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Abstract— The problem of observer design for nonlinear
Lipschitz systems is dealt with in this work. An emphasis is put
on the maximization of the admissible Lipschitz constant for
which the observer design is possible. This problem is tackled
using a Takagi-Sugeno modeling approach. The idea is to re-
write the state estimation error dynamics as an autonomous
Takagi-Sugeno system, using the Mean Value Theorem and
the sector nonlinearity transformation. State estimation error
dynamics stability is studied with the Lyapunov theory by
choosing a non-quadratic Lyapunov function and by computing
its variation between m consecutive samples. The interest of
these manipulations is to obtain LMI conditions admitting
solutions for large values of the Lipschitz constant. Finally,
illustrative examples are provided in order to hilight the
performances of the proposed approach.

I. INTRODUCTION

Many problems in control and monitoring need the knowl-
edge of the state variables and the parameters of the sys-
tem. However, measuring these variables is faced to two
major problems. The first one concerns the technical and
economical reasons, indeed, nowadays many sensors are
very expensive and bulky. The second problem is that some
state variables are not accessible for measure. Therefore,the
problem of state estimation and observer design become the
heart of control and monitoring design systems.

Most of the developed state estimation methods are based
on linear models of the studied systems [14], [10], [8].
However, linear models only describe the behavior of the
system around a specific operating point which leads to
degraded performances far from this particular point. In order
to increase the system performances the use of nonlinear
models seems very interesting and appropriate because it
allows an accurate representation of the system on a wide
operating range. Despite the accurate system description,
the disadvantage of the nonlinear approach is the lack of
a unified and general solution for observer design. The
existing results are dedicated to specific classes of nonlinear
systems, such as Lipschitz systems or bilinear systems.
Many approaches have been then elaborated, for example,
those based on the nonlinear transformation of the original
nonlinear system into a linear one such as using immersion,
Lie algebraic transformations, etc [6], [5], [11]. It is pointed
out in many works that this kind of approaches is very
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difficult to achieve due to the strong conditions under which
these transformations exist. When these transformations fail
to solve the problem, it has also been proposed to use the
”high gain observer”. The key point in this type of observers
is to determine the gains in order to counteract the effect of
the nonlinearities (see [22]). However, high gains penalize
the state estimation in the presence of measurement noises.

Recently, observer design has intensively been studied
since many practical systems can be modeled with nonlin-
earities satisfying the Lipschitz condition, at least locally.
Firstly, in [22], the problem of observer design for Lipschitz
systems is studied and sufficient conditions are established
to guarantee the asymptotic stability of the state estimation
error dynamics. However, a design method is not proposed
to determine the gain of the observer. In [19], an iterative
design approach is proposed to find the gain of the observer
by solving an algebraic Riccati equation. Unfortunately,
this algorithm may fail to provide a solution even if the
observability condition is satisfied. In [20], necessary and
sufficient existence conditions of an observer are proposed,
by formulating them as anH∞ standard problem. However,
it is pointed out that this standard problem may have no
solution because the regularity assumption is not satisfied.
This work is extended in [18] by transforming the problem
in order to satisfy the regularity assumption required in the
H∞ optimization.

The main idea of the work cited above is still to compute
the gain of the observer in order that the linear part counteract
the effect of the nonlinear part; the major problem is that if
the Lipschitz constant of the nonlinearity is greater than an
admissible value, the design methods cannot be applied. In
some recent works [23], the mean value theorem (MVT) is
used to write the state estimation error as a linear parameter
varying (LPV) system. Contrarily to the other methods, the
use of the MVT allows to obtain a solution, even for large
Lipschitz constant. Many of the cited works are extended to
discrete time case [4], [12], [3].

In this work, the problem of observer design for Lipschitz
nonlinear system is considered. An approach combining the
MVT and the sector nonlinearity transformation is proposed.
First, based on a Lipschitz assumption, the state estimation
dynamics is written as a Linear Parameter Varying (LPV)
system. Secondly, the sector nonlinearity transformationis
used to transform the LPV system into a Takagi-Sugeno (T-
S) system. The aim of this last step is to apply the recent
developments in stability analysis and stabilizing controller
design [13]. As pointed out above, the proposed result may
have a solution, even for large values of the Lipschitz



constant. Moreover, if a solution does not exist, it is possible
to relax the conditions by using the relaxations proposed in
[13] for T-S systems.

The paper is organized as follows. Some preliminaries are
detailed and the addressed problem is stated in Section II.
The transformation of a Lipschitz system into a T-S one
and the observer design for the latter are exposed in Section
III. Before concluding, illustrative examples are provided in
Section 4.

Notations.The symbol∗ denotes the terms induced by
symmetry in a block matrix or in a matrix product (i.e., for
any matricesM andN, ∗MN stands forNTMN). The notation
ξs,i is used to denote theith vector of the canonical basis of
R

s (i.e. with all components are null, except theith which is
equal to “1”).

II. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider the discrete-time nonlinear system given
by

x(k+1) = Ax(k)+ f (x(k),u(k)) (1)

y(k) =Cx(k) (2)

wherex(k)∈R
n, u(k)∈R

nu, y(k)∈R
ny are the system state,

input and output respectively andf (x(k),u(k)) is a function
of x(k) and u(k) containing nonlinearities of the system.
Assume thatf (x(k),u(k)) is globally Lipschitz or at least
locally Lipschitz in a regionD including the origin with
respect tox(k) and uniformly inu(k). So, we have

‖ f (x1,u)− f (x2,u)‖ ≤ γ ‖x1−x2‖ (3)

{

∀x1,x2 ∈ R
n globally Lipschitz

∀x1,x2 ∈ D locally Lipschitz
(4)

The parameterγ > 0 is the Lipschitz constant and‖.‖ is the
2-norm. The state observer for the system (1)-(2) is given in
the form

x̂(k+1) = Ax̂(k)+ f (x̂(k),u(k))+L(y(k)− ŷ(k)) (5)

ŷ(k) =Cx̂(k) (6)

Defining the state estimation errore(k) = x(k)− x̂(k), from
(1)-(2) and (5)-(6), the state estimation error dynamics is
given by

e(k+1) = (A−LC)e(k)+ f (x(k),u(k))− f (x̂(k),u(k)) (7)

The goal consists on determining the observer gainL such
that the observer error dynamics is asymptotically stable
(limk→+∞ e(k) = 0).

Many approaches are proposed in the literature in order to
cope with this problem [4], [2], [1], [19], [20]. In particular,
design methods based on LMI conditions are studied but it
is known that in general, the Lipschitz constantγ appears in
the LMI conditions, like in the following lemma.

Lemma 1: [4] The state estimation error converges
asymptotically to zero if there exists two matricesK ∈Rn×ny,

P = PT > 0 ∈ Rn×n and a positive scalarτ such that the
following LMI holds




−P+ τγ2I ATP−CTKT ATP−CTKT

∗ P− τI 0
∗ ∗ −P



< 0 (8)

The gainL of the observer is then obtained byL = P−1K.
These approaches are based on finding the gainL in order

that the linear part of the state estimation error dynamics
counteract the effect of the nonlinear part, but if the Lipschitz
constant is greater than a maximal admissible value, denoted
γad, the approaches fail to provide the gainL.

In this work, a new approach is proposed in order to
increase the value of the admissible Lipschitz constant by
transforming this problem into a stability relaxation one for
T-S system, using the MVT and sector nonlinearity trans-
formation. The stability is then studied using a Lyapunov
theory and a non-quadratic Lyapunov function. The stability
conditions are formulated in term of linear matrix inequalities
which have a solution for large values of the Lipschitz
constant.

The following lemmas are used in the remainder of the
paper.

Lemma 2: [17] For any matricesQ and A of appropriate
dimensions, findingP= PT > 0 satisfying (9) is equivalent
to finding P = PT > 0 satisfying (10) and also to finding
P= PT > 0 andG satisfying (11)

ATPA−Q< 0 (9)
(

−Q ATP
PA −P

)

< 0 (10)
(

−Q ATGT

GA −G−GT +P

)

< 0 (11)

Lemma 3: [9] For any matricesT1, T2, T3 and A of
appropriate dimensions, findingP= PT > 0 satisfying (12)
is equivalent to findingP= PT > 0 andG satisfying (13)

(

T3 ∗
T2 T1+ATPA

)

< 0 (12)




T3 ∗ ∗
T2 T1 ∗
0 GA P−G−GT



< 0 (13)

Lemma 4: (Mean value theorem) Considerg(z) :Rn →R.
Let a,b ∈ R

n. If g(z) is differentiable on[a,b] then there
exists a vector ˜z∈ R

n with z̃∈]a,b[ (i.e. z̃i ∈]ai ,bi [, for i =
1, . . . ,n), such that

g(a)−g(b) =
∂g
∂z

(z̃)(a−b) (14)

Lemma 5: (Sector nonlinearity approach) [21], [16] Any
nonlinear functiong(z) : R→ R satisfying

g≤ g(z)≤ g, ∀z (15)

can be written as

g(z) = µ1(z)g+µ2(z)g (16)

where

µ1(z) =
g−g(z)

g−g
µ2(z) =

g(z)−g

g−g
(17)



and the functionsµi(z) satisfy the convex sum propertyi.e.
µ1(z)+µ2(z) = 1 and 0≤ µi(z)≤ 1, ∀z.

III. N EW OBSERVER DESIGN ALGORITHM

In order to compute the gain of the observer (5)-(6), the
state estimation error dynamics (7) is transformed into a T-
S system. For that purpose, the last two terms in (7) are
studied. Let us denotezT(k) = [xT(k) uT(k)] and ẑT(k) =
[x̂T(k) uT(k)]. Since the function f (z) is differentiable,
using lemma 4, there existsn constant vectors ˜zi , with
z̃i

j ∈]zj(k) ẑj(k)[ for j = 1, . . . ,n+nu, such that

f (z)− f (ẑ) =
n

∑
i=1

n+nu

∑
j=1

ξn,iξ T
n+nu, j

∂ fi
∂zj

(z̃i)(z− ẑ) (18)

where

ξn,i =
(

0
1

· · · 0
i−1

1
i

0
i+1

· · · 0
n

)

(19)

which means thatξn,i is a vector of dimensionn that the
componenti is “1” and the others are zero. Since thenu last
components of(z− ẑ) are null, it follows

f (z)− f (ẑ) =
n

∑
i=1

n

∑
j=1

ξn,iξ T
n, j

∂ fi
∂x j

(z̃i)(x− x̂) (20)

Then, the state estimation error dynamics (7) obtained with
the system (1)-(2) and the observer (5)-(6) becomes

e(k+1) =

(

n

∑
i=1

n

∑
j=1

ξn,iξ T
n, j

∂ fi
∂x j

(z̃i)+A−LC

)

e(k) (21)

Since the functionf (x,u) is Lipschitz with respect tox, its
derivatives are bounded

ãi j2 ≤
∂ fi
∂x j

(x,u)≤ ãi j1, ∀x,u, i, j = 1, ...,n (22)

whereãi j1 and ãi j2 are known constants. With the lemma 5,
each derivative can be written as

∂ fi
∂x j

(z) =
2

∑
l=1

vl
i j (z)ãi jl (23)

where the functionsv1
i j andv2

i j are defined by

v1
i j (z) =

∂ fi
∂x j

(z)− ãi j2

ãi j1− ãi j2
, v2

i j (z) =
ãi j1−

∂ fi
∂x j

(z)

ãi j1− ãi j2
(24)

2

∑
l=1

vl
i j (z) = 1, 0≤ vl

i j (z)≤ 1, l = 1,2 (25)

Using (23), the dynamics of the state estimation error can
be now written as

e(k+1) =

(

A−LC+
n

∑
i=1

n

∑
j=1

2

∑
l=1

vl
i j (z)ξn,iξ T

n, j ãi jl

)

e(k) (26)

Following the sector nonlinearity transformation [21], where
the functionsvl

i j are factorized, it is possible to rewrite (26)
under the form

n

∑
i=1

n

∑
j=1

2

∑
l=1

vl
i j (z(k))ξn,iξ T

n, j ãi jl =
q

∑
i=1

hi(z(k))Ai (27)

where q ≤ 2n2
and where the different components of the

matrices Ai are given by the parameters ˜ai jl . Since the
functions hi(z(k)) are defined by the products of some
functionsv1

i j andv2
i j , they satisfy the convex sum property

q

∑
l=1

hi(z(k)) = 1, 0≤ hi(z(k))≤ 1, ∀k∈ N, i = 1, . . . ,q

(28)

From (28), it follows thatA− LC =
q

∑
i=1

hi(z(k))(A−LC).

Then, definingΠi = Ai +A−LC, the dynamics of the state
estimation error (26) is written in the following form

e(k+1) =
q

∑
i=1

hi(z(k))Πie(k) (29)

Note that a general sector nonlinearity approach has been
recently proposed in [16] allowing an adequate choice of
additional parameters in order to ensure the observabilityof
the local models (namely, the pairs(Ai ,Ci)). In our problem,
this result can be used in order to guarantee the observability
of the pairs(Ai +A,C).

The stability of such type of systems has been extensively
studied these recent years. Hence, useful results exist such
as the quadratic stability obtained by a quadratic Lyapunov
function. Thereafter, some relaxed stability conditions are
provided with particular Lyapunov functions [13].

The stability of the system (29) is studied, in this section,
in order to determine the gainL which stabilizes the state
estimation error dynamics. We start with a result for stability
analysis with quadratic Lyapunov function. The result is then
extended using a new type of Lyapunov function for relaxed
stability conditions.

A. Classic Lyapunov function for observer design

Based on the stability analysis of the autonomous T-S
system generating the state estimation error (29), sufficient
observer existence conditions are derived in the following
theorem.

Theorem 1:The state estimation error in equation (29)
converges asymptotically towards zero if there exists a
symmetric positive definite matrixP ∈ Rn×n and a matrix
K ∈ Rn×ny such that the following LMIs hold∀i = 1, ...,q
(

−P ATP+A T
i P−CTKT

PA+PAi −KC −P

)

< 0 (30)

The gainL of the observer is computed fromL = P−1K.
Proof: Consider the quadratic Lyapunov function de-

fined by

V(e(k)) = eT(k)Pe(k), P= PT > 0 (31)

Its discrete time derivative is defined by

∆V(e(k)) =V(e(k+1))−V(e(k)) (32)

=
q

∑
i=1

hi(z(k))e
T(k)

(

ΠT
i PΠi −P

)

e(k)< 0 (33)



Obviously,∆V(e(k))< 0 holds if
q

∑
i=1

hi(z(k))
(

ΠT
i PΠi −P

)

< 0 (34)

With the Schur complement, (34) is equivalent to
q

∑
i=1

hi(z(k))

(

−P ΠT
i P

PΠi −P

)

< 0 (35)

whereΠi is defined in (29). Finally, using the convex sum
property (28) and the variable changeK = PL, the LMI (30)
in theorem 1 are obtained.

It is known that if the number of sub-models increases
then it becomes difficult or even impossible to obtain a
common matrixP satisfying the LMIs proposed in theorem
1. This conservatism has been largely studied and some
results have been established to reduce it. In the next section,
the approach proposed by [13] for the controller design
problem is adapted to observer design.

B. Multi-samples Lyapunov function for observer design

The main idea is to compute the variation of the Lyapunov
function between the samplesk and k+m where m> 1.
It is proved that increasingm relaxes the obtained LMI
conditions. Obviously, settingm= 1 will lead to the result
given in the theorem 1. The observer existence conditions
derived with this approach are given in the next theorem.

Theorem 2:If there exists symmetric and positive definite
matricesPi ∈ Rn×n and matricesG ∈ Rn×n and K ∈ Rn×ny

such that the LMIs (36) hold, then the state estimation error
converges asymptotically towards zero.




















−P0 Φi0 0 0 · · · 0
∗ Ω0,1 Φi1 0 · · · 0

∗ ∗ Ω1,2
. . .

.. .
...

∗ ∗ ∗
. . . Φim−2 0

∗ ∗ ∗ ∗ Ωm−2,m−1 Φim−1

∗ ∗ ∗ ∗ ∗ Ωm−1





















< 0 (36)

i0, i2, ...im−1 = 1, ...,q

where

Ωi,i+1 =−G−GT +Pi −Pi+1, i = 0, . . . ,m−2

Ωm−1 =−G−GT +Pm−1

Φi j = ATGT +A
T

i j
GT −CTKT , j = 1, ...,m−1

The gain of the observer is computed by

L = G−1K (37)
Proof: Let us define the Lyapunov function candidate

Vm(Em(k)) by

Vm(Em(k)) =
m−1

∑
i=0

eT(k+ i)Pie(k+ i) (38)

where the matricesPi are symmetric and positive definite and
Em(k) is defined by

Em(k) =
[

eT(k) . . . eT(k+m)
]T

(39)

Defining Ψk by

Ψk =
q

∑
i=1

hi(z(k))Πi (40)

the equation (29) leads to

e(k+1) = Ψke(k) (41)

e(k+2) = Ψk+1Ψke(k) (42)
...

e(k+m) = Ψk+m−1 · · ·Ψk+2Ψk+1Ψke(k) (43)

The variation of the Lyapunov function is given by

∆Vm(Em(k)) =
m−1

∑
j=0

eT(k+ j +1)Pje(k+ j +1)

−
m−1

∑
j=0

eT(k+ j)Pje(k+ j) (44)

With (43), the following stability condition is obtained

eT(k)

(

m−1

∑
j=0

(∗)PjΨk+ j ×·· ·×Ψk

−
m−1

∑
j=0

(∗)PjΨk+ j−1×·· ·×Ψk

)

e(k)< 0 (45)

After calculation, (45) becomes

m−2

∑
j=0

(∗)
(

Pj −Pj+1
)

Ψk+ j ×·· ·×Ψk (46)

+(∗)Pm−1Ψk+m−1×·· ·×Ψk−P0 < 0

For ℓ= 1, . . . ,m−1, let us defineΓℓ by

Γℓ = (∗)Pm−1Ψk+m−1×·· ·×Ψk+ℓ

+
m−2

∑
j=ℓ

(∗)
(

Pj −Pj+1
)

Ψk+ j×

·· ·×Ψk+ℓ+Pℓ−1−Pℓ (47)

From this definition, it can be seen thatΓℓ satisfies

Γℓ = ΨT
k+ℓΓℓ+1Ψk+ℓ+Pℓ−1−Pℓ (48)

The inequality (46) can be written in the form

ΨT
k Γ1Ψk−P0 < 0 (49)

Using Lemma 2, (49) is equivalent to
(

−P0 (GΨk)
T

GΨk −G−GT +Γ1

)

< 0 (50)

With Lemma 3 and (48), (50) becomes




−P0 (GΨk)
T 0

GΨk −G−GT +P0−P1 (GΨk+1)
T

0 GΨk+1 Γ2−G−GT



< 0 (51)

Finally, repeating this procedure(m− 2) times, with the
variable changeK = GL and since the functionshi(z(t))
satisfy (28), the LMI (36) of the theorem 2 are obtained.



IV. I LLUSTRATIVE SIMULATIONS

In this section, illustrative examples are studied. In the
first example, the proposed approach is compared to existing
ones. The chosen criterion is the maximum value of the
Lipschitz constant for which a solution exists. In the second
one, the observer proposed in theorem 2 is applied to
estimate the state of a nonlinear model.

A. Example 1

Let us consider the discrete-time Lipschitz nonlinear sys-
tem, proposed in [12], given by (1)-(2)

A=

(

0.2 0.01
0.1 0.2

)

, C=
(

1 0
)

(52)

and

f (x(k)) =

(

0
α sin(x1(k))

)

(53)

The nonlinear functionf (x(k)) is Lipschitz with constant
γ = |α|. The observer design method in [12] admits a solution
only for a Lipschitz constantγ ≤ 0.7916 and the approach
in [4] admits a maximal Lipschitz constantγ ≤ 0.81. Then
if γ is greater than these values, these methods fail to
provide a solution to the LMI conditions. Using the MVT
combined with the sector nonlinearity transformation, the
LMI conditions are relaxed and the existence of a solution
could be expected for larger values of the constant Lipschitz.

Let us compute the Jacobian matrix off (x(k)) as follows

∂ f (x)
∂x

=

(

0 0
α cos(x1) 0

)

(54)

Considering the premise variablez(k) = cos(x1(k)) and
calculating the matricesAi , the parameterα giving the
Lipschitz constant appears, then, in the matricesAi allowing
us to make a comparison between the cited approaches and
the proposed one. For example, using theorem 3 withm= 2,
the admissible Lipschitz constant isγ = 101. These results
are summarized in the following table.

Method Maximum γ
[12] 0.7916
[4] 0.81
Theorem 3(m= 2) 101

B. Example 2: Rossler’s system

In this part, the proposed method is implemented to
estimate the state variables of a Rossler’s system, which
is a nonlinear system [15]. The discrete time version with
sampling timeT = 0.01 of this system is given by the
following equations

x(k+1) = Ax(k)+ f (x(k))+D (55)

where

A=





1 −0.01 −0.01
0.01 1.002 0

0 0 0.95



 , D =





0
0

0.02



 , (56)

f (x(k)) =





0
0

0.01x1(k)x3(k)



 (57)

Assuming that only the state variablex2(k) is measured,
the output equation isy(k) =Cx(k) with C = [0 1 0]. By
applying the mean value theorem, one obtains

f (x)− f (x̂) =
∂ f
∂x

(x̃)(x− x̂) (58)

where

∂ f (x)
∂x

=





0 0 0
0 0 0

0.01x3 0 0.01x1



 (59)

It is known that the Rossler’s system state are bounded, as
it can be seen on the figure 1.
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Fig. 1. State trajectory of the Rossler’s nonlinear system

The lemma 5 is applied to the bounded state variablesx1

andx3. The state estimation error dynamics can be given as
follows

e(k+1) =
4

∑
i=1

hi(z(k))(A+Ai −LC)e(k) (60)

where

A1 =





0 0 0
0 0 0

0.20452 0 0.104



 ,

A2 =





0 0 0
0 0 0

1.52×10−4 0 0.104



 ,

A3 =





0 0 0
0 0 0

0.20452 0 −0.0815



 ,

A4 =





0 0 0
0 0 0

1.52×10−4 0 −0.0815





Note that it is not necessary to compute the functions
hi because they are not required for observer design. Only
the matricesAi are needed. With these matrices, theorem
3 is applied withm= 2. The states and their estimates are
depicted in figure 2 fork∈ [0 5000] and the state estimation
errors are illustrated in the figure 3 only fork ∈ [0 500]
in order to show the forgetting of the initial conditions.
The asymptotic convergence is then illustrated. The transient
phenomenon can be reduced by pole clustering in a LMI
region as illustrated in [7].
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V. CONCLUSION

In this paper, a new observer design for discrete time
nonlinear Lipschitz systems is proposed. It is based on the
transformation of the state estimation error dynamics by the
use of the Mean Value Theorem in order to use the sector
nonlinearity transformation to derive an autonomous Takagi-
Sugeno system. The stability of the latter is studied with the
Lyapunov theory using different Lyapunov function in order
to obtain more relaxed stability conditions. LMI formulation
of the stability conditions are provided. The focus is made
on the fact that the problem of admissible Lipschitz constant
is transformed on a relaxed stability problem. From the
examples it is clear that when the classical methods fail to
provide a solution the proposed one may have a solution by
changing the number of samples on which the variations of
the Lyapunov function are computed. In future works, the
proposed observer will be extended for uncertain Lipschitz
systems and unknown input estimation with an application
for vehicles and motorcycles state estimation.
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