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Abstract: This paper deals with the problem of sensor fault tolerant control for Takagi-Sugeno
nonlinear systems. Firstly, a residual generator is designed in order to detect and isolate sensor
faults. Secondly, a nonlinear observer based controller, adopting the so-called parallel distributed
compensation structure is designed. This controller is based on a weighted blending of the
estimated states provided by different observers. Each observer is constructed to estimate the
system state from the inputs and only one output. The blending of the estimates depends on
the residual magnitudes in order to minimize the use of faulty estimates in the control law. The
stability of the global closed-loop system is studied by Lyapunov theory and the gains of the
fault tolerant controller are obtained by solving Linear Matrix Inequalities.
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1. INTRODUCTION

Diagnosis is a key point in system supervision and human
or process safety. An occurring fault must not only be
detected and isolated, but also accommodated by a so-
called fault tolerant control law, to preserve the stability
and the performances of the system.

Since many years, linear models have been largely studied
and many results have been obtained in the fields of fault
diagnosis and fault tolerant control (Ding, 2008). However,
the linearity assumption is only verified around a single
operating point. In order to consider a large operating
range of the system, it is important to take into account
the nonlinearities in the modeling task. The obtained
models are more accurate but are obviously also harder
to deal with. Indeed, due to the complexity of nonlinear
systems, there is no general framework. Consequently, it
leads to work on specific model classes (e.g. Lipschitz
systems, bilinear systems, etc).

Among the several classes of nonlinear systems, the
Takagi-Sugeno (T-S) structure, introduced in (Takagi and
Sugeno, 1985), is interesting since it is a ”universal ap-
proximator”. Any nonlinear behavior can be then approx-
imated with a given accuracy with a T-S model (Tanaka
and Wang, 2001). A T-S model is made up of a set of
linear submodels and an interpolation mechanism between
these submodels based on nonlinear weighting functions. A
T-S model can be established using three main principal
methods: linearization around a set of operating points,
identification (Gasso et al., 2002) and the sector nonlin-
earity transformation (Tanaka and Wang, 2001).

Stability analysis and stabilization of nonlinear T-S sys-
tems are studied in (Tanaka and Wang, 2001; Guerra
et al., 2006; Kruzewski et al., 2008). One can cite the
use of the Lyapunov theory and the formulation of the
stability conditions in terms of linear matrix inequalities
(LMI). More recently the nonquadratic approach has been
developed in (Tanaka et al., 2003) in order to reduce the
conservatism of the quadratic approaches. The observer
design applied to state and unknown input estimation is
treated in (Bergsten et al., 2002; Akhenak et al., 2008;
Ichalal et al., 2009a). T-S observers-based fault diagnosis
is explored in (Chen and Saif, 2007; Marx et al., 2007;
Akhenak et al., 2008; Ichalal et al., 2009a). In the context
of fault tolerant control (FTC), state trajectory tracking is
proposed in (Ichalal et al., 2010) for actuator faults. Ob-
server bank based controllers with switching mechanism
for sensor faults is also presented in (Oudghiri et al., 2008).

In this paper, a new approach of the FTC of T-S systems
is proposed. It is based on a bank of observers and a con-
troller using a new state vector formed by a blending of all
the estimated states provided by each observer, assuming
that the system states are observable from each output.
Then each observer estimates the state of the system from
only one output and its input. Then if a fault affects a given
sensor, the controller mainly uses the estimated states pro-
vided by the other observers. This is obtained by using the
residual signals to compute the blending of the estimated
states. Finally, the FTC is represented by a mixture of all
the local estimated states and if a sensor fault is isolated,
the corresponding estimated state is disabled and the FTC
becomes a mixture of the estimated states obtained from
fault free sensors.



Notations.The symbol ∗ stands for the terms induced by
symmetry. The terms 0n and In define, respectively, the
null square matrix and the identity matrix with dimension
n. The non square null matrix is defined by 0np×n with
dimension np×n. The block diagonal matrix with M1, . . . ,
Mn on its diagonal entries is denoted diag(M1, . . . ,Mn).

Lemma 1. For any matrices X and Y with appropriate
dimensions and a symmetric positive definite matrix Λ,
the following holds

XTY + Y TX ≤ XTΛ−1X + Y TΛY (1)

Lemma 2. (Congruence lemma) Consider two matrices X
and Y . If X is positive definite and Y is full column rank
then Y XY T is positive definite.

Lemma 3. Consider a symmetric negative definite matrix
Π, a matrix X and a scalar η, the following holds

(
X + ηΠ−1

)T
Π
(
X + ηΠ−1

)
≤ 0

⇔XTΠX ≤ −η
(
X +XT

)
− η2Π−1

2. TAKAGI-SUGENO MODELING

A given nonlinear system (ẋ(t) = f(x(t), u(t)) and y(t) =
g(x(t))) can be written under the following T-S form:







ẋ(t) =
r∑

i=1

µi(ξ(t)) (Aix(t) +Biu(t))

y(t) =

r∑

i=1

µi(ξ(t))Cix(t)

(2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
control input and y(t) ∈ R

p represents the system output
vector and where Ai ∈ R

n×n, Bi ∈ R
n×m, Ci ∈ R

p×n.
The integer r represents the number of submodels. The
weighing functions µi are nonlinear and depend on the
decision variable ξ(t) which can be measurable like u(t) or
y(t) or not measurable like the state of the system x(t).
In some situations (hybrid or LPV systems for example)
it can also be an external signal. The weighting functions
satisfy the convex sum property described by

r∑

i=1

µi(ξ(t)) = 1, 0 ≤ µi(ξ(t)) ≤ 1, ∀t, ∀i = 1, . . . , r (3)

3. FAULT TOLERANT CONTROL DESIGN FOR T-S
SYSTEMS

3.1 Sensor fault detection and isolation

In the purpose of sensor fault diagnosis, the approach given
in (Ichalal et al., 2009b) is adopted. In order to isolate the
sensor faults, a residual vector is generated such that its
ith component is only sensitive to the ith fault. Then, for
a faulty system described by







ẋ(t) =

r∑

i=1

µi(ξ(t)) (Aix(t) +Biu(t))

y(t) =

r∑

i=1

µi(ξ(t)) (Cix(t) +Gif(t))

(4)

where f(t) ∈ R
p denotes the sensor fault vector, the

following residual generator is proposed







˙̂x(t) =

r∑

i=1

µi(ξ(t)) (Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) =

r∑

i=1

µi(ξ(t))Cix̂(t)

r(t) = M(y(t)− ŷ(t))
(5)

A filter Wref (s) defined by

Wref (s) =

(
Aref Bref

Cref Dref

)

(6)

is introduced to model the desired response of the residual
r(t) to the fault f(t). The design of the residual generator
aims at minimizing the difference between Rref (s) =
Wref (s)F (s) and R(s) by determining an adequate matrix
M . This difference can be quantified by the L2-gain from
f(t) to r̃(t) = rref (t) − r(t). If Wref (s) is diagonal, each
residual ri(t) is made sensitive only to the fault affecting
the ith output. Consequently, not only fault detection but
also isolation is ensured. The definition of Wref (s) can
take benefits from an a priori knowledge on the frequency
content of the fault. This additional filter must satisfy
the condition σmin (Wref (s)) ≥ 1 where σmin(Wref (s))
represents the lowest singular value of the transfer function
Wref (s). This constraint is made in order to avoid fault
attenuation.

The design of the gain matrices of the residual generator
M and Li is performed via the optimization problem given
in the theorem 4.

Theorem 4. (Ichalal et al., 2009b) The robust residual
generator (5) exists if there exists symmetric and positive
definite matrices P1 and P2, matrices Ki and M and
a positive scalar γ solving the following optimization
problem

min
P1,P2,Ki,M,γ

γ (7)

under the following LMI constraints






Xii < 0, i = 1, ..., r
2

r − 1
Xii +Xij +Xji < 0, i, j = 1, ..., r, i 6= j

(8)

where, for (i, j) ∈ {1, . . . , r}, Xij and Ψij are defined by

Xij =







Ψij 0 −KiGj CT
i M

T

∗ AT
refP2 + P2Aref P2Bref −Cref

∗ ∗ −γI GT
i M

T −DT
ref

∗ ∗ ∗ −γI







(9)

Ψij =AT
i P1 + P1Ai − CT

j K
T
i −KiCj (10)

The residual generator gains are given by Li = P−1
1 Ki

and M . The attenuation level from the faults f(t) to the
virtual residual r̃(t) = rref (t)− r(t) is given by γ.

The proof is omitted, but can be found in (Ichalal et al.,
2009b).

3.2 Fault tolerant control

In order to achieve the fault tolerant control, an observer
bank is used. The kth observer is fed with the input of the
system u(t) and the kth output yk(t) as illustrated by the
figure 1. Then, this observer can estimate fault-free states
even if faults occur on the other sensors.



Fig. 1. Fault detection and fault tolerant control block

Its structure is the following:






˙̂xk(t)=

r∑

i=1

µi(ξ(t))
(
Aix̂

k(t)+Biu(t)+Lk
i

(
yk(t)−ŷk(t)

))

ŷk(t)=
r∑

i=1

µi(ξ(t))C
k
i x̂

k(t)

(11)
where Ck

i is the kth row of the matrix Ci corresponding to
the kth sensor and yk(t), the kth entry of the y(t) vector.

So, the kth observer provides the estimated state vector
x̂k(t) based on the knowledge of the input and the kth

output. The different state estimates x̂k(t), k = 1, . . . , p
are then blended to build a representative state estimate
x̂b(t) according to

x̂b(t) =

p
∑

k=1

hk(r(t))x̂
k(t) (12)

The blending is ensured by the functions hk(r(t)) de-
pending on the residual vector r(t) defined in (5). They
are smooth nonlinear functions satisfying the convex sum
property. The design of such functions is based on the
idea that if the kth sensor is affected by a fault, the kth

component of the residual, namely rk(t), is non zero. In
this case, the function hk(r(t)) must be close to zero in
order to minimize the influence of x̂k(t), which is affected
by the kth sensor fault fk(t). In order to satisfy this
property, it is proposed to define the functions hk, for
k = 1, . . . , p as follows

ωk(rk(t)) = exp(−r2k(t)/σk) (13a)

hk(r(t)) =
ωk(rk(t))

∑p
ℓ=1 ωℓ(rℓ(t))

(13b)

where the parameters σk are used to take into account
the spreading of rk around zero. The Gaussian function
(13a) causes an exponentially decreasing weight around
zero. Equation (13b) ensures the standardization of the
different functions such that they satisfy the convex sum
property. With these definitions, a residual close to zero
leads to a weight function tending to 1 whereas a resid-
ual significantly different from zero (in the sense of the
variability σ) generates a weight tending to 0.

The proposed control law is similar to a classical parallel
distributed controller (PDC), but it is based on the knowl-
edge of the “fault free” state estimate x̂b(t)

u(t) = −

r∑

j=1

µj(ξ(t))Kj x̂b(t) (14)

Notice that in (Oudghiri et al., 2008), a bank of controllers
is implemented, each of them is designed separately and
generates a control law based on the state estimate x̂k(t).
Based on a residual analysis, a switching strategy is then
developed in order to select “the best” control signal (in
the sense that the control law relies on a fault free state es-
timate). Unfortunately, this strategy cannot guarantee the
stability of the global system. As explained in (Liberzon
and Morse, 1999), for switched systems, the stability of the
local systems is a necessary but not sufficient condition
to the stability of the global system. Whereas, with the
proposed approach, the stability of the closed-loop system
can be studied by using classical approaches developed for
T-S models.

Let us now analyze the stability of the closed loop system.
The kth state estimation error ek(t) = x(t) − x̂k(t) is
generated by the following differential equation

ėk(t) =

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))
(
Ai − Lk

iC
k
j

)
ek(t) (15)

The closed-loop system is then described by

ẋ(t) =

r∑

i=1

r∑

j=1

p
∑

k=1

hk(r(t))µi(ξ(t))µj(ξ(t))
(
BiKje

k(t)

+(Ai −BiKj)x(t)) (16)

Defining the augmented state vector

xT
a (t) = [xT (t) e1T (t) . . . epT (t)] (17)

the following closed-loop system is obtained

ẋa(t) =

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t)) (Aij +∆Aij(t))xa(t)

(18)
where

Aij = diag
(
Ai −BiKj , Ai − L1

iC
1
j , ..., Ai − Lp

iC
p
j

)
(19)

and

∆Aij(t)=










0 h1(r(t))BiKj h2(r(t))BiKj . . . hp(r(t))BiKj

0 0 0 . . . 0

0 0 0
. . .

.

.

.
.
.
.

.

.

.
. . .

. . . 0
0 0 . . . 0 0










(20)

The observer and controller gains are obtained by solving
the LMIs provided by the following theorem.

Theorem 5. Given the system (2) with p sensors and a
positive scalar η, the sensor fault tolerant observers based
controller (11)-(14) ensures asymptotic stability of the
system in the presence of sensor faults, if there exists
symmetric and positive definite matrices Q, Pk (k =
1, ..., p), matrices Fi and Mk

i and positive scalars ǫ and
λk such that the following LMI constraints hold for i, j =
1, ..., r

Xij < 0 (21)



where

Xij =

(
Hij 0((2p+1)n)×((p+1)n)

∗ Sij

)

(22)

Hij =





Ξij Rij 0n×np

RT
ij −2ηQ̃ ηInp×np

0np×n ηInp×np Λ̃



 (23)

Sij =

(
Mij 0np×n

0n×np −εIn

)

(24)

Mij =diag
(
∆1

ij ,∆
2
ij , · · · ,∆

p
ij

)
(25)

Rij =(BiFj · · · BiFj) (26)

Λ̃ =diag(−λ1In,−λ2In, . . . ,−λpIn) (27)

Q̃ =diag(Q,Q, . . . , Q) (28)

Ξij =QAT
i +AiQ−BiFj − FT

j BT
i (29)

∆k
ij =AT

i P
k + P kAi −Mk

i C
k
j −

(
Mk

i C
k
j

)T
+ λkIn (30)

The controller and observer gains are derived from

Ki = FiQ
−1 and Lk

i = P−1
k Mk

i (31)

Proof. Consider the quadratic Lyapunov function

V (xa(t)) = xT
a (t)Pxa(t), P = PT > 0 (32)

where P = diag(X,P1, ..., Pp). The time derivative of V is
given by

V̇ (xa(t)) = xT
a (t)

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))(A
T
ijP + PAij

+∆AT
ij(t)P + P∆Aij(t))xa(t) (33)

where ∆Aij(t) are time varying matrices given by

∆Aij(t) =








0 BiKj · · · BiKj

0 0
. . .

.

..
.
..

.

..
. . . 0

0 · · · 0 0








︸ ︷︷ ︸

Kij








0 0 · · · 0

0 h1(r(t))I · · ·

.

..
.
..

.

..
. . .

.

..
0 · · · 0 hp(r(t))I








︸ ︷︷ ︸

Σ(t)

(34)

Knowing that the functions hk(r(t)) satisfy the convex
sum property, it follows that ΣT (t)Σ(t) ≤ diag (0, In, ..., In).
The derivative of the Lyapunov function is rewritten

V̇ (xa(t)) =xT
a (t)

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))(A
T
ijP + PAij

+ΣT (t)KT
ijP + PKijΣ(t))xa(t) (35)

Using the lemma 1, one can bound V̇ (xa(t)) as follows

V̇ (xa(t)) ≤xT
a (t)

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))(A
T
ijP + PAij

+ΣT (t)ΛΣ(t) + PKijΛ
−1KT

ijP )xa(t) (36)

where Λ = diag (ǫIn, λ1In, λ2In, ..., λp−1In, λpIn) is a
block diagonal positive definite matrix. After calculation,
the negativity of V̇ (xa(t)) is satisfied if

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))Yij < 0 (37)

where Yij is defined by

Yij = AT
ijP + PAij +ΣTΛΣ+ PKijΛ

−1KT
ijP (38)

The term ΣTΛΣ can be bounded, by using the inequality
ΣT (t)Σ(t) ≤ diag (0, In, ..., In), this leads to ΣTΛΣ ≤ Λ̄
where Λ̄ = diag(0, λ1In, ..., λpIn). Due to the convex sum
property of µi, sufficient conditions satisfying (37) are
Yij < 0, i, j = 1, ..., r. By applying the Schur complement
(Boyd et al. (1994)), Yij < 0 is equivalent to

(
AT

ijP + PAij + Λ̄ PKij

KT
ijP −Λ

)

< 0 (39)

Using the congruence lemma 2 with the matrix

W = diag




X−1, In, · · · , In

︸ ︷︷ ︸

p matrices

, X−1, · · · , X−1

︸ ︷︷ ︸

p matrices






and with the variable changes Q = X−1, Fj = KjQ and
Mk

i = PkLi, the following is obtained





Ξij 0n×np 0n×n Rij

∗ Mij 0n×n 0np×np

∗ ∗ −εIn 0n×np

∗ ∗ ∗ Q̃Λ̃Q̃




 < 0 (40)

where Ξij , Mij , Rij , Q̃ and Λ̃ are respectively defined in
(29), (25), (26) (28) and (27). A nonlinearity lies in the
last diagonal of the left hand term of the inequality (40),

namely: Q̃Λ̃Q̃. From (21), Λ̃ is negative definite. Using
lemma 3, it follows that (40) is implied by






Ξij 0n×np 0n×n Rij

∗ Mij 0n×n 0np×np

∗ ∗ −εIn 0n×np

∗ ∗ ∗ −2ηQ̃− η2Λ̃−1




 < 0 (41)

where η is a positive scalar. With a Schur complement on
the term η2Λ̃−1, it follows that (41) is equivalent to (21).

Then (21) implies (40) and thus implies V̇ (t) < 0, which
achieves the proof.

Relaxed stability conditions The negativity of (37) is
ensured if Xij < 0, i, j = 1, ..., r. However, this result
is conservative as often pointed in the literature. To
overcome this limitation, one can use different methods
of relaxation proposed recently as Tuan’s lemma (Tuan
et al., 2001) or Polya’s theorem (Sala and Ariño, 2007) for
example. In the following, the Polya’s theorem is recalled
and applied to the result proposed in theorem 5. Since
(
∑r

i=1 µi(ξ(t)))
q
= 1 where q is any positive integer, the

inequality (37) is equivalent to

(
r∑

i=1

µi(ξ(t))

)q r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))Xij < 0 (42)

Developing (42) in respect to the weighting functions,
relaxed LMI conditions are obtained. Furthermore, if q →
∞ asymptotic necessary and sufficient conditions are ob-
tained, as explained in Sala and Ariño (2007). For example,
assuming q = 1 the LMI constraints (21) are replaced by

{
Xii < 0, i = 1, ..., r

Xii +Xij +Xji < 0, i, j = 1, ..., r, i 6= j
(43)

3.3 Algorithm of FTC design

The design of the fault tolerant control law can be sum-
marized by the following steps



(1) Choose the filter Wref (s) and construct the residual
generator (5) providing the residual signal r(t) by
solving the LMI (8), for i, j = 1, . . . , r.

(2) Construct the weighting functions hk(r(t)) depending
on the residual signal.

(3) Design of the FT controller, by solving the LMI (21)
or (43), for i, j = 1, . . . , r and k = 1, . . . , p, where Ki

(resp. Lk
i ) is substituted by Fi (resp. M

k
i ).

4. SIMULATION EXAMPLES

To illustrate the proposed approach, let us consider the
system (2), with r = 2 submodels, defined by

A1 =

(
−2 1 1
1 −3 0
2 1 −8

)

A2 =

(
−3 2 −2
5 −3 0
1 2 −4

)

B1 =

(
1
5
0.5

)

B2 =

(
3
1
−1

)

C1 = C2 =

(
1 1 1
1 0 0

)

The weighting functions are defined by

µ1(y(t)) =
1− tanh(y2(t))

2
, µ2(y(t)) = 1−µ1(y(t)) (44)

A nonlinear observer based fault tolerant controller is
designed by following the proposed procedure. Since there
are two outputs, two state observers are built according
to (11). A residual generator is also designed in order
to generate the two signals detecting and isolating each
sensor fault. Finally, the blending mechanism between the
two state estimates is designed by defining the functions
hk(r(t)) such that hk(r(t)) is close to zero when fk(t)
occurs. This can be done using the functions hk defined
in (13), with σ1 = σ2 = 0.01. For the considered example,
the controller given by (12) and (14) is designed. Different
faults are considered in these simulations: the first ones
are additive time varying faults and the second ones are
parametric faults. For a comparison purpose, a classical
observer based controller is designed according to Jad-
babaie et al. (2000).

4.1 Sensor additive time varying faults

Let us consider two additive oscillatory faults, displayed on
the top of figure 3. The first one is a low frequency fault
affecting y2(t), while the second is a high frequency one
affecting y1(t). With a classical PDC law, the state esti-
mates are clearly very perturbed by the fault, especially in
presence of the high frequency fault, whereas the proposed
fault tolerant control law provides state estimation errors
near zero. The figures 2 and 3 illustrate the results.

4.2 Sensor parametric faults

The second example considers a parametric fault, f(t)
(multiplicative fault), and an additive fault, f2(t), simul-
taneously affecting a sensor. The faulty output y1(t) is as
follows:

y1(t) = f(t)C1x(t) + f2(t) (45)

From t = 0 to t = 22, no fault is affecting the system
output (i.e. f(t) = 1 and f2(t) = 0). At the time
instant t = 22, the oscillatory fault f(t) appears. In
addition, a constant fault f2(t) with magnitude 1 affects
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Fig. 2. System states with and without FTC
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Fig. 3. Faults, control signals and weighting functions

the first sensor on the time interval [30, 32]. These faults
are depicted on the top of the figure 5.

Before t = 22, without any fault affecting the system, the
controlled systems with and without FTC have the same
response. It is due to the fact that at time instant t = 22
in the fault free case, the system is stabilized and then
the system states have converged towards zero. But, if
any small perturbation occurs on any component of the
system (sensors, actuators,...) the system state deviates
from zero and the system without FTC may become
unstable according to the type of the parametric fault. The
system controlled with FTC remains stable and the state
trajectories have a very small deviation from zero. This
latter is corrected by the fault tolerant controller, whereas
the system controlled by the classical approach becomes
unstable, as shown in the figures 4 which represents the
states of the system with FTC and classical control, and
5 which shows the faults, the control signals and the
weighting functions of the fault tolerant controller.

5. CONCLUSIONS

In this paper, a new approach is proposed to design a sen-
sor fault tolerant controller for nonlinear complex systems
represented by T-S model. The approach is based on a
bank of observers-based controllers, a residual generator
for diagnosis and a smooth selecting mechanism to choose
an adequate state estimate to compensate the effects of the
faults on the system. The stability of the whole system
is studied by Lyapunov theory and LMI constraints are
provided to design the gain matrices of the different blocks
of the proposed FTC scheme. For future works, it will
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be interesting to consider the case of T-S systems with
unmeasurable premise variables. It would also be interest-
ing to study the choice of the functions hk(r(t)). Finally,
the dedicated scheme may be inapplicable in some cases
since the system state needs to be reconstructed based on
each output. Consequently the proposed strategy could be
extended using a Generalized Observer Scheme.
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