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Abstract—Diagnosis method based on Principal Component This work presents a new method for fault detection and
Analysis (PCA) has been widely developed. However, this method jsplation from an uncertain PCA model of interval type. This
dea."sbl only r‘]"”th data th'Chh are described by S'”gle'va'ul‘?d paper is organized as follows. Section 2 is a brief reminder
variables. The purpose of the present paper is 10 generalize of the interval PCA. Section 3 is devoted to the extension of
the diagnosis method to interval PCA. The fault detection is Il : . X
performed using the new indicator [SPE. To identify the faulty ~the indicatorSPE [5], used in classical PCA, to detect fault
variables, this work proposes a new method based on the in interval case. Section 4 focuses on the identification

iabl hi k hod based h t | PCA Sect 4 f the identificat
reconstruction principle to this indicator. It aims to solve an of faulty variables using the reconstruction principle e t
interval linear system to obtain the reconstructed variables. The proposed indicato[SPE. The reconstruction method aims to

analysis of the reconstruction conditions permits to determine | int Ll t Und tai ditidh
the useful directions. Then, the residuals structuring accordingo Solve an interval finear system. Under certain condiudns,

these directions allows to identify the set of faulty variables. This Structuring of the useful interval residuals can, then, bedu
new diagnosis method based on interval PCA model is validated to isolate the faulty variables. The last section illugsathe

by a simulation example. . . application of the methodological results on data from adin
_Index Terms—interval PCA model, fault detection and isola-  gystem whose measurements are corrupted by bounded errors
tion, variable reconstruction, interval linear system. .

of interval type and affected by faults.

. INTRODUCTION Il. INTERVAL PCAMODEL

_ Principal Component Analysis PCA_ is a yvidely used tech- Gjven the analytical approach proposed by Ragot el al. [11],
nique for sensor fault detection and isolation [1], [17]6]1 \ye can extend the PCA tools developed for singleton type data
and more generally for the detection of aberrant infornmatiq, a5 interval PCA model.

[18]. PCA allows to develop an implicit model of the systenyce the number ( ¢ <m) of components to retain in
and reveals linear relationships between its variableBoult he interval PCA model is determined (from a threshold

making explicit model; this model can then be used to monitgh, the eigenvalues magnitude), by considering the interval
the system behavior or its components. The works in the f'eé‘anenvectors partitioning:

of PCA are usually carried out under single-valued varsble L . .
(the data have punctual values). However, in real situgfire  [P] = [ [P][[P] ], [P]€ R™‘ and [P]€ R™ (M=) (1)
use of single-valued variables is the result of a simplificat ] ) )

and can cause a severe loss of information [15]. we define the following matrices:

The diagnosis technique using PCA may be extended to [é] _ “5] [|5]T )
data described by multivalued variables allowing to take ~ A

into account the concepts of imprecision, variation andadat €] = Im—[C] ©)
confidence intervals. Several methods have been proposed{fich form the interval PCA of the process.

the extension of PCA to a set of interval type data [3], [4}rpe diagonal termgc;l,i=1..

. o O ; _ : .m of the matrix[C] (2) are
This generalization must first, ensure the main functions

ven by:
the traditional PCA that aims to reduce the dimension and 1o y ‘
extract the main data structure. In addition, it must retina (il = > [Pul [Puc] 4)
information variation or the inaccuracy introduced by thes k=1

variables [4]. The results provided by interval PCA musgjyen the properties of interval arithmetic [14], we have:
coincide with those from classic PCA. However, until now,

these methods are not applied to diagnosis procedures. Pin] IPin] 2 [Pin] (5)



As we seek to obtain the tightest enclosuréogf, these terms To optimize the width of the indicatofSPH(k) (12), its
are, then, given by: expression is given by:

‘
i| = in)? 6 - S (I% 2

il = 3 [Pl ©6) [SPE (k) ];([x,](k)) (13)

a) Remark: The idempotence property of the matrices

A S o : " where[%j] (k) is thei" component of%] (k) (10).
[C] and|[C] is not verified in the interval PCA, we note: Given the properties of interval arithmetic [14], the systis

[A] =[C] [C] (7) declared in failure mode at instakt if the lower bound of

[SPE(k) (13) over the value 0, conjointly if its upper bound

~ Thus, the two matrices (2) and (3) divide the data Spaggceeds its detection threshold adapted by training on medmi
into two interval subspaces: the principal subspace sganRg;ia.

by the ¢ first interval eigenvectors and the residual subspace,
spanned by then— ¢ last interval eigenvectors. From this IV. FAULT ISOLATION BY RECONSTRUCTION
decomposition using interval type expressions, we cam,the

propose a diagnosis procedure i.e of measurement detectio hg dgtecnon phase -must be complgted by a phase fault
reflecting an abnormal system behavior. Isolation inorder to identify the faulty variables. The iadnles

reconstruction and then their projection onto the residual
[1l. FAULT DETECTION subspace allows this identification. The simultaneousneco
struction of a set ofR variables consits in estimating the
ariables of this set from the remaining variabRsand the
CA model by minimizing their influence on the detection

Similar to the traditional PCA, the faults presence is pe
formed through the detection indicators. In this sectioe,
propose to extend the detection indica&®E[5], used in the .

classical PCA, to detect the faults presence from a PCA mO(JI{é ex. . . .
type interval. n this section, we try to establish the relation between the

The projection of the singleton measurements vert&) reconstruction of a set of variables from an interval PCA alod

onto the residual subspace defined by the ma@jallows to and a remaining variables ( of singleton type) by minimizing
define the interval residual vector: their influence on the proposed detection indicd8®H. The
reconstructed variables are obtained by solving an interva

X](k) = [é]x(k) (8) linear system. Under reconstruction conditions, the sired

_ residuals analysis permits the identification of faultyiables.
Remark: The measurements are considered here as sin-

gleton. However, the proposed procedure in the remainder Qf Variables reconstruction method

this work immediately extends to measurements representeq:Onsider first, the partitioning according to the singieto

by interval. .

In the presence of faults affecting a subBebf variables, measurement vecto(k):
the singleton measurement vector is written as: x(K) = [ xr(K) xz(K) ]T (14)

x(K) = x°(k) 4 8x* (k) +=Z¢ f(k) )  with
N—————’
—=x*(K
e xe(K) = ZExK) (15)
where x°(k) denotes the true measurement veci@x: (k) xg(k) = =Lx(k) (16)
R

the variation vector due to noise measurement assumed to
be white,x*(k) the fault-free measurement vectéfk) € R"  where xz(k) corresponds to the components ofx(k) to
(f > 1) the fault magnitude vector, arg € R™ the fault be reconstructedr (> 1) and xg(K) are them—r remaining
direction matrix which is unknown. This orthonormal matrixcomponents. The two matricE&k and=g select respectively
is formed with O to indicate a fault-free variable (respegiyy these two groups of variables.

with 1 for a faulty variable). The simultaneous reconstruction formula is obtained by-sol
Refer to (9), the interval residual vector (8) is written: ing the following optimization problem like in [5]:
%] (k) = [C] x" (k) + [C] Z¢f(K) (10) [%g](k) = arg rr}Lr)l[SPli](k) (17)
XR

The generalized detection indical@PH is defined at instant ) o
K by: where the mde_x[SPE;} corresponds to '_che detectpn index

SPH (K) = K17 (K) [%](k 11) [SPH (12) obtained after the reconstruction of theariables

[SPE (k) = [X]" (k) [X](K) () SFEUAC

Substituting (8) in (11) and taking into account the defamti Given the partitioning of the matri{é]:

7), have: ~ ~
(7). we have & [ Ceel [l

ISPE(K) =x"(K) [A] x(K) (12) =] " Carl 18)



with The structured residuals are defined with respect to the
reconstruction directiong&g as the projection of the recon-

~ _ =T iA1= rxr

[Crrl = =g[C]=r € IR structed measurement vectfiiz](k) onto the residual sub-
[Cra] = ZRI[CIZgeIR™(M™T) (19) space: i

[Crrl = Z=R[ClZgeIrM =MD [2r](K) = [C] [zr] (k) (25)

wherelR denotes the set of closed bounded interval®of ~Given (24) and the matrix partitioning (18), the interval

and the matrix definitionH] (7), the index|SPE] is defined residual vector (25) is:

at instantk by: () = [ @RR]T[%R] (k) + [Cral xa(K)
[Crr] " %] (K) + [Crr] Xr(K)

The expression (26) is interesting because it allows to taizin

the structural properties of the structured residualsstfFthe
envelopes of the first components of the structured residuals

e (26)
SPRI) = [ xr(k)Txg(k)T ]| HRRE [Hee ] [ Xr(K) ]
RR

with

[HRR] EE “:” = contain 0 and then then—r last components of this vector
“:' ] = =T “:” =_ 1) are independent of the reconstructed variables. This atelic
. RR RTR clearly, the interest of this expression for fault isolatias it
Hrrl = =x[HI=r is possible to generate a set of structured residuals iitisens
We develop theSPER](k) expression (20), then its mini- O Certain variables.
mizing overxg(K) yields: The analysis of the indicat¢8PEg] (k) (20) computed from
N . the structured residualggr](k) (25) allows the identification
[Hrr] [Xr](K) + [Hgg] xg(k) =0 (22) of the set of faulty variables. To obtain the tight enclosofe

The expression (22) corresponds at instlarib a system of this indicator, it is calculated as follows:

H H H . m . 2

linear interval equations of the form: SPE] (K) = Z ([ZH (k)) @7)
[A]lyl (k) = [b] (k) (23) =t

with where LZ{Q (k) is thei" component ofZg] (k).

[A] = [Hrr], [b] (k) = — [Hrg] xg(K) and[y] (k) = [%=] (k) is  The faults influence is eliminated on this indicator (27t

the interval vector to be estimated. . . reconstruction directio@gr corresponds to the faults direction

Note that the matri¥A] is symmetric sincéHgr]" = [Hrr]. = i.e, if R=F.

There are various methods for solving interval linear systeAs the diagnosis purpose is to determine the fault direstion
[14], [10], [8]. They tend to find a tight enclosure of thehat are unknown a priori, the model structure analysis is
interval vectorly] (k) which contains the true solution set. [9]needed to reduce the number of fault directions to be con-
and [6] proved in the case where the maf#y is symmetric, sidered.

the interest of using the approaches taking into accoust thi ) .

property compared to the application of other methods fr Reconstruction conditions

terms of optimized solution. In this context, there are: the The existence of the resolution methods requires that the
[L][D][L]" decomposition and the Cholesky method adaptewatrix [A] is invertible. This condition implies that this matrix
to interval data [2]. Recently, [7] proposes an iterativetiod must satisfy [13]:

that reduces significantly the overestimation. Howevetpis

not necessarily converge to the optimal solution and reguir Gmax(
a high computational cost especially for a large systemnTh
the [L][D][L]" decomposition will be used here because
provides the tight enclosure of the solution and it is sintple
apply.

Remark: From (22), we notice that the reconstructio
of a set ofR variables consists in estimating these variabl
from the set of remaining variablé® and the interval PCA Omax(8) < Omin (Ac) (29)
model. Thus, if the seR is faulty, its reconstruction provides
an independently estimated of faults.

(AC)’l‘ A) <1 (28)

Svhere Omax(*) is the maximum singular value of, the
H1atricesAC and A represent respectively the midpoint and
the radius matrices df].

The inequality (28) is equivalent to the following conditio
srovided by [12]:

whereomn (x) is the minimum singular value of.
We define the following reconstruction ratio:

Rg = Omax(8)
Omin (Ac)

From (29), plus the ratidRg is less than 1, the more we
[Zr](K) = [ [Xr](k) xg(K) ]T (24) guarantee a good reconstruction of the selRofariables, and

B. Generation of interval structured residuals

Once the vectorfXgr](k) is determined, the reconstructed
measurement vector is:

(30)



vice versa. In the particular case where the data are describ TABLE |

by certain variable®nax(A) = 0 and thereforeRg = 0. MATRIX [A]
This ratio is gsed to reduce.the nqmbgr of combinations of 50817 579300
the useful variables. The variable directions whose re&@) ( 319.857 326.875
is greater than or close to 1 will be eliminated from the Ret 0.044 0.132

i 0.080 0.150
of variables to be reconstructed. ool

T~he secqnd condition of reconstruction concerns the matrix
[=r] = [C] =r which must be of full column rank. This

condition implies that: interval eigenvalues, the number of components to retain in

- the columns of the matrix=g| are not in this form: the interval PCA model i = 2. The matrix[A] is then
= = z z decomposed into two matricés] and|A] and the matriXP] is
—R| = = a 31 ~ -
==l { =ri] {Er] {Er} } (31) decomposed int¢gP] and [P]. The matrlx[P} is presented in
wherea is a nonzero scalar. table Il. Their interval column vectors should be aproxieaat

which means that some or all of the columns of this matrio the redundancy equations used to generate the datadindee
shouldn’t are collinear (or close to collinearity). In tidase, the redundancy equations (34) can explain the vanatﬁle@

the matrix [HRR] is written: andxd as follows:
[iRl]T [iRl —R1 E ] éRl [Er} X‘i)(k) = _%Xg(k + %Xg(k)
. . T Ee (k) = 2xQ(k) — x2(k (35)
o] - | alze]"[i] 2 (] [6] a5 [E] &0 B+ A
[ERI]T {Er} a{ér] F } [Er} [Er} The joint review of these relations and of the interval eigen

(32) vectors of table Il shows the consistency of the estimates of
The matrix (32) is not invertible and therefore the syste@) (2these eigenvectors.
is not resolvable.

- The number of variables to be reconstructed must satisfy TABLE |
the following condition: MATRIX [P]
r<m-—=¢ (33) 0 0 1 [0.405-0.393] [-0.204-0.194
- 0 1 0 [0.607-0591] [0.194 0.204]
The model structure analysis in terms of isolation by re- 1 0 0 [01940.206] [-0.404-0.395

construction permits to reduce the number of scenarios to be

considered and therefore to determine the isolable faults. .
A. Fault detection

V. APPLICATION Three faults are simultaneously added to the variakles,
To illustrate the proposed methods presented above, amdxs from the samples 40 to 80. These faults are represented
consider a system governed by 5 variables and describedata constant bias of magnitude equal to 10% of the variation

different instantk by the following equations: range of each variable.

0 _ : B Figure 1 presents the evolution of the indica{8PH (k)
i%gt; 83\\:;% B 1?;%"://52))§qu/4)qu k/2N) (13) for 100 samples. Note that this indicator shows the-pres
x%(k) _ xb(k) +x°(kj ence of faults in the instants where the faults are introduce
Xg(k) :x‘l’(k)+x(2’(k) Indeed, in this interval time, the lower bound [&PH (k) over
x§(k) _ Zio(k +§<°(k) 0 and its upper bound exceeds its detection threshold atlapte
va(K) ~ n(107 ?) 3 by training on nominal data.
va(k) ~n(0, 0?)

(34)
This data set, generated from two variables from two normal il
distributions, show three linear analytical redundandsgtiens

between the variable&o, i=1,...,5. To the generated data,
which form the matrixX°, were superimposed the variation
O0X*. This variation are considered as realizations of centered
random variables to simulate the presence of measuremen

sPE]
-

0.5

noise. The system is simulated a first time fbe= 100 obser- ° —l

vations. The application of the approximative method peggb ° 20 o L 80
by [11] permits to find the interval eigenvalues maty and

the interval eigenvectors matr{®]. Table | gives the interval Fig. 1. Evolution of the detection indgSPH (k)

eigenvalues thus obtained. Given the magnitude order of the



B. Fault isolation by reconstruction indicators[SPEg] having a ratioRr close to 1 are tainted by
false alarms that can lead to false isolation. We have mesdio

Refer to (33), the maximum number of simultaneous rera; the difficulty of identification by reconstruction ineth
constructed variables is 3. The maximum number of recoperal case is directly related to this ratio. Thus, toidvbe

structions is 21. Table Il presents the valuesRf (30) for iqy of false isolation, the s& of variables to be reconstructed
the set of combinations of a variable i.e fo= 1. As the must have the rati®z well below 1.

different values are less than 1, then the set of faults that
appear on a single variable are isolable. The same computati
is performed forr = 2. The results are explained in table
IV. The analysis of this table reveals that the set of faults
affecting two variables are isolable. For the set of dimi

of 3 variables, the rati®g is calculated. Table V presents their
values according to possible combinations of 3 variablég T
ratios R125, Ro34 and R34 are higher than 1. Thus, the
couples of variables associated with thefd,@,5}, {2,3,4}

and {3,4,5}) can not be reconstructed. The required number

e ]

20 40 60 80 100

[SPE,]

[SPE,]

20 40 60 80 100

20 40 60 80 100

[SPE]  [SPE,
OFRP N ORNORNORNOERN

O/ O O 99—
L]

of reconstructions is reduced to 18. - = 4M T’
After determining the useful reconstruction directiortse t & —
indicators[SPE] associated to these directions are constructed “ e * "

in order to isolate faulty variables.
As the number of faulty variables is a priori unknown, let’s Fig. 2. Evolution of the indicator§SPE) (k) for r = 1

start with the calculation of indicatofSPEz] for the set of
combinations consisting of a variable. Figure 2 presengs th
evolution of these indicators. The first graph of this figwse i

relative to the residuals projection with reconstructidthvthe g zF W }
indicator [SPH without using the first variable. The second S 20 40 80 80 100
graph relative to the indicatofSPE)] corresponds to the g (1} j
indicator [SPH without using the variable,... Note that 0 20 a0 60 80 100
the five graphs of this figure are sensitive to faults since the & 1F J
instant 40 to 80. The elimination of one variable does not ; % 20 40 60 80 100
eliminate the fault effect and therefore the fault is notden o fF SN j
Now, we reconstruct two variables simultaneously. Figure 3 ~ % 20 40 60 80 100
traces the evolution of indicatofSPEz] obtained by variables f fF j
reconstruction corresponding to the set of combinations of % 20 40 60 80 100
2 faults. The various indicators presented in this figure are
above their respective threshold during the time where the s ] ]
faults appear. Thus, the reconstruction of 2 variables rbes 5 g# —
eliminate the faults presence. Figure 4 shows the evolution -, s} 2 2 & & ?"’
of indicators[SPEgr] corresponding to possible combinations 5 g# —
consisting of 3 faults. The first graph of this figure relative ~ 35 = 2 &0 & 100
the indicator[SPH1 24 (corresponding to the indicat¢8PH g z# W J
after the reconstruction of variables, x, andxy) is sensitive 3 2 a0 b 80 100
to faults between the instants 40 and 80. The second grapt § g# i e \J
plots the evolution of the indicat¢BPHz 3 5. By comparing its - 20 20 &0 & 100
lower bound to the value 0, we have a difficulty to identify the g 5} M J
0 20 40 60 80 100

presence of faults. Despite, the comparison of the valués of

upper bound to its threshold shows the faults presence batwe

times 40 and 80. Thus, the use of the lower bound gives a much Fig. 3. Evolution of the indicatoréSPE] (k) for r — 2

clearer indication and therefore removes any ambiguityoas t

the faults isolation. Only the simultaneous reconstrucid

the contaminated variableg, xo andxs eliminates the effect VI. CONCLUSION

of faults. The evolution of the resulting detection indaat This work is devoted to the generalization of diagnosis

[SPE 23], introduced by the last graph of figure 4, confirmgnethod to interval PCA. To detect the faults, we proposed

this result since it is insensitive to faults. to extend the indicatoBPE used in the classical PCA. Con-
Thus, from this example, we correctly identify the set oferning the identification of the set of faulty variables,ewn

faulty variables despite the presence of false alarmscinttae method based on the reconstruction principle to the prapose
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[SPE1 ) 4]
NN

[SPE2.3‘5]
N

[SPELZS]
-

o

TABLE Il
VALUES OFRR FORIr =1

R 1 2 3 4 5
Rg 0021 0024 Q024 0068 Q088

TABLE IV
VALUES OFRR FORIr =2

R {12} {13} {14} {15 {23}
Re_ 0056 Q047 0136 0571 Q059
R {24 {25 {34} {35 {45
Re_ 0339 0233 02 0286 0254

TABLE V
VALUES OFRR FORIr =3

R {123} {124} {125] {234} {235 {345}
Re__ 0093 0666 2064 2956 Q474 _ 1052
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