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Abstract: This paper addresses a solution to state and clinker hardness estimation in a cement
mill process. A Takagi-Sugeno model with unmeasurable premise variables is developed for the
nonlinear model of a cement mill. Based on this model, a nonlinear observer is proposed in order
to estimate the state variables and also the clinker hardness, which is an unknown input of the
process. The convergence of the estimation error is studied using the Lyapunov theory and
the input-to-state stability (ISS) approach. An optimization problem with LMI constraints is
then provided for the synthesis of this observer. Finally, simulation results and some discussions
about the effectiveness of the observer are given.
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1. INTRODUCTION

The general objective of process control in the mineral in-
dustry is to optimize the recovery of the valuable minerals,
while maintaining the quality of the concentrates delivered
to the metal extraction plants. Surveys on the current
status and future trends in the automation and control
of mineral and metal processing are proposed by Jamsa-
Jounela (2001) and Hodouin et al. (2001). As explained
in Hodouin (2011), because the processes are strongly
disturbed, poorly modeled and difficult to measure, the
peripheral tools of the control loop (fault detection and
isolation system, data reconciliation procedure, observers,
soft sensors, optimizers, model parameter tuners) are as
important as the controller itself. In the present paper,
we focus on system state and unknown input estimation,
which is often a necessary step for automatic control since
neither all the state variables nor all the inputs can be
measured.

Estimation is often achieved with the use of observers or
Kalman filters. Andersen et al. (2006) proposes to estimate
the coal flow in pulverized coal mills with a Kalman filter
using the measurements of combustion air flow led into
the furnace and oxygen concentration in the flue gas.
The estimation robustness is enhanced with an extended
Kalman filter in Cuevas and Cipriano (2008). In Niemczyk
and J.D. (2011), the state of a coal pulverizer process are
estimated from the grinding power consumption and the
amount of coal accumulated in the mill by employing a
variant of a Luenberger observer for bilinear systems.

Alternative approaches for state estimation consist in de-
signing appropriate data driven models, such as neural net-

works (NN) and support vector machine (SVM) (Curilem
et al., 2011). In Ko and Shang (2011), a time delay NN
model is developed to predict the feed particle size of a
semi-autogenous grinding mill. Estimation based on NN is
also proposed in Makokha and Moys (2012). In McElroy
et al. (2009), it is shown how the unique insights provided
by a discrete element method model of a rotating drum
can be used to create soft-sensor models detecting flow
regime. In Acuña and Curilem (2009), a comparison is
made between a dynamic neural network (NN) model and
a support vector machine (SVM) model for estimating the
filling level of the mill for a semi autogenous ore grinding
process.

Acoustic methods can also be employed. In Aldrich and
Theron (2000), digital acoustic signals are transformed to
power spectral densities that can be related to particle
size distributions in the mill. Acoustic signal analysis is
also used in Andrade-Romero et al. (2011) to characterize
the resistance percentage of small-size coarse aggregate
in a ball mill. In Tang et al. (2012), a novel soft sensor
approach is proposed, based on spectral analysis for mill
load estimation.

Complex grinding mill circuits are hard to control due to
poor plant models, large external disturbances, uncertain-
ties from internal couplings, and process variables that are
difficult to measure. To cope with this difficulty, Olivier
et al. (2012) proposes a novel fractional order disturbance
observer for a run-of-mine ore milling circuit. Ball mill
grinding circuits considered in Chen et al. (2009) encom-
pass lumped disturbances including external disturbances,
such as the variations of ore hardness and feed particle
size, and internal disturbances, such as model mismatches



and coupling effects. A disturbance observer based multi-
variable control scheme is developed to control a two-
input-two-output ball mill grinding circuit. Such an ob-
server is introduced to estimate the disturbances in grind-
ing circuit in Yang et al. (2010) and also for feed-forward
control, in Yang et al. (2011). In Lepore et al. (2007), a
multivariable controller is developed for a mill. As the
particle size distribution inside the mill is not directly
measurable, a receding-horizon observer is designed, using
measurements at the mill exit only.

In this paper, it is proposed to model the cement mill with
a Takagi-Sugeno (T-S) system with unmeasurable premise
variable. The system is described by three state variables,
where only two are accessible to the measure. Moreover,
only one input out of two is known. Thus, there is a need
to reconstruct, not only the whole state vector, but also
an unknown input. For that purpose, a state and unknown
input observer for T-S system is designed in order that the
state and unknown input estimation errors are bounded.
More precisely the input-to-state (ISS) stability of the
system describing the estimation errors is established.

The paper is organized as follows. The section 2 is devoted
to the description of the studied process. In section 3, the
Takagi-Sugeno approach is presented and applied to the
process. The state and unknown input observer design is
detailed in section 4. Before concluding, simulation results
are provided.

2. PROCESS DESCRIPTION

The cement mill, represented in figure 1, consists of a
ball mill in closed-loop with a separator. The separator is
driven by its rotational speed v (rpm). The rotating ball
mill is fed with cement clinker at feeding rate u (tons/h), in
which balls perform the breakage of the material particles
by fracture and/or attrition. The output material of the
mill is transfered to the separator which separates the
material into the finished product flow yf (tons/h) and
the recycled flow yr (tons/h), which is recirculated to the
mill inlet.

yr(t)

u(t) ϕ(w, d)

v(t) yf (t)

Ball mill

Separator

Fig. 1. Cement mill process

The mathematical model of the process is described by
three differential equations (see Grognard et al. (2001)).
The first two equations (1) and (2) describe how the input
flow rate of the separator is divided into the overflow
and the underflow depending on the separation function.
Equation (3) corresponds to the material conservation in

the ball mill while expressing the time evolution of the
load inside the ball mill.

Tf ẏf (t) = −yf (t) + (1− α(v))ϕ(w(t), d(t)) (1)

Trẏr(t) = −yr(t) + α(v)ϕ(w(t), d(t)) (2)

ẇ(t) = −ϕ(w(t), d(t)) + yr(t) + u(t) (3)

where

ϕ(w(t), d(t)) = p1w(t) exp (−p2d(t)w(t)) (4)

α(v(t)) = p3v
3(t) + p4v

4(t) + p5v
5(t) (5)

and Tf , Tr (h) are time constants, w(t) is the amount
of material in the mill (mill load) and d(t) is the clinker
hardness. Here, the separation function defined by α(v)
depends on the rotation speed of the separator and ball
mill outflow rate is defined by the function ϕ(w(t), d(t))
which is related to its load and the hardness of the
material. The system state equation is defined by

x(t) = [yf (t) yr(t) w(t)]
T

The measured outputs are the finished product yf (t) and
the recycled flow yr(t). Then, the system is described by
the following state equations

ẋ(t) = f(x(t), d(t)) +Bu(t) (6)

y(t) = Cx(t) (7)

where

B =

(

0
0
1

)

C =

(

1 0 0
0 1 0

)

f(x(t), d(t)) =











1

Tf

(−x1(t) + (1− α(v))ϕ(x3(t), d(t)))

1

Tr

(−x2(t) + α(v)ϕ(x3(t), d(t)))

x2(t)− ϕ(x3(t), d(t))











in which the hardness d(t) is unknown.

3. EXACT TAKAGI-SUGENO MODEL

The Takagi-Sugeno (T-S) modeling, introduced by Takagi
and Sugeno (1985), allows to represent the behavior of
a nonlinear system (i.e. ẋ(t) = f(x(t), u(t))) by the
interpolation of a set of linear sub-models. Each sub-model
contributes to the global behavior of the nonlinear system
through a particular weighting function µi(z(t)). The T-S
structure is given by

ẋ(t) =
r
∑

i=1

µi(z(t))(Aix(t) +Biu(t)) (8)

where Ai ∈ R
n×n and Bi ∈ R

n×m are known matrices, r
being the number of sub-models. The weighting functions
µi(z(t)) depend on the premise variable z(t) which can
be measurable (as the input or the output of the system)
or non measurable variables (as the state of the system).
These functions verify the so-called convex sum property

r
∑

i=1

µi(z(t)) = 1, 0 ≤ µi(z(t)) ≤ 1, i = 1, ..., r (9)

Since it is an appealing mean to tackle nonlinear systems,
a considerable amount of work is devoted to the stabil-
ity analysis, the state estimation, the diagnosis and the
control of T-S systems, see the reference book by Tanaka
and Wang (2001) or the more recent one by Lendek et al.



(2010). It is important to note that most of the previ-
ous works are dedicated to T-S systems with measurable
premise variables.

It is known that if the nonlinearities of the system are
bounded, the sector nonlinearity approach allows to derive
an exact re-writing of any nonlinear system under a quasi-
LPV (Linear Parameter-Varying) form and then under a
T-S form (Tanaka and Wang, 2001). The main steps of
this derivation are now presented.
Assume that the clinker hardness d(t) is different from zero
at all time, which is a realistic assumption, and since the
function f(x(t), d(t)) is Lipschitz and satisfies the property
f(0, 0) = 0, the system (6) can be re-written in quasi-LPV
form as follows

ẋ(t) =











− 1

Tf

0 0

0 − 1

Tr

0

0 1 0











x(t) +







0 0
z1(x(t), d(t))

Tf

0 0 0
0 0 −z1(x(t), d(t))






x(t)

+

(

0
0
1

)

u(t) +











−z2(x(t), d(t))

Tf

z2(x(t), d(t))

Tr
0











d(t) (10)

where the variables z1(x(t), d(t)) and z2(x(t), d(t)), later
selected as premise variables, are defined by

z1(x(t), d(t)) = p1 exp(−p2d(t)x3(t))

z2(x(t), d(t)) = α(v(t))p1x3(t)
exp(−p2d(t)x3(t))

d(t)

One can see that the premise variables depend on the
unmeasurable state variables x3(t) and d(t). For the sake
of brevity, the premise variable are denoted by z(t) in the
remaining of the paper, but it must be kept in mind that
they depend on the system state. Due to their physical
meaning, d(t) and z(t) are bounded, and so are the premise
variables

zmin
1 ≤ z1(x(t), d(t)) ≤ zmax

1

zmin
2 ≤ z2(x(t), d(t)) ≤ zmax

2

(11)

Since they are bounded, the premise variables can be
written as

z1(t) = F 0
1 (z1(t))z

max
1 + F 1

1 (z1(t))z
min
1 (12)

z2(t) = F 0
2 (z2(t))z

max
2 + F 1

2 (z2(t))z
min
2 (13)

where the functions F 0
1 , F

1
1 , F

0
2 and F 1

2 are defined by

F 0
1 (z1(t)) =

z1(t)− zmin
1

zmax
1 − zmin

1

, F 1
1 (z1(t)) =

zmax
1 − z1(t)

zmax
1 − zmin

1

F 0
2 (z2(t)) =

z2(t)− zmin
2

zmax
2 − zmin

2

, F 1
2 (z2(t)) =

zmax
2 − z2(t)

zmax
2 − zmin

2

and satisfy the following property for i = 1, 2 and j = 0, 1

0 ≤ F
j
i (zi(t)) ≤ 1,

1
∑

j=0

F
j
i (zi(t)) = 1 (14)

With this last property, and defining the weighting func-
tions µi(z(t)) by

µ1(z) = F 0
1 (z1)F

0
2 (z2), µ3(z) = F 1

1 (z1)F
0
2 (z2)

µ2(z) = F 0
1 (z1)F

1
2 (z2), µ4(z) = F 1

1 (z1)F
1
2 (z2)

the equivalent T-S model of (1) is given, without loss of
information, by

ẋ(t) =

4
∑

i=1

µi(z(t)) (Aix(t) +Bu(t) + Eid(t)) (15)

where it can readily be checked that the functions µi(z(t))
satisfy (9) and the matrices are defined by

A1 =











− 1

Tf

0 −zmax
1

Tf

0 − 1

Tr

0

0 1 −zmax
1











, A3 =











− 1

Tf

0 −zmin
1

Tf

0 − 1

Tr

0

0 1 −zmin
1











,

E1 =







−zmax
2

Tf
zmax
2

Tr






, E2 =









−zmin
2

Tf

zmin
2

Tr









, B =

(

0
0
1

)

,

A2 = A1, A4 = A3, E3 = E1, E4 = E2

3.1 Computation of the bounds zmax
i and zmin

i

The chosen premise variables zi, i = 1, 2 (11) are bounded
by zmax

i and zmin
i . The computation of these bounds is

performed by using the sector nonlinearity approach (see
chapter 14 of Tanaka and Wang (2001)). The variation
analysis of each premise variable leads to obtain the
corresponding bounds of the nonlinear sector, as shown
in the figure 2 for the variable z1.
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z
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3
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Fig. 2. Sector nonlinearity approach

The obtained exact T-S model (15) is valid in a compact
set of the state space. This set can be enlarged to take
into account a larger operating region by modifying the
parameters zmax

i and zmin
i . Furthermore, taking into ac-

count realistic situations, the values of these bounds allow
satisfying observability condition of each sub-model of the
T-S model.

4. OBSERVER DESIGN FOR STATE AND CLINKER
HARDNESS ESTIMATION

In this section, an observer is synthesized for estimating
the unmeasured system state w(t) and the unknown input
d(t) from only the knowledge of the flow rates yf (t) and
yr(t). It is known that the clinker hardness d(t) may be
considered as constant during limited periods of time and
due to the physical meaning of the state variables, the
following nonrestrictive assumption can be made

Assumption 1. In the remaining it is supposed that

• the state x(t) is bounded;

• the unknown input d(t) is constant (i.e. ḋ(t) = 0).



Under this realistic assumption, the proposed proportional-
integral observer with gains Li and Ki takes the following
form

˙̂x(t) =

4
∑

i=1

µi(ẑ(t))(Aix̂(t)+Bu(t)+Eid̂(t)+Li(y(t)−ŷ(t)))

˙̂
d(t) =

4
∑

i=1

µi(ẑ(t))Ki(y(t)−ŷ(t)) (16)

ŷ(t) = Cx̂(t)

where x̂, d̂ and ẑ respectively denote the estimates of x,
d and z. Let us define the augmented state by xa(t) =
[xT (t) dT (t)]T and denote its estimate by x̂a. The state
and unknown input estimation error, defined by ea(t) =
xa(t)− x̂a(t), obeys the following differential equation

ėa(t) =
4
∑

i=1

µi(ẑ(t))(Ai −MiC)ea(t) + ∆(t) (17)

where

Ai =

(

Ai Ei

0 0

)

, Mi =

(

Li

Ki

)

, C = (C 0) ,

∆(t) =

4
∑

i=1

(µi(z(t))− µi(ẑ(t)))Aixa(t) (18)

The aim is to design an observer (16) for the system (6)-
(7), such that the state and unknown input estimation
errors remain bounded. Thus the definition of input to
state stability (ISS) is needed.

Definition 1. (Sontag and Wang (1995)) The system (17)
is said to be ISS if there exists a KL function β : R×R → R

and aK function α such that, for each input ∆(t) satisfying
‖∆(t)‖

∞
< ∞ and each initial condition ea(0) ∈ R

3, the
trajectory of (17) associated with ea(0) and ∆(t) satisfies

‖ea(t)‖ ≤ β (‖ea(0)‖ , t) + α (‖∆(t)‖
∞
) , ∀t (19)

From Assumption 1 and the fact that the functions µi are
bounded, the term ∆(t) is bounded. Indeed, the system is
stable which provides bounded states for bounded input
δf . Under bounded perturbation term ∆(t), the observer
(16) is synthesized by solving the optimization problem
under LMI constraints given in the Theorem 1.

Theorem 1. Under the Assumption 1 and for a given
parameter σ ∈ [0, 1], if there exists a symmetric and
positive definite matrix P , gain matrices Ki and positive
scalars γ̄ and ᾱ solution to the following optimization
problem, i = 1, ..., 4

min
P,Ki,γ,α

σᾱ+ (1− σ)γ̄

(

AT
i P + PAi −KiC − CTKT

i + I P
P −γI

)

< 0 (20)
(

−ᾱI P
P −I

)

≤ 0 (21)

P ≥ I (22)
then the error dynamics (17) is ISS with respect to ∆(t)
and ea(t) satisfies the following inequality

‖ea(t)‖ ≤
√

λmax(P )

λmin(P )

(

e
−

1
2λmax(P )

t
ea(0) + γ∆∞

)

(23)

The gains of the observer are computed by Mi = P−1Ki.
The attenuation level of the transfer from ∆(t) to the

estimation error ea(t) is γ =
√
γ and the λmax(P ) ≤ α

where α =
√
α. Hence, the size of the convergence set D

is obtained by computing the quantity
√

λmax(P )
λmin(P ) γ∆∞.

Proof. Assume that the LMIs (20) are feasible. Let us
consider the vector

ξ(t) =
[

eTa (t) ∆T (t)
]T

(24)

Pre- and post multiplying (20) by ξ(t) and ξT (t) respec-
tively and with γ = γ2 and Φi = Ai −MiC, the following
is obtained

eTa (t)
(

ΦT
i P + PΦi

)

ea(t) + eTa (t)P∆(t)

+∆T (t)Pea(t) + eTa (t)ea(t)− γ2∆T (t)∆(t) < 0 (25)

Since 0 ≤ µi(.) ≤ 1, multiplying (25) by µi(ẑ(t)), and
summing the obtained four equations, one obtains

4
∑

i=1

µi(ẑ(t))(e
T
a (t)

(

ΦT
i P + PΦi

)

ea(t) + eTa (t)P∆(t)

+ ∆T (t)Pea(t)) < −eTa (t)ea(t) + γ2∆T (t)∆(t) (26)

which is equivalent to

V̇ (t) < −eTa (t)ea(t) + γ2∆T (t)∆(t) (27)

where
V (t) = eTa (t)Pea(t), P = PT > 0 (28)

From (28), it obviously follows that

λmin(P ) ‖ea(t)‖2 ≤ V (t) ≤ λmax(P ) ‖ea(t)‖2 (29)

Consequently, if (20) holds, the time derivative of V (t) is
bounded as follows

V̇ (t) ≤ − 1

λmax(P )
V (t) + γ2 ‖∆(t)‖2 (30)

By using the Gronwall-lemma, it follows

V (t) ≤ V (0)e−
t

λmax(P ) + γ2

∫ t

0

e
−

t−s

λmax(P ) ‖∆(s)‖2 ds (31)

Defining ∆∞ the upper bound of the euclidean norm of
∆(t) (i.e. ‖∆(t)‖ ≤ ∆∞, ∀t), it follows

V (t) ≤ V (0)e−
t

λmax(P ) + γ2∆2
∞λmax(P ) (32)

Finally, using (29) with the square root, one obtains

‖ea(t)‖ ≤
√

λmax(P )

λmin(P )

(

e
−

1
2λmax(P )

t
ea(0) + γ∆∞

)

(33)

From this inequality, we conclude that if ∆(t) ≡ 0 then
e(t) → 0 when t → ∞. Moreover, in the presence
of the perturbation ∆(t), the error ‖ea(t)‖ is bounded

by
√

λmax(P )
λmin(P ) γ∆∞ when t → ∞. The inequality (33)

establishes the ISS of (17).

Note that the size of the convergence set D depends on the
selected matrix P and the parameter γ. The set D should
be made as small as possible to ensure a good accuracy
of convergence. The choice of γ and P providing a small
set of convergence is not obvious because the problem
is not convex. In the next, a technique is proposed to
transform the non convex problem to a convex one under
LMI constraints. Let us consider the following inequality

√

λmax(P )

λmin(P )
≤

√
α (34)

where α is a positive scalar to minimize. Since λmax(P ) >

λmin(P ), the minimal value of
√

λmax(P )
λmin(P ) which can be



obtained is equal to 1. From this, one can impose P ≥ I
which leads to λmin(P ) ≥ 1. It follows

λmax(P ) ≤ α ⇔ PTP − α2I ≤ 0 (35)

Using Schur’s complement lemma
(

−α2I P
P −I

)

≤ 0 (36)

defining ᾱ = α2 and considering the objective function

min σᾱ+ (1− σ)γ̄ (37)

where σ ∈ [0, 1], the optimization problem (37) under
LMI constraints (20)-(22) is then obtained which ends the
proof.

5. SIMULATION RESULTS

In this section, obtained simulation results are provided
with some discussions about the proposed observer per-
formances. The observer is designed by using the matrices
Ai, Ei and C, where the bounds of the premise variables
are zmin

1 = 2, zmax
1 = 20 and zmin

2 = 90, zmax
2 = 440. Using

an iterative approach on the parameter σ ∈ [0, 1] and
solving the optimization problem given in the Theorem
1, the minimal size of the convergence region is 0.5055∆∞

obtained with σ = 0.05. The corresponding gains are

L1 =

(

23.22 −3.12
−1.98 12.40
123.58 6.25

)

, L2 =

(

22.29 0.35
2.75 −6.08

124.18 5.97

)

,

L3 =

(

5.84 −3.82
−6.38 12.07
11.28 1.61

)

, L4 =

(

4.81 −0.47
−1.79 −6.40
11.30 1.38

)

K1 = 103 × (−2.32 9.31 ) ,K2 = 103 × (−0.47 1.90 )

K3 = 103 × (−2.32 9.31 ) ,K4 = 103 × (−0.47 1.90 )

The norm of the state estimation error ‖e(t)‖ converges

to the region with a size defined by
√

λmax(P )
λmin(P ) γ∆∞ =

0.5055 × ∆∞. In the steady state, the computation of
∆∞ gives values less than 0.1, so the obtained bound of
the error ‖e(t)‖ is 0.5055 × ∆∞ = 0.05055, in the other
hand the computation of ‖e(t)‖ gives values less than
10−4 < 0.05055 which confirms the Theorem 1. The initial
conditions of the system are x(0) = [50 50 50]T and those

of the observer are x̂(0) = [30 30 30]T and d̂(0) = 0.5. The
feeding rate (control input) u (tons/h), computed from a
PI controller as follows

u(t) =−x2ref + k1(x3ref − x3(t)) + xc(t) (38)

ẋc(t) = k2(x3ref (t)− x3(t)) (39)

where the variables x2(t) and x3(t) are controlled in order
to track the reference trajectories x2ref and x3ref . The
parameters of the controller are fixed as follows k1 = 15
and k2 = 30. The obtained control input is shown in the
figure 3 (bottom). The weighting functions µi(.) of the T-S
model are depicted in the figure 3 (top) and one can see
that, since the system is nonlinear, all the sub-models are
activated at each time.

The estimated states are depicted in the figure 4 while
the state estimation errors are shown in the figure 5 (top)
and the clinker hardness estimation is given in the figure 5
(bottom). Given this figure, it should be noted that when
the hardness of the ore is increasing, then the output rate

0 1 2 3 4 5 6
0

0.5

1
Weighting functions

0 1 2 3 4 5 6
0

100

200

300
Feeding u (tons/h)

Fig. 3. Time evolution of the weighting functions µi (top)
Feeding rate (control input) (bottom)

decreases, which preserves the physical meaning of such a
process. In addition, in the case of noised measurements
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Fig. 5. State estimation errors (top) and clinker hardness
and its estimate (bottom)

with centered noise signal in the range [−10, 10], the
observer is, also, able to provide an acceptable estimations
of the state vector x(t) and the hardness d(t) as shown in
the figure 6. One can note that even if the hardness d(t) is
time varying, an acceptable estimation is provided by the
observer. The transient phenomenon in estimation of d(t)

is due to the fact that at t = 0 the values d(0) and d̂(0)
are different and the imaginary parts of observer poles are
large. The magnitude of the overshoot in this transient
can be reduced by pole clustering in LMI region which
allows to reduce the imaginary part of the eigenvalues of
the observer.
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Fig. 6. State estimation errors (top) and clinker hardness
and its estimate with noised measurements

6. CONCLUSION

The goal of this paper is to design an observer for mill
load and clinker hardness estimation in cement mill pro-
cess with only the knowledge of the feeding u (tons/h),
the tailings yr (tons/h) and the finished product rate yf
(tons/h). A nonlinear mathematical model of the pro-
cess dynamics is considered and transformed with sec-
tor nonlinearity transformation under a Takagi-Sugeno
model with unmeasurable premise variables. By using the
Lyapunov theory and the input-to-state stability (ISS),
optimization problem with LMI constraints is established
which ensures ISS stability with a good accuracy as shown
in the simulation results. Simulations results are provided
in order to illustrate the proposed approach. The observer
is also tested with noised measurements. It follows that the
proposed observer gives accurate estimations of the states
of the system and the clinker hardness even if .

Work is underway to extend the proposed state reconstruc-
tion when one takes into account, in addition to flow rates,
particle size distributions of the product throughout the
separation-grinding loop.
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