structured
residuals analysis permits the identification of faulty variables.

A. Variables reconstruction method

Consider, first, the partitioning according to the singleton
measurement vectorx(k):

x(k) =
[

xR(k) xR̄(k)
]T

(14)

with

xR(k) = ΞT
R x(k) (15)

xR̄(k) = ΞT
R̄ x(k) (16)

where xR(k) corresponds to ther components ofx(k) to
be reconstructed (r ≥ 1) and xR(k) are them− r remaining
components. The two matricesΞR andΞR select respectively
these two groups of variables.
The simultaneous reconstruction formula is obtained by solv-
ing the following optimization problem like in [5]:

[x̂R](k) = arg min
xR(k)

[SPER](k) (17)

where the index[SPER] corresponds to the detection index
[SPE] (12) obtained after the reconstruction of ther variables
of the setR.
Given the partitioning of the matrix[C̃]:

[C̃] =

[
[C̃RR] [C̃RR̄]

[C̃RR̄]
T

[C̃R̄R̄]

]

(18)



with

[C̃RR] = ΞT
R

˜[C] ΞR ∈ IR
r×r

[C̃RR̄] = ΞT
R

˜[C] ΞR̄ ∈ IR
r×(m−r) (19)

[C̃R̄R̄] = ΞT
R̄

˜[C] ΞR̄ ∈ IR
(m−r)×(m−r)

whereIR denotes the set of closed bounded intervals ofR.
and the matrix definition ˜[H] (7), the index[SPER] is defined
at instantk by:

[SPER](k)=
[

xR(k)T xR̄(k)T
]
[

[H̃RR] [H̃RR̄]

[H̃RR̄]
T

[H̃R̄R̄]

][
xR(k)
xR̄(k)

]

(20)
with

[H̃RR] = ΞT
R

˜[H] ΞR

[H̃RR̄] = ΞT
R

˜[H] ΞR̄ (21)

[H̃R̄R̄] = ΞT
R̄

˜[H] ΞR̄

We develop the[SPER](k) expression (20), then its mini-
mizing overxR(k) yields:

[H̃RR] [x̂R](k)+ [H̃RR̄] xR̄(k) = 0 (22)

The expression (22) corresponds at instantk to a system of
linear interval equations of the form:

[A] [y] (k) = [b] (k) (23)

with
[A] =

[
H̃RR

]
, [b] (k) = −

[
H̃RR̄

]
xR̄(k) and [y] (k) = [x̂R] (k) is

the interval vector to be estimated.
Note that the matrix[A] is symmetric since[H̃RR]T = [H̃RR].
There are various methods for solving interval linear system
[14], [10], [8]. They tend to find a tight enclosure of the
interval vector[y] (k) which contains the true solution set. [9]
and [6] proved in the case where the matrix[A] is symmetric,
the interest of using the approaches taking into account this
property compared to the application of other methods in
terms of optimized solution. In this context, there are: the
[L ] [D] [L ]T decomposition and the Cholesky method adapted
to interval data [2]. Recently, [7] proposes an iterative method
that reduces significantly the overestimation. However, itdoes
not necessarily converge to the optimal solution and requires
a high computational cost especially for a large system. Then,
the [L ] [D] [L ]T decomposition will be used here because it
provides the tight enclosure of the solution and it is simpleto
apply.

Remark: From (22), we notice that the reconstruction
of a set ofR variables consists in estimating these variables
from the set of remaining variablesR and the interval PCA
model. Thus, if the setR is faulty, its reconstruction provides
an independently estimated of faults.

B. Generation of interval structured residuals

Once the vector[x̂R](k) is determined, the reconstructed
measurement vector is:

[ẑR](k) =
[

[x̂R](k) xR̄(k)
]T

(24)

The structured residuals are defined with respect to the
reconstruction directionsΞR as the projection of the recon-
structed measurement vector[ẑR](k) onto the residual sub-
space:

[z̃R](k) =
[
C̃

]
[ẑR] (k) (25)

Given (24) and the matrix partitioning (18), the interval
residual vector (25) is:

[z̃R](k) =

[ [
C̃RR

]
[x̂R] (k)+

[
C̃RR̄

]
xR̄(k)

[
C̃RR̄

]T
[x̂R] (k)+

[
C̃R̄R̄

]
xR̄(k)

]

(26)

The expression (26) is interesting because it allows to maintain
the structural properties of the structured residuals. First, the
envelopes of ther first components of the structured residuals
contain 0 and then them− r last components of this vector
are independent of the reconstructed variables. This indicates,
clearly, the interest of this expression for fault isolation as it
is possible to generate a set of structured residuals insensitive
to certain variables.

The analysis of the indicator[SPER](k) (20) computed from
the structured residuals[z̃R](k) (25) allows the identification
of the set of faulty variables. To obtain the tight enclosureof
this indicator, it is calculated as follows:

[SPER] (k) =
m

∑
j=1

([

z̃j
R

]

(k)
)2

(27)

where
[

z̃j
R

]

(k) is the ith component of[z̃R](k).
The faults influence is eliminated on this indicator (27) if the

reconstruction directionΞR corresponds to the faults direction
ΞF i.e, if R = F.
As the diagnosis purpose is to determine the fault directions
that are unknown a priori, the model structure analysis is
needed to reduce the number of fault directions to be con-
sidered.

C. Reconstruction conditions

The existence of the resolution methods requires that the
matrix [A] is invertible. This condition implies that this matrix
must satisfy [13]:

σmax

(∣
∣
∣(Ac)

−1
∣
∣
∣∆

)

< 1 (28)

where σmax(∗) is the maximum singular value of∗, the
matricesAc and ∆ represent respectively the midpoint and
the radius matrices of[A].
The inequality (28) is equivalent to the following condition
provided by [12]:

σmax(∆) < σmin (Ac) (29)

whereσmin (∗) is the minimum singular value of∗.
We define the following reconstruction ratio:

RR =
σmax(∆)

σmin (Ac)
(30)

From (29), plus the ratioRR is less than 1, the more we
guarantee a good reconstruction of the set ofR variables, and



vice versa. In the particular case where the data are described
by certain variablesσmax(∆) = 0 and thereforeRR = 0.
This ratio is used to reduce the number of combinations of
the useful variables. The variable directions whose ratio (30)
is greater than or close to 1 will be eliminated from the setR
of variables to be reconstructed.
The second condition of reconstruction concerns the matrix
[
Ξ̃R

]
=

[
C̃

]
ΞR which must be of full column rankr. This

condition implies that:
- the columns of the matrix

[
Ξ̃R

]
are not in this form:

[
Ξ̃R

]
=

[ [
Ξ̃R1

]
a
[

ξ̃r

] [

ξ̃r

] ]

(31)

wherea is a nonzero scalar.
which means that some or all of the columns of this matrix
shouldn’t are collinear (or close to collinearity). In thiscase,
the matrix

[
H̃RR

]
is written:

[
H̃RR

]
=








[
Ξ̃R1

]T [
Ξ̃R1

]
a
[
Ξ̃R1

]T
[

ξ̃r

] [
Ξ̃R1

]T
[

ξ̃r

]

a
[
Ξ̃R1

]T
[

ξ̃r

]

a2
[

ξ̃r

]T [

ξ̃r

]

a
[

ξ̃r

]T [

ξ̃r

]

[
Ξ̃R1

]T
[

ξ̃r

]

a
[

ξ̃r

]T [

ξ̃r

] [

ξ̃r

]T [

ξ̃r

]








(32)
The matrix (32) is not invertible and therefore the system (22)
is not resolvable.
- The numberr of variables to be reconstructed must satisfy
the following condition:

r ≤ m− ℓ (33)

The model structure analysis in terms of isolation by re-
construction permits to reduce the number of scenarios to be
considered and therefore to determine the isolable faults.

V. A PPLICATION

To illustrate the proposed methods presented above, we
consider a system governed by 5 variables and described at
different instantsk by the following equations:







x0
1(k) = 0.4ν1(k)−1.2sin(k/2)cos(k/4)exp(−k/2N)

x0
2(k) = 0.8ν2(k)−1.5sin(k/5)2

x0
3(k) = x0

1(k)+x0
2(k)

x0
4(k) = x0

3(k)+x0
2(k)

x0
5(k) = 2x0

1(k)+x0
3(k)

ν1(k) ∼ η(0, σ2)
ν2(k) ∼ η(0, σ2)

(34)
This data set, generated from two variables from two normal
distributions, show three linear analytical redundancy relations
between the variablesx0

i , i = 1, . . . , 5. To the generated data,
which form the matrixX0, were superimposed the variation
δX∗. This variation are considered as realizations of centered
random variables to simulate the presence of measurement
noise. The system is simulated a first time forN = 100 obser-
vations. The application of the approximative method proposed
by [11] permits to find the interval eigenvalues matrix[Λ] and
the interval eigenvectors matrix[P]. Table I gives the interval
eigenvalues thus obtained. Given the magnitude order of the

TABLE I
MATRIX [Λ]

[560.817 579.300]
[319.857 326.875]

[0.044 0.132]
[0.080 0.150]
[0.059 0.150]

interval eigenvalues, the number of components to retain in
the interval PCA model isℓ = 2. The matrix [Λ] is then
decomposed into two matrices[Λ̂] and[Λ̃] and the matrix[P] is
decomposed into

[
P̂
]

and
[
P̃
]
. The matrix

[
P̃
]T

is presented in
table II. Their interval column vectors should be aproximated
to the redundancy equations used to generate the data. Indeed,
the redundancy equations (34) can explain the variablesx0

1, x0
2

andx0
3 as follows:







x0
1(k) = −1

5x0
4(k)+ 2

5x0
5(k)

x0
2(k) = 3

5x0
4(k)−

1
5x0

5(k)
x0

3(k) = 2
5x0

4(k)+ 1
5x0

5(k)
(35)

The joint review of these relations and of the interval eigen-
vectors of table II shows the consistency of the estimates of
these eigenvectors.

TABLE II
MATRIX

[
P̃
]T

0 0 1 [-0.405 -0.393] [-0.204 -0.194]
0 1 0 [-0.607 -0.591] [0.194 0.204]
1 0 0 [0.194 0.206] [-0.404 -0.395]

A. Fault detection

Three faults are simultaneously added to the variablesx1, x2

andx3 from the samples 40 to 80. These faults are represented
by a constant bias of magnitude equal to 10% of the variation
range of each variable.

Figure 1 presents the evolution of the indicator[SPE](k)
(13) for 100 samples. Note that this indicator shows the pres-
ence of faults in the instants where the faults are introduced.
Indeed, in this interval time, the lower bound of[SPE](k) over
0 and its upper bound exceeds its detection threshold adapted
by training on nominal data.

0 20 40 60 80 100

0

0.5

1

1.5

2

[S
PE

]

time

Fig. 1. Evolution of the detection index[SPE](k)



B. Fault isolation by reconstruction

Refer to (33), the maximum number of simultaneous re-
constructed variables is 3. The maximum number of recon-
structions is 21. Table III presents the values ofRR (30) for
the set of combinations of a variable i.e forr = 1. As the
different values are less than 1, then the set of faults that
appear on a single variable are isolable. The same computation
is performed forr = 2. The results are explained in table
IV. The analysis of this table reveals that the set of faults
affecting two variables are isolable. For the set of directions
of 3 variables, the ratioRR is calculated. Table V presents their
values according to possible combinations of 3 variables. The
ratios R1,2,5, R2,3,4 and R3,4,5 are higher than 1. Thus, the
couples of variables associated with them ({1,2,5}, {2,3,4}
and{3,4,5}) can not be reconstructed. The required number
of reconstructions is reduced to 18.

After determining the useful reconstruction directions, the
indicators[SPER] associated to these directions are constructed
in order to isolate faulty variables.

As the number of faulty variables is a priori unknown, let’s
start with the calculation of indicators[SPER] for the set of
combinations consisting of a variable. Figure 2 presents the
evolution of these indicators. The first graph of this figure is
relative to the residuals projection with reconstruction with the
indicator [SPE] without using the first variable. The second
graph relative to the indicator[SPE2] corresponds to the
indicator [SPE] without using the variablex2,... Note that
the five graphs of this figure are sensitive to faults since the
instant 40 to 80. The elimination of one variable does not
eliminate the fault effect and therefore the fault is not simple.
Now, we reconstruct two variables simultaneously. Figure 3
traces the evolution of indicators[SPER] obtained by variables
reconstruction corresponding to the set of combinations of
2 faults. The various indicators presented in this figure are
above their respective threshold during the time where the
faults appear. Thus, the reconstruction of 2 variables doesn’t
eliminate the faults presence. Figure 4 shows the evolution
of indicators[SPER] corresponding to possible combinations
consisting of 3 faults. The first graph of this figure relativeto
the indicator[SPE]1,2,4 (corresponding to the indicator[SPE]
after the reconstruction of variablesx1, x2 andx4) is sensitive
to faults between the instants 40 and 80. The second graph
plots the evolution of the indicator[SPE]2,3,5. By comparing its
lower bound to the value 0, we have a difficulty to identify the
presence of faults. Despite, the comparison of the values ofits
upper bound to its threshold shows the faults presence between
times 40 and 80. Thus, the use of the lower bound gives a much
clearer indication and therefore removes any ambiguity as to
the faults isolation. Only the simultaneous reconstruction of
the contaminated variablesx1, x2 andx3 eliminates the effect
of faults. The evolution of the resulting detection indicator
[SPE1,2,3], introduced by the last graph of figure 4, confirms
this result since it is insensitive to faults.

Thus, from this example, we correctly identify the set of
faulty variables despite the presence of false alarms. In fact, the

indicators[SPER] having a ratioRR close to 1 are tainted by
false alarms that can lead to false isolation. We have mentioned
that the difficulty of identification by reconstruction in the
interval case is directly related to this ratio. Thus, to avoid the
risk of false isolation, the setR of variables to be reconstructed
must have the ratioRR well below 1.
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Fig. 2. Evolution of the indicators[SPER](k) for r = 1
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Fig. 3. Evolution of the indicators[SPER](k) for r = 2

VI. CONCLUSION

This work is devoted to the generalization of diagnosis
method to interval PCA. To detect the faults, we proposed
to extend the indicatorSPE used in the classical PCA. Con-
cerning the identification of the set of faulty variables, a new
method based on the reconstruction principle to the proposed
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Fig. 4. Evolution of the indicators[SPER](k) for r = 3

indicator [SPE] is proposed. The reconstructed variables are
obtained by solving an interval linear system. The[L ][D][L ]T

decomposition is used because it provides the tight enclosure
of the solution. The reconstruction conditions analysis permits
to reduce the number of scenarios related to multiple faultsto
be considered. The residuals structuring according to these
useful directions allows the identification of the implicated
variables. The results of a simulation example showed the
interest of the new method of diagnosis based on interval
PCA. Indeed, it has allowed to identify correctly the set of
faulty variables despite the presence of false alarms related to
the reconstruction ratioRR.

TABLE III
VALUES OF RR FOR r = 1

R 1 2 3 4 5
RR 0.021 0.024 0.024 0.068 0.088

TABLE IV
VALUES OF RR FOR r = 2

R {1,2} {1,3} {1,4} {1,5} {2,3}
RR 0.056 0.047 0.136 0.571 0.059
R {2,4} {2,5} {3,4} {3,5} {4,5}

RR 0.339 0.233 0.2 0.286 0.254

TABLE V
VALUES OF RR FOR r = 3

R {1,2,3} {1,2,4} {1,2,5} {2,3,4} {2,3,5} {3,4,5}
RR 0.093 0.666 2.064 2.956 0.474 1.052

REFERENCES

[1] C. F. Alcala, and S. J. Qin Reconstruction-based contribution for process
monitoring. Automatica, volume 45, pages 1593–1600, 2009.

[2] G. Alefeld, and G. Mayer. The cholesky method for intervaldata.Linear
Algebra Application, volume 194, pages 161–182, 1993.

[3] P. Cazes, A. Chouakria, E. Diday, and Y. Schektman. Extension de
l’analyse en composantes principales à des données de type intervalle.
Revue de la statistique appliquée, tome 45, ňr3, pages 5–24, 1997.
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