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Abstract— The problem of observer design for nonlinear difficult to achieve due to the strong conditions under which
Lipschitz systems is dealt with in this work. An emphasis is put  these transformations exist. When these transformatidhs fa
on'the maximization of_ the_ admls_5|ble Llpschltz constant for to solve the problem, it has also been proposed to use the
which the observer design is possible. This problem is tackled ,, . . N L. .
using a Takagi-Sugeno modeling approach. The idea is to re- ,h'gh gain Observer ' The }(ey point in this type of observers
write the state estimation error dynamics as an autonomous IS t0 determine the gains in order to counteract the effect of
Takagi-Sugeno system, using the Mean Value Theorem and the nonlinearities (see [22]). However, high gains peealiz
the sector nonlinearity transformation. State estimation error  the state estimation in the presence of measurement noises.
dynamics stability is studied with the Lyapunov theory by Recently, observer design has intensively been studied

choosing a non-quadratic Lyapunov function and by computing . tical t b deied with i
its variation between m consecutive samples. The interest of since many practical systems can be modeied with noniin-

these manipulations is to obtain LMI conditions admiting ~€arities satisfying the Lipschitz condition, at least lgca
solutions for large values of the Lipschitz constant. Finally, Firstly, in [22], the problem of observer design for Lipgehi
illustrative examples are provided in order to hilight the  systems is studied and sufficient conditions are estalolishe
performances of the proposed approach. to guarantee the asymptotic stability of the state estonati
I. INTRODUCTION error dyna_lmics. Hovyever, a design method is not propo;ed
to determine the gain of the observer. In [19], an iterative
Many problems in control and monitoring need the knowlgesjgn approach is proposed to find the gain of the observer
edge of the state variables and the parameters of the sysr solving an algebraic Riccati equation. Unfortunately,
tem. However, measuring these variables is faced to twfjs algorithm may fail to provide a solution even if the
major problems. The first one concerns the technical anghservability condition is satisfied. In [20], necessarg an
economical reasons, indeed, nowadays many sensors g{fficient existence conditions of an observer are proposed
very expensive and bulky. The second problem is that Son§ formulating them as a#, standard problem. However,
state variables are not accessible for measure. Therdfere, jt is pointed out that this standard problem may have no
problem of state estimation and observer design become t§giution because the regularity assumption is not satisfied
heart of control and monitoring design systems. This work is extended in [18] by transforming the problem
Most of the developed state estimation methods are basgdorder to satisfy the regularity assumption required i@ th
on linear models of the studied systems [14], [10], [8].;z, optimization.
However, linear models only describe the behavior of the The main idea of the work cited above is still to compute
system around a specific operating point which leads e gain of the observer in order that the linear part coanter
degraded performances far from this particular point. tfeor the effect of the nonlinear part; the major problem is that if
to increase the system performances the use of nonlingfe Lipschitz constant of the nonlinearity is greater than a
models seems very interesting and appropriate becausey#missible value, the design methods cannot be applied. In
allows an accurate representation of the system on a widgme recent works [23], the mean value theorem (MVT) is
operating range. Despite the accurate system descriptiqfsed to write the state estimation error as a linear paramete
the disadvantage of the nonlinear approach is the lack Qfrying (LPV) system. Contrarily to the other methods, the
a unified and general solution for observer design. Thgse of the MVT allows to obtain a solution, even for large
existing results are dedicated to specific classes of nesdin |_jpschitz constant. Many of the cited works are extended to
systems, such as Lipschitz systems or bilinear system§iscrete time case [4], [22], [3].
Many approaches have been then elaborated, for example|n this work, the problem of observer design for Lipschitz
those based on the nonlinear transformation of the origingbnlinear system is considered. An approach combining the
nonlinear system into a linear one such as using immersiog/T and the sector nonlinearity transformation is proposed
Lie algebraic transformations, etc [6], [5], [11]. It is pteéd  First, based on a Lipschitz assumption, the state estimatio
out in many works that this kind of approaches is verngynamics is written as a Linear Parameter Varying (LPV)
. . , system. Secondly, the sector nonlinearity transformaison
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constant. Moreover, if a solution does not exist, it is polesi P = PT > 0 € R™" and a positive scalar such that the
to relax the conditions by using the relaxations proposed iimllowing LMI holds
[13] for T-S systems._ S _P+1y2l ATP_CTKT ATP_CTKT
The paper is organized as follows. Some preliminaries are ( « P_1l 0 ) <0 (8)
detailed and the addressed problem is stated in Section II. « « _p
The transformation of a Lipschitz system into a T-S one . ] .
and the observer design for the latter are exposed in Sectibf€ gainL of the observer is then obtained by=P~'K.
l1l. Before concluding, illustrative examples are prowdcie These approaches are based on finding the lganorder
Section 4. that the linear part of the state estimation error dynamics

Notations. The symbolx denotes the terms induced bycounteract the effect of the nonlinear part, but if the Lipsc
symmetry in a block matrix or in a matrix produdte(, for constant is greater than a maximal admissible value, dénote
any matrice andN, xMN stands foNTMN). The notation Yad: the approaches fail to provide the gain

% is used to denote thigh vector of the canonical basis of " this work, a new approach is proposed in order to
RS (i.e. with all components are null, except tHe which is Ncrease the value of the admissible Lipschitz constant by
equal to “17). ' transforming this problem into a stability relaxation ome f

T-S system, using the MVT and sector nonlinearity trans-
Il. PRELIMINARIES AND PROBLEM STATEMENT formation. The stability is then studied using a Lyapunov
theory and a non-quadratic Lyapunov function. The stahbilit

Let us consider the discrete-time nonlinear system givegbnditions are formulated in term of linear matrix ineqtiedi
by which have a solution for large values of the Lipschitz

constant.
X(k+1) = Ax(k) + f(x(k), u(k)) @) The following lemmas are used in the remainder of the

y(k) = Cx(k) (2)  paper.

Lemma 2:[17] For any matrice€) and A of appropriate

wherex(k) € R", u(k) € R™, y(k) € R are the system state, gimensjons, finding® — PT > 0 satisfying (9) is equivalent
input and output respectively arfdx(k),u(k)) is a function finding P = PT > 0 satisfying (10) and also to finding
of x(k) and u(k) containing nonlinearities of the system.p_ pt > 0 andG satisfying (11)

Assume thatf (x(k),u(k)) is globally Lipschitz or at least

locally Lipschitz in a regionZ including the origin with ATPA-Q <0 9)
. ; B -
respect tax(k) and uniformly inu(k). So, we have (Pg A_|:I>3> <0 (10)
1£00) = £ 0.0 < ylxa =] ® o A\, a
a
Vx1,x2 € R"  globally Lipschitz \GA -G-G +P
{ ¥xixp € 2 locally Lipschitz (4) Lemma 3:[9] For any matricesT;, T,, T3 and A of

appropriate dimensions, findifg= P" > 0 satisfying (12)
The parametey > 0 is the Lipschitz constant arifl]| is the is equivalent to finding® = PT > 0 andG satisfying (13)

2-norm. The state observer for the system (1)-(2) is given in T3 %
the form (T2 T1+ATPA> <0 (12)
o 5 o ~ T * *
K(k+1) = AX(K) + f(X(k),u(k)) + L(y(k) — y(k 5 3
(k) = AR(K) + F(R(K), u() + LYK ~ ()~ (5) L 13
y(k) :Cx(k) (6) 0 GA P-G-GT

Lemma 4:(Mean value theorem) Considg(z) : R" — R.
Let a,b e R". If g(2) is differentiable on[a,b] then there
exists a vectoz & R" with Z<]a,b[ (i.e. Z €]a;,bi[, for i =
1,...,n), such that

@)~ gib) = 22— b) (1)
The goal consists on determining the observer gasuch Lemma 5:(Sector nonlinearity approach) [21], [16] Any
that the observer error dynamics is asymptotically stableonlinear functiong(z) : R — R satisfying

(im0 8(K) = 0).

Defining the state estimation erreftk) = x(k) — X(k), from
(1)-(2) and (5)-(6), the state estimation error dynamics i
given by

e(k+1) = (A—LC)e(k) + f(x(k),u(k)) — f(X(k),u(k)) (7)

< <g,V 15
Many approaches are proposed in the literature in order to . 9=9@ =g vz (15)
cope with this problem [4], [2], [1], [19], [20]. In particat, ~can be written as
design methods based on LMI conditions are studied but it 2) = 1 (2)d+ U(2)d 16
is known that in general, the Lipschitz constgrappears in 9(z) = Ha(Zg + Ha(2)0 (16)
the LMI conditions, like in the following lemma. where
Lemma 1:[4] The state estimation error converges 1(2) = g9-9(2) 1(2) = 92 -9 17)

asymptotically to zero if there exists two matrideés R™"™, g-9g g—-g



and the functiongy; (z) satisfy the convex sum properhe. whereq < 2" and where the different components of the
H1(2)+ 2(2) =1 and 0< i(z) <1, Vz matrices &4 are given by the parametews; ” Since the
functions h;j(z(k)) are defined by the products of some

I1l. NEW OBSERVER DESIGN ALGORITHM 1 ;
functionsy;; andv2 j, they satisfy the convex sum property
In order to compute the gain of the observer (5)-(6), the

state estimation error dynamics (7) is transformed into a T: i

S system. For that purpose, the last two terms in (7) arez hi(zk)) =1 O0<hi(z(k) <1, VkeN i=1...q
studied. Let us denote' (k) = [x" (k) u' (k)] and Z' (k) = (28)
[)‘(T_(k) u'(k)]. Since the functionf(2) is differentiable, (28), it follows thatA — LC — ghi(z(k))(A—LC).
using lemma 4, there exists constant vector<,” with i£1

2‘,- €]z (k) 2j(k)[ for j =1,...,n+ny, such that Then, definingl; = 4 + A— LC, the dynamics of the state

estimation error (26) is written in the following form
n n+ny afl

—f(2) = n,iSn+n, ?)(z-2
(@-1@=3 5 &illniz, @)-2 (8 e<k+1>—ihi<z<k>>nie<k> (29)

where
Note that a general sector nonlinearity approach has been
ni :( (1) i91 |1 |91 9 ) (19) recently proposed in [16] allowing an adequate choice of
additional parameters in order to ensure the observalfity
the local models (hamely, the paif4;,C;)). In our problem,
this result can be used in order to guarantee the obsetyabili
of the pairs(<f +A,C).
f(2) 21 z EmEnT, zf' S )(X—R) (20) The stability of such type of systems has been extepsively
studied these recent years. Hence, useful results exikt suc

Then, the state estimation error dynamics (7) obtained Wit?S the quadratic stability obtained by a quadratic Lyapunov

_ ) unction. Thereafter, some relaxed stability conditiomse a
the system (1)-(2) and the observer (5)-(6) becomes provided with particular Lyapunov functions [13].
ofi 4
T i ~

The stability of the system (29) is studied, in this section,
e(k+1)= (ZZ &nidn a Z)+A- LC> ey (21) in order to determine the gaih which stabilizes the state
estimation error dynamics. We start with a result for stgbil
Since the functionf (x,u) is Lipschitz with respect te, its  analysis with quadratic Lyapunov function. The result isrth
derivatives are bounded extended using a new type of Lyapunov function for relaxed
stability conditions.

which means tha€,; is a vector of dimensiom that the
componeni is “1” and the others are zero. Since thelast
components ofz— 2) are null, it follows

ofi .
5”2<—(x u) <&j1, Wxu, i,j=1,..,n (22)

—0X . . .
whered;; andd;, are known constants. With the lemma 5'A. Classic Lyapunov function for observer design
each derivative can be written as Based on the stability analysis of the autonomous T-S
ot 5 system generating the state estimation error (29), sufficie
——(2)= 3 vij(2)&; (23) observer existence conditions are derived in the following
X = theorem.
where the functions? andv? are defined by Theorem 1:The state estimation error in equation (29)
converges asymptotically towards zero if there exists a
L g—)g(z) —&jj2 &j1— g—;;(z) symmetric positive definite matri € R™" and a matrix
lipyg=2""° 2() = TN 9 . )
v;j (2) aidg (2) - (24) K e R™™ such that the following LMIs hold/i =1,...,q
2 -P ATP 4+ /TP —CTKT
SM@=1 0<(@<1, 1=12 (25 (PA+ngi—Kc p )<° (30)
=1

Using (23), the dynamics of the state estimation error cahn€ gainL of the observer is computed from= P~*K.
be now written as Proof: Consider the quadratic Lyapunov function de-

fined by
(k+1 (A LC+ le z Vllj Enlsn ja|J|> e(k) (26) V(e(k)) — eT(k)Pe(k), P— PT >0 (31)

j=1I=

Following the sector nonlinearity transformation [21],&vé |ts discrete time derivative is defined by
the functionw{j are factorized, it is possible to rewrite (26)
under the form AV (e(k)) =V (e(k+1)) —V(e(k)) (32)

q
Z K))&ni&n il = Zh. ) (27) Z_Zhi(Z(k))eT(k) (NfPNi—P)ek) <0 (33)
j=1I= i=



Obviously,AV (e(k)) < 0 holds if Defining W by

q
ihi (k) (MTPM —P) <0 (34) Y= 3 hia)n (40)

With the Schur complement, (34) is equivalent to the equation (29) leads to
a -P nfp e(k+1) = Wie(k) (41)
a0 oy Mg <0 @9 ofk+2) = W Weel) (@2)

wherel; is defined in (29). Finally, using the convex sum :
roperty (28) and the variable change= PL, the LMI (30

ﬁw tEeo?/eEn 1) are obtained. s ( I) e(k+m) = Wirm-1-+ Prs2Wir1¥ielk) (43)
It is known that if the number of sub-models increase¥he variation of the Lyapunov function is given by

then it becomes difficult or even impossible to obtain a mo1

common matrixP satisfying the LMIs proposed in theorem AVin(Em(K)) = Z)eT(kJr j+1)Pek+j+1)

1. This conservatism has been largely studied and some =

results have been established to reduce it. In the nexbsecti m-1

the approach proposed by [13] for the controller design — Z)QT(k+j)Pje(k+j) (44)

problem is adapted to observer design. I=

B. Multi-samples Lyapunov function for observer design With (43), the following stability condition is obtained

The main idea is to compute the variation of the Lyapunov T (k fi= P W, . . W
function between the sampldsand k4 m where m > 1. e ® ZJ<*) e 2
It is proved that increasingn relaxes the obtained LMI me1
conditions. Obviously, settingr= 1 will lead to the result — Z)(*)PleJk+j71 WX qu> e(k) <0 (45)
given in the theorem 1. The observer existence conditions =
derived with this approaph are given. in the ne>.<t. theorgm. After calculation, (45) becomes

Theorem 2:If there exists symmetric and positive definite
matricesP € R™" and matricesG € R™" and K ¢ R™™
such that the LMIs (36) hold, then the state estimation error
converges asymptotically towards zero.

J:

m—2

20(*) (P = Pjra) Wiy j x - x W (46)
J=

+()Pn-1Wkem-1 X - x W =Py <0

R ®, O O 0 B .
+ Qo B, O 0 For¢=1,....m—1, let us defind , by
- . : Fe= (*)Pn-1%im-1x - x Wipp
ok Qg ' <0 (36) -2
* * * D, 0 + Z (*) (Pi - Pj+1) Wiy jx
* * * ¥ Qmom1 P, =t
%k % x Qm-1 X W+ P - R (47)
io,i2,...im-1=1,....,9 From this definition, it can be seen that satisfies
where Mo=W MW +Po1— P (48)
Qiiy1=-G-G' +R—P,1, i=0,...,m-2 The inequality (46) can be written in the form
Om-1=-G- G’ + Pn-1 erlwk -Ph <0 (49)
. ATAT TeT _aTrT i
i =A'G +"Q{ij G -CK, j=1.,m-1 Using Lemma 2, (49) is equivalent to
The gain of the observer is computed by _ T
(GLEO G(GL(ZQ r > 0 (50)
L=G 'K (37) k —G-G'+T;
Proof: Let us define the Lyapunov function candidatewith Lemma 3 and (48), (50) becomes
Ym(Em(k)) by =Y (GW)T 0
m-1 _ _ G¥ -G-G'+Rh-P (G¥1)" | <0 (51
Ym(Em(k)) = iZ) e’ (k+i)Re(k+i) (38) 0 GWi1 rh—-G-G'

where the matriceB are symmetric and positive definite andinally, repeating this procedurgm — 2) times, with the
Em(K) is defined by variable changeK = GL and since the function(z(t))

satisfy (28), the LMI (36) of the theorem 2 are obtained.
Em()=[e"(k) ... e (k+m)]" (39) n



IV. ILLUSTRATIVE SIMULATIONS Assuming that only the state variable(k) is measured,

In this section, illustrative examples are studied. In théhe output equation ig(k) = Cx(k) with C=[0 1 0. By
first example, the proposed approach is compared to existidgPlying the mean value theorem, one obtains

ones. The chosen criterion is the maximum value of the af R
Lipschitz constant for which a solution exists. In the seton f(x)— (%) = Ix - (X (x—X) (58)
one, the observer proposed in theorem 2 is applied toh
estimate the state of a nonlinear model. ere 0 0 0
af(x)
A. Example 1 0 0 0 (59)
- - o Linschi - X \00xs 0 00Ix
Let us consider the discrete-time Lipschitz nonlinear sys- Y3 YA
tem, proposed in [12], given by (1)-(2) It is known that the Rossler's system state are bounded, as
0.2 001 it can be seen on the figure 1.
A= <0.1 o.2> c=(1 9 (52)
and 0
f(x(k)) = (a sin(xl(k))> (53)
The nonlinear functionf (x(k)) is Lipschitz with constar g

= |a|. The observer design method in [12] admits a solt
only for a Lipschitz constany < 0.7916 and the approa
in [4] admits a maximal Lipschitz constapt< 0.81. Ther
if y is greater than these values, these methods fe
provide a solution to the LMI conditions. Using the M’
combined with the sector nonlinearity transformation, ..
LMI conditions are relaxed and the existence of a solution ~ F19- 1. State trajectory of the Rossler's nonlinear system

could be expected for larger values of the constant Lipachit ) i )
Let us compute the Jacobian matrix tfx(k)) as follows ~ 1he lemma 5 is applied to the bounded state variakies
andxs. The state estimation error dynamics can be given as

of(x) _ 0 0 follows
ax _< acogxy) O ) (54) .
Considering the premise variablgk) = cogx;(k)) and ek+1) = Zlhi (z(k)) (A+ o — LC)e(k) (60)
calculating the matrices#, the parametera giving the i=

Lipschitz constant appears, then, in the matricgsllowing  where

us to make a comparison between the cited approaches and 0 0 0

the proposed one. For example, using theorem 3 mith 2, A = 0 0 o |,
the admissible Lipschitz constant ys= 101. These results 0.20452 0 0104
are summarized in the following table.

_ 0 0 O
Method Maximum y oty = 0 0 0
[12] 0.7916 152x10* 0 0104
(4] 0.81
Theorem 3(m=2) 101 0 0 0
B. Example 2: Rossler’'s system 3= 0 0 0 )
0.20452 0 -0.0815

In this part, the proposed method is implemented to
estimate the state variables of a Rossler's system, which 0 0 0
is a nonlinear system [15]. The discrete time version with oy = 0 0 0
sampling timeT = 0.01 of this system is given by the 152%x10% 0 -0.0815

following equations o .
Note that it is not necessary to compute the functions

X(k+1) = Ax(k) + f(x(k)) + D (55)  h; because they are not required for observer design. Only
where the matricess are needed. With these matrices, theorem
1 —001 —001 0 3 is applied withm= 2. The states and their estimates are
y i _ depicted in figure 2 fok € [0 500Q and the state estimation
A 0.01 1002 0 |, D= 0 |, (56) . ) .
errors are illustrated in the figure 3 only fére [0 500
0 0 095 0.02 . ) S .
in order to show the forgetting of the initial conditions.
0 The asymptotic convergence is then illustrated. The tessi
0 (67) phenomenon can be reduced by pole clustering in a LMI
0.01x4 (k)x3(K) region as illustrated in [7].

f(x(k) =



101 1
X o |
(1]
_10 L L L L
1000 2000 3000 4000 5000
(2]
(3]
(4]
3
X3 2ol 1 (5]
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Fig. 2. State variables and their estimates [8]
6 1 9]
Xl4 4
2 H m
ot ‘ ‘ ‘ ‘
0 100 200 300 400 500 [10]
0.1
X, 0.05 o na
0 L
_005 L L L L
0 100 200 300 400 500 (12
15 3
X310 1 [13]
5 4
0 : : : :
0 100 200 300 400 500
k [14]
Fig. 3. State estimation errors (19]
[16]
V. CONCLUSION
[17]

In this paper, a new observer design for discrete time
nonlinear Lipschitz systems is proposed. It is based on e
transformation of the state estimation error dynamics gy th
use of the Mean Value Theorem in order to use the sect8€]
nonlinearity transformation to derive an autonomous Takagyq
Sugeno system. The stability of the latter is studied with th
Lyapunov theory using different Lyapunov function in orderf21l
to obtain more relaxed stability conditions. LMI formutztti
of the stability conditions are provided. The focus is made?]
on the fact that the problem of admissible Lipschitz cortstazzs]
is transformed on a relaxed stability problem. From th
examples it is clear that when the classical methods fail to
provide a solution the proposed one may have a solution by
changing the number of samples on which the variations of
the Lyapunov function are computed. In future works, the
proposed observer will be extended for uncertain Lipschitz
systems and unknown input estimation with an application
for vehicles and motorcycles state estimation.
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