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Abstract

The paper studies the problem of simultaneously estimating the state and the fault of linear stochastic discrete-time vary-
ing systems with unknown inputs. The fault and the unknown inputs affectboth the system state and output. However, if the
dynamical evolution models of the fault and the unknown inputs are available the filtering problem is solved by the Optimal
Three-Stage Kalman Filter (OThSKF). The OThSKF is obtained after decoupling the covariance matrices of the Augmented
state Kalman Filter (ASKF) using a Three-Stage U-V transformation. Nevertheless, if the fault and the unknown inputs mod-
els are not perfectly known the Robust Three-Stage Kalman Filter (RThSKF) is applied to give an unbiased minimum-variance
estimation. Finally, a numerical example is given in order to illustrate the proposed filters.
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1 Introduction

Unknown input filtering (UIF) for linear stochastic systemshas gained the interest of many researchers during the last decades.
In this context, this problem has been extensively studied using the Kalman filtering approach, see e.g. [1]-[9].

When the model of the unknown inputs is available, it is possible to obtain an optimal estimation by using the Augmented
State Kalman Filter (ASKF). To reduce computation costs of the ASKF, [2] has introduced the Two-Stage Kalman Filter
(TSKF). His approach consists in decoupling the ASKF into the state subfilter and unknown inputs subfilter. Friedland’s
filter is only optimal for constant bias. Many authors have extended the Friedland’s idea to treat the stochastic bias, e.g.
[1, 10, 14, 15]. In the same context, [6] have generalized Friedland’s filter by destroying the bias noise effect to obtainthe
Optimal Two-Stage Kalman Filter (OTSKF). [8] proposed a generalization of the OTSKF to get the Optimal Multi-Stage
Kalman Filter (OMSKF). Recently, [11] have developed an adaptive version of TSKF noted ATSKF (Adaptive Two-Stage
Kalman Filter) and they have analysed the stability of this filter in [12].

On the other hand, when the unknown inputs model is not available, the unbiased minimum variance (UMV) state es-
timations are insensitive with the unknown inputs. [16] hasdeveloped a Kalman filter with unknown inputs by minimizing
the trace of the state error covariance matrix under an algebraic constraint. [13] have used a parameterizing techniqueas an
extension of the Kitanidis’s results to derive an UMV estimator. [5] has developed a robust filter in two-stage noted RTSKF
(Robust Two-Stage Kalman Filter) equivalent to Kitanidis’s filter. Next, the same author [3] has proposed an extension of the
RTSKF (named ERTSKF) to solve the addressed general unknown-input filtering problem. For obtain ERTSKF, the author
has introduced a new constrained relationship to modify theoptimal unbiased minimum-variance filter (OUMVF) presented
in [4]. Recently, [7] solved the problem of unbiased fault and state estimation for linear system with unknown disturbances in
the case when we do not have a prior knowledge about the dynamical evolution of the fault and the unknown disturbances.

The main objective of this paper is to develop two new filter structures, that can solve the problem of simultaneously
estimating the state and the fault in presence of the unknowninputs. In this case, when the dynamical evolutions of the fault



and the unknown inputs are available,the Optimal Three-Stage Kalman Filter (OThSKF) is used. However, when the fault
and the unknown inputs are notperfectlyknown, we develop the Robust Three-Stage Kalman Filter (RThSKF). This latter
is obtained by using a modification in measurement update equations of the fault and the unknown inputs subfilters of the
OThSKF. This idea constitutes an extension of RTSKF in [5].

The remainder of this paper is organized as follows. Section2 states the problem of interest. In section 3, the design
of the ASKF, OThSKF and RThSKF are developed. Finally, an illustrative example of the proposed approach techniques is
presented.

2 Statement of the problem

The problem consists of designing a filter that gives a robuststate and fault estimation for linear time-varying stochastic
systems in the presence of unknown inputs. This problem is described by the bloc diagram ofFigure 1.P F i l t e rxw
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Figure 1: State and fault estimator filter

The plantP represents the linear time-varying discrete stochastic systems with unknown inputs and additive faults and is
described by

P :





xk+1 = Akxk + Bkuk + F x
k fk + Ex

kdk + wx
k

yk = Hkxk + F
y
k fk + E

y
kdk + vk

(1)

wherexk ∈ Rn is the state vector,uk ∈ Rr is the known control input,fk ∈ Rp is the additive fault vector,dk ∈ Rq is
the unknown inputs andyk ∈ Rm is the observation vector. MatricesAk, Bk, F x

k , Ex
k , Hk, F

y
k andE

y
k are known and have

appropriate dimensions.
We should treatdk andfk as a stochastic processes with given wide-sense representation.
Thus, the dynamics ofdk may be assumed as

dk+1 = dk + wd
k (2)

The additive faultsfk is generated by
fk+1 = fk + w

f
k (3)

Assumptions :
• A1 : the noiseswx

k etvk are zero-mean white noise sequences with the following covariances :

E(wx
kwxT

ℓ ) = Qx
kδkℓ

E(vkvT
ℓ ) = Rkδkℓ

E(wkvT
ℓ ) = 0

whereT denotes transpose andδkℓ denotes the Kronecker delta function.
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• A2 : the noiseswf
k andwd

k are zero-mean white noise sequence with the following covariances:




E(wf
kw

fT
ℓ ) = Q

f
kδkℓ

E(wd
kwdT

ℓ ) = Qd
kδkℓ

E(wx
kw

fT
ℓ ) = Q

xf
k δkℓ

E(wx
kwdT

ℓ ) = Qxd
k δkℓ

E(wf
kwdT

ℓ ) = Q
fd
k δkℓ

(4)

• A3 : the initial state is a gaussian random variable and is uncorrelated with the white noise processeswx
k andvk :

E(x0) = x0 andE((x0 − x0)(x0 − x0)
T ) = P x

0 .

• A4 : the initial fault and unknown input satisfy the followings:




E(f0) = f0

E(d0) = d0

E((f0 − f0)((f0 − f0)
T ) = P

f
0

E((d0 − d0)((d0 − d0)
T ) = P d

0

E((x0 − f0)((x0 − f0)
T ) = P

xf
0

E((x0 − d0)((x0 − d0)
T ) = P xd

0

E((f0 − d0)((f0 − d0)
T ) = P

fd
0

(5)

• A5: the first conditions onmatricesranks:

rank(Hk+1) = m(≥ max(p, q)), rank(F x
k ) = p, rank(Hk+1F

x
k ) = p, rank(Ex

k ) = q andrank(Hk+1E
x
k ) = q

• A6: the second conditions onmatricesranks:

rank(Hk+1F
x
k + F

y
k+1) = p and rank(Hk+1E

x
k + E

y
k+1) = q

In this work, two cases will be considered:

• firstly, we assume that the noise statistical properties (A2) and the initial conditions of the fault and the unknown inputs
(A4) are already known, so we will develop the OThSKF for state and fault optimal estimation,

• secondly, when the dynamical evolution models are not perfectly known, we implement the RThSKF for state and fault
robust estimation.

3 Filters design

In this section, devoted to the state filter design, we first recall the structure of the augmented stateKalmanfilter, then the
UV transformation is defined which is after used to decouple the augmented state Kalman filter equations into three subfilters.
Finally, the three-stage Kalman filter (ThSKF) in two versions is developed: optimal (OThSKF) and robust (RThSKF).

3.1 Augmented State Kalman Filter (ASKF)

Treatingxk ,fk anddk as the augmented system state, the ASKF is described by

xa
k+1/k = Aa

kxa
k/k + Ba

kuk (6)

P a
k+1/k = Aa

kP a
k/kAaT

k + Qk (7)

xa
k+1/k+1 = xa

k+1/k + Ka
k+1(yk+1 − Ha

k+1x
a
k+1/k) (8)

Ka
k+1 = P a

k+1/kHaT
k+1(H

a
k+1P

a
k+1/kHaT

k+1 + Rk+1)
−1 (9)

P a
k+1/k+1 = (I − Ka

k+1H
a
k+1)P

a
k+1/k (10)
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where

xa
(.) =




x(.)

f(.)

d(.)


 , Aa

k =




Ak F x
k Ex

k

0 I 0

0 0 I


 , Ba

k =




Bk

0

0


 ,Ha

k =
[
Hk F

y
k E

y
k

]

P a
(.) =




P x
(.) P

xf
(.) P xd

(.)

P
fx
(.) P

f
(.) P

fd
(.)

P dx
(.) P

df
(.) P d

(.)


 , Qk =




Qx
k Q

xf
k Qxd

k

Q
fx
k Q

f
k Q

fd
k

Qdx
k Q

df
k Qd

k




The filter model (6)-(10) may be used to produce the optimal state estimate if the assumptionsA1 − A4 are checked. But,
this filter has two main disadvantages: the increase of the computational cost with the augmentation of the state dimension
and the rise of numerical problems during the implementation [5]. So, to solve these problems, we should use the three-stage
Kalman filtering technique.

3.2 U-V transformations

According to [5] and [6], the ThSKF is obtained by the application of a three-stage U-V transformation in order to decouple
the ASKF covariance matrices, i.e.P a

k+1/k andP a
k+1/k+1. The aim is to find matricesUk+1 andVk+1 such that

P a
k+1/k = Uk+1P

a

k+1/kUT
k+1 (11a)

P a
k+1/k+1 = Vk+1P

a

k+1/k+1V
T
k+1 (11b)

with P
a

(.) = diag
{

P
x

(.), P
f

(.), P
d

(.)

}
whereP

x

(.),P
f

(.) andP
d

(.) denote the transformed covariance matrices.

We define the structures of theUk+1 andVk+1 matrices asfollow:

Uk+1 =




I U12
k+1 U13

k+1

0 I U23
k+1

0 0 I


 (12a)

Vk+1 =




I V 12
k+1 V 13

k+1

0 I V 23
k+1

0 0 I


 (12b)

U
ij
k+1andV

ij
k+1 for i = 1 or 2 and j = 2 or 3 are to be determined later.

Using the transformations (12), the equations (6),(8) and (9) are transformed into

xa
k+1/k = Uk+1x

a
k+1/k (13a)

xa
k+1/k+1 = Vk+1x

a
k+1/k+1 (13b)

Ka
k+1 = Vk+1K

a

k+1 (13c)
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The inversetransformationsof Uk+1 andVk+1 (12) will have this form

U−1
k+1 = Ũk+1 =




I Ũ12
k+1 Ũ13

k+1

0 I Ũ23
k+1

0 0 I


 (14a)

V −1
k+1 = Ṽk+1 =




I Ṽ 12
k+1 Ṽ 13

k+1

0 I Ṽ 23
k+1

0 0 I


 (14b)

By direct computation, it is straigthforward to obtain

Ũ12
k+1 = −U12

k+1, Ũ13
k+1 = U12

k+1U
23
k+1 − U13

k+1 andŨ23
k+1 = −U23

k+1

Ṽ 12
k+1 = −V 12

k+1, Ṽ 13
k+1 = V 12

k+1V
23
k+1 − V 13

k+1 and Ṽ 23
k+1 = −V 23

k+1

Using these inverse transformations (14), we have

xa
k+1/k = Ũk+1x

a
k+1/k (15a)

P
a

k+1/k = Ũk+1P
a
k+1/kŨT

k+1 (15b)

xa
k+1/k+1 = Ṽk+1x

a
k+1/k+1 (16a)

K
a

k+1 = Ṽk+1K
a
k+1 (16b)

P
a

k+1/k+1 = Ṽk+1P
a
k+1/k+1Ṽ

T
k+1 (16c)

where

xa
(.) =




x(.)

f (.)

d(.)


 , P

a

(.) =




P
x

(.) 0 0

0 P
f

(.) 0

0 0 P
d

(.)


 andK

a

(.) =




K
x

(.)

K
f

(.)

K
d

(.)




3.3 Decoupling

Usingthe two-step substitution method, the filter model (6)-(10)is transformed into

xa
k+1/k = Ũk+1Uk+1x

a
k/k + Ũk+1B

a
kuk (17)

P
a

k+1/k = Ũk+1(Uk+1P
a
k/kU

T

k+1 + Qa
k)Ũk+1 (18)

xa
k+1/k+1 = Ṽk+1Uk+1x

a
k+1/k + K

a

k+1(yk+1 − Sk+1x
a
k+1/k) (19)

K
a

k+1 = Ṽk+1Uk+1P
a

k+1/kST
k+1(Sk+1P

a

k+1/kST
k+1 + Rk+1)

−1 (20)

P
a

k+1/k+1 = (Ṽk+1Uk+1 − K
a

k+1Sk+1)P
a

k+1/k(Ṽk+1Uk+1)
−1 (21)

where

Uk+1 = Aa
kVk =




Ak U
12

k+1 U
13

k+1

0 I U
23

k+1

0 0 I


 (22a)

Sk+1 =
[
S1

k+1 S2
k+1 S3

k+1

]
(22b)
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with

U
12

k+1 = AkV 12
k + F x

k (23a)

U
13

k+1 = AkV 13
k + F x

k V 23
k + Ex

k (23b)

U
23

k+1 = V 23
k (23c)

S1
k+1 = Hk+1 (24a)

S2
k+1 = Hk+1U

12
k+1 + F

y
k+1 (24b)

S3
k+1 = Hk+1U

13
k+1 + F

y
k+1U

23
k+1 + E

y
k+1 (24c)

Now, by developing the equations (18) we obtain respectively.

P
x

k+1/k = AkP
x

k/kAT
k + Q

1

k (25)

P
f

k+1/k = P
f

k/k + Q
2

k (26)

P
d

k+1/k = P
d

k/k + Qd
k (27)

0 = (U
23

k+1 − U23
k+1)P

d

k/k + Qfd − U23
k+1Q

d
k (28)

0 = (U
13

k+1 − U13
k+1)P

d

k/k + Qxd − U13
k+1Q

d
k (29)

0 = U
12

k+1P
f

k/k − U12
k+1P

f

k+1/k + U
13

k+1P
d

k/kU
23T

k+1 − U13
k+1P

d

k+1/kU23T
k+1 (30)

where

Q
1

k = Qx
k + U

12

k+1P
f

k/kU
12T

k+1 − U12
k+1P

f

k+1/kU12T
k+1 + U

13

k+1P
d

k/kU
13T

k+1 − U13
k+1P

d

k+1/kU13T
k+1 (31)

Q
2

k = Q
f
k + U

23

k+1P
d

k/kU
23T

k+1 − U23
k+1P

d

k+1/kU23T
k+1 (32)

Referringto (28)-(30), we obtain

U13
k+1 = (U

13

k+1P
d

k/k + Qxd
k )(P

d

k+1/k)−1 (33)

U23
k+1 = (U

23

k+1P
d

k/k + Q
fd
k )(P

d

k+1/k)−1 (34)

U12
k+1 = (U

12

k+1P
f

k/k + U
13

k+1P
d

k/kU
23T

k+1 − U13
k+1P

f

k/kU23T
k+1 + Q

xf
k )(P

f

k+1/k)−1 (35)

The development of (21), leads to

P
x

k+1/k+1 = (I − K
x

k+1S
1
k+1)P

x

k+1/k (36)

P
f

k+1/k+1 = (I − K
f

k+1S
2
k+1)P

f

k+1/k (37)

P
d

k+1/k+1 = (I − K
d

k+1S
3
k+1)P

d

k+1/k (38)

0 = U12
k+1 − V 12

k+1 − K
x

k+1S
2
k+1 (39)

0 = U13
k+1 − V 13

k+1 − V 12
k+1U

23
k+1 + V 12

k+1V
23
k+1 − K

x

k+1S
3
k+1 (40)

0 = U23
k+1 − V 23

k+1 − K
f

k+1S
3
k+1 (41)

Referringto (39)-(41), we obtain

V 12
k+1 = U12

k+1 − K
x

k+1S
2
k+1 (42)

V 13
k+1 = U13

k+1 − V 12
k+1K

f

k+1S
3
k+1 − K

x

k+1S
3
k+1 (43)

V 23
k+1 = U23

k+1 − K
f

k+1S
3
k+1 (44)
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With reference to (17), (19) and (20), we obtain respectively

xk+1/k = Akxk/k + Bkuk + u1
k (45)

fk+1/k = fk/k + u2
k (46)

dk+1/k = dk/k (47)

xk+1/k+1 = xk+1/k + K
x

k+1(yk+1 − S1
k+1xk+1/k) (48)

fk+1/k+1 = fk+1/k + K
f

k+1(yk+1 − S1
k+1xk+1/k − S2

k+1fk+1/k) (49)

dk+1/k+1 = dk+1/k + K
d

k+1(yk+1 − S1
k+1xk+1/k − S2

k+1fk+1/k − S3
k+1dk+1/k) (50)

K
x

k+1 = P
x

k+1/kS1T
k+1(S

1
k+1P

x

k+1/kS1T
k+1 + Rk+1)

−1 (51)

K
f

k+1 = P
f

k+1/kS2T
k+1(S

2
k+1P

f

k+1/kS2T
k+1 + S1

k+1P
x

k+1/kS1T
k+1 + Rk+1)

−1 (52)

K
d

k+1 = P
d

k+1/kS3T
k+1(S

3
k+1P

d

k+1/kS3T
k+1 + S2

k+1P
f

k+1/kS2T
k+1 + S1

k+1P
x

k+1/kS1T
k+1 + Rk+1)

−1 (53)

where

u1
k = (U

12

k+1 − U12
k+1)fk/k + (U

13

k+1 − U13
k+1 − U12

k+1(U
23

k+1 − U23
k+1))dk/k (54)

u2
k = (U

23

k+1 − U23
k+1)dk/k (55)

3.4 Optimal Three-Stage Kalman filters (OThSKF)

To correct the estimation of the state and the fault, we should follow these equations

x̂k+1/k+1 = xk+1/k+1 + V 12
k+1fk+1/k+1 + V 13

k+1dk+1/k+1 (56)

P̂ x
k+1/k+1 = P

x

k+1/k+1 + V 12
k+1P

f

k+1/k+1V
12T
k+1 + V 13

k+1P
d

k+1/k+1V
13T
k+1 (57)

f̂k+1/k+1 = fk+1/k+1 + V 23
k+1dk+1/k+1 (58)

P̂
f
k+1/k+1 = P

f

k+1/k+1 + V 23
k+1P

d

k+1/k+1V
23T
k+1 (59)

Now, the state and the fault estimate can be obtained by OThSKF. To implement the OThSKF, we assume to know the
following :
• Control inputuk

• MatricesAk, Bk, Hk, F x
k ,F y

k , Ex
k andE

y
k

• Covariance matrices :Qx
k, Rk, Q

f
k , Qd

k, Q
xf
k , Qxd

k andQ
fd
k

• Initial valuesx0, f0, d0, P x
0 , P

f
0 , P d

0 , P
xf
0 , P xd

0 andP
fd
0

Table 1 gathers the different steps of the filtering design and Figure 2shows the interactions between the different blocks of
calculus.

Table 1: OThSKF algorithm

Algorithme 1: state and fault estimation by OThSKF

• Step 0 : initialization
k = 0

V 13
0 = P xd

0 (P d
0 )−1, V 23

0 = P
fd
0 (P d

0 )−1

V 12
0 = (P xf

0 − V 13
0 P d

0 V 23T
0 )(P f

0 − V 23
0 P d

0 V 23T
0 )−1

x0/0 = x0 − V 12
0 f0 − V 13

0 d0, d0/0 = d0,
f0/0 = f0 − V 23

0 d0

P
d

0/0 = P d
0 , P

f

0/0 = P
f
0 − V 23

0 P d
0 V 23T

0
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P
x

0/0 = P x
0 − V 12

0 P
f
0 V 12T

0 − V 13
0 P d

0 V 13T
0

• Step 1 : preliminary

To calculateU
12

k+1, U
13

k+1, U
23

k+1from (23)

To calculateP
d

k+1/k, U13
k+1, U23

k+1, Q
2

k, P
f

k+1/k, U12
k+1, u1

k, u2
k respectively from (27), (33), (34), (32), (26), (35), (31),(54)

and (55)
To calculateS1

k+1, S2
k+1 andS3

k+1 from (24)
• Step 2 : state subfilter

To calculatexk+1/k, P
x

k+1/k, K
x

k+1, xk+1/k+1, P
x

k+1/k+1 respectively from (45), (25), (51), (48) and (36).
• Step 3 : fault subfilter

To calculatefk+1/k, K
f

k+1, fk+1/k+1 andP
f

k+1/k+1 respectively from (46), (52), (49) and (37).
• Step 4 : unknown inputs subfilter

To calculatedk+1/k, K
d

k+1, dk+1/k+1 andP
d

k+1/k+1 respectively from(47), (53), (50) and (38).
• Step 5 : the correction of the state and the fault estimations

To updateV 12
k+1, V 13

k+1, V 23
k+1 respectively from (42), (43) and (44).

To calculatêxk+1/k, P̂ x
k+1/k, f̂k+1/k+1 andP̂

f
k+1/k+1 respectively from (56)-(59).

• Step 6 :k = k + 1 and return to step 1

We denoteq−1 is a delay operator such that:q−1yk = yk−1

3.5 Robust Three-Stage Kalman Filter (RThSKF)

The OThSKF is optimal in the minimum mean square error (MMSE)sense. However, this filter loses its optimality, when the
statistical properties of models (2) and (3) are unknown or not perfectly known. So, it would be better to use a robust three-
stage Kalman filter (RThKF) to get a good estimation of state and fault in presenceof unknown inputs. This filter is obtained
by modifying the measurement update equations of the unknown inputs subfilter and the fault subfilter of the OThSKF. The
measurement update equations of the fault subfilter and the unknown inputs subfilter are rewritten as follow:

fk+1/k+1 = (I − K
f

k+1S
2
k+1)fk+1/k + K

f

k+1(yk+1 − S1
k+1xk+1/k) (60)

K
f

k+1 = P
f

k+1/k+1S
2T
k+1C

−1
k+1 (61)

dk+1/k+1 = (I − K
d

k+1S
3
k+1)dk/k + K

d

k+1(yk+1 − S1
k+1xk+1/k − S2

k+1fk+1/k) (62)

K
d

k+1 = P
d

k+1/k+1S
3T
k+1(S

2
k+1P

f

k+1/kS2T
k+1 + Ck+1)

−1 (63)

whereCk+1 = Hk+1P
x

k+1/kHT
k+1 + Rk+1

Firstly, to eliminate the two termsfk+1/k anddk/k , we will choosethe gain matricesK
f

k+1 andK
d

k+1 that can satisfy the
followings algebraic constraints

(I − K
f

k+1S
2
k+1) = 0 (64)

(I − K
d

k+1S
3
k+1) = 0 (65)

K
d

k+1S
2
k+1 = 0 (66)

In this case (60) and (62)become

fk+1/k+1 = K
f

k+1(yk+1 − S1
k+1xk+1/k) (67)

dk+1/k+1 = K
d

k+1(yk+1 − S1
k+1xk+1/k) (68)
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Figure 2: Bloc diagram of the OThSKF

Secondly,with substituting (61 and 63) into (64 and 65) and using (66),P
f

k+1/k+1, P
d

k+1/k+1 andK
d

k+1 can be rewritten as

P
f

k+1/k+1 = (S2T
k+1C

−1
k+1S

2
k+1)

−1 (69)

P
d

k+1/k+1 = (S3T
k+1C

−1
k+1S

3
k+1)

−1 (70)

K
d

k+1 = P
d

k+1/k+1S
3T
k+1C

−1
k+1 (71)

The equations (45) and (46) are rewritten, respectively, asfollow:

xk+1/k = Akx̂k/k + Bkuk + ũ1
k (72)

fk+1/k = fk/k + ũ2
k (73)

where

ũ1
k = (F x

k − U12
k+1)fk/k + (Ex

k − U13
k+1 + U12

k+1U
23
k+1)dk/k (74)

ũ2
k = (U

23

k+1 − U23
k+1)dk/k (75)

In order to return (72) and (73) robust against the fault and the unknown inputs we can choose thatũ1
k = 0 andũ2

k = 0

In this case, the new matricesU12
k+1, U13

k+1 andU23
k+1 arewritten as follow

9



U23
k+1 = U

23

k+1 = V 23
k

U12
k+1 = F x

k

U13
k+1 = Ex

k + U12
k+1U

23
k+1 = Ex

k + F x
k V 23

k

Finally, the robust three-stage Kalman filter (RThSKF) equations is summarizedin Table 2. Figure 3 shows the interactions
between the different blocks of calculus.

Table 2: RThSKF algorithm

Algorithme 2: state and fault estimation by RThSKF

• Step 0 : initialization
k = 0

x̂0/0 = x0 , P̂ x
0/0 = P x

0 andV 23
0

• Step 1: state subfilter
xk+1/k = Akx̂k/k + Bkuk

P
x

k+1/k = AkP̂ x
k/kAT

k + Qx
k

K
x

k+1 = P
x

k+1/kS1T
k+1C

−1
k+1

xk+1/k+1 = xk+1/k + K
x

k+1(yk+1 − S1
k+1xk+1/k)

P
x

k+1/k+1 = (I − K
x

k+1S
1
k+1)P

x

k+1/k

• Step 2: fault subfilter
U12

k+1 = F x
k

S2
k+1 = Hk+1U

12
k+1 + F

y
k+1

P
f

k+1/k+1 = (S2T
k+1C

−1
k+1S

2
k+1)

−1

K
f

k+1 = P
f

k+1/k+1S
2T
k+1C

−1
k+1

fk+1/k+1 = K
f

k+1(yk+1 − S1
k+1xk+1/k)

• Step 3: unknown input subfilter
U23

k+1 = V 23
k

U13
k+1 = Ex

k + F x
k V 23

k

S3
k+1 = Hk+1U

13
k+1 + F

y
k+1U

23
k+1 + E

y
k+1

P
d

k+1/k+1 = (S3T
k+1C

−1
k+1S

3
k+1)

−1

K
d

k+1 = P
d

k+1/k+1S
3T
k+1C

−1
k+1

dk+1/k+1 = K
d

k+1(yk+1 − S1
k+1xk+1/k)

• Step 4: the correction of the state and the fault estimations
V 12

k+1 = U12
k+1 − K

x

k+1S
2
k+1

V 13
k+1 = U13

k+1 − V 12
k+1K

f

k+1S
3
k+1 − K

x

k+1S
3
k+1

V 23
k+1 = V 23

k − K
f

k+1S
3
k+1

x̂k+1/k+1 = xk+1/k+1 + V 12
k+1fk+1/k+1 + V 13

k+1dk+1/k+1

P̂ x
k+1/k+1 = P

x

k+1/k+1 + V 12
k+1P

f

k+1/k+1V
12T
k+1 + V 13

k+1P
d

k+1/k+1V
13T
k+1

f̂k+1/k+1 = fk+1/k+1 + V 23
k+1dk+1/k+1

P̂
f
k+1/k+1 = P

f

k+1/k+1 + V 23
k+1P

d

k+1/k+1V
23T
k+1

• Step 5:k = k + 1 and return to step 1.
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Figure 3: Bloc diagram of the RThSKF

4 Illustrative example

In this section, wewill apply the proposed filters (OThSKF and RThSKF) to treat three different cases. The parameters of the
system (1) and the models (2) and (3) are given by

xk =




x1,k

x2,k

x3,k


 , Ak =




ak 0.1 0.2

0.1 0.6 0.3

0.2 0.1 0.25


 , ak = 0.5 + 0.35sin(k), Bk =




2

−1.5

0.5




Hk =


1 −1 0

0 1 2


 , F x

k =




1

0.8

−0.5


 , F

y
k =


1

1


 , Ex

k =




0.1

0.2

1


 , E

y
k =


0.3

0.6




Qx
k = 0.5I3×3, Rk = 0.2I2×2, Q

f
k = 0.5, Qd

k = 0.5

Q
xf
k = (0.02 0.01 0.02)T , Qxd

k = (0.01 0.02 0.02)T , Q
fd
k = 0.01

The initial values of the state isx0 =
[
2 −1 3

]T

, the fault isf0 = 0 and the unknown inputs isd0 = −1.

All filters are initialized by taking the following values

x0 =
[
0 0 0

]T

, f0 = 0, d0 = 0, P x
0 = 20I3×3, P

f
0 = 20, P d

0 = 20, P xf
0 =




0

0

0


 , P xd

0 =




0

0

0


 and P fd = 0

11



Figure 4 presents the input/output sequence of the system. The time of simulation isN = 50.
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0

2

4

6
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0 5 10 15 20 25 30 35 40 45 50
−40

−20

0

20

40

60
y

1

y
2

Figure 4: input/output of system

4.1 Covariance matrices and initial conditions of fault andunknown input are known

In this case, we take the exact values of covariance matricesof all noises used in (2) and (3) to implement ASKF and OThSKF

Q
f
k = 0.5, Qd

k = 0.5, Q
xf
k = (0.02 0.01 0.02)T , Qxd

k = (0.01 0.02 0.02)T andQ
fd
k = 0.01.

Figure 5 presents the actual state vector first component (x1,k), the fault (fk) and the unknown inputs (dk) and theirs estimated
values obtained by the proposed filter OThSKF and RThSKF.

0 5 10 15 20 25 30 35 40 45 50
−40

−20

0

20

40

State x
1,k

OThSKF
RThSKF
True

0 5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

15
Fault

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10
 Unknown input

Sampling time

Figure 5: State, fault and unknown input

Convergence of the trace of the state covariance matrixP̂ x
k+1/k+1 and fault covariance matrix̂P f

k+1/k+1 are shown in Figures
6 and 7 respectively.
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Figure 6: Trace of state covariance matrix
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Figure 7: Fault covariance matrix

The simulation results in Tables 3-5, show the average root mean square errors (RMSE) in the estimated states, fault and
unknown input. For example, the RMSE of the first component ofstate vector is calculated by

RMSE(x1,k) =
√

1
N

∑N
k=1(x1,k − x̂1,k/k)2

In Table 3, it can be proved that the OThSKF and ASKF are equivalent where the demonstration has been made in [5].The
OThSKF and ASKF give the best estimations. However, the result obtained by RThSKF is not an optimal solution because
this filter is not equivalent to the ASKF. The computational advantage of the OThSKF over the ASKF was demonstrated by
using the floating-point operations or ”flops” in Matlab for one iteration as a measure of the computational complexity [6, 8].
Each multiplication and each addition contribute on flop count. According to the Table 3 , we note that the flops counted for
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Table 3: Performances of the ASKF, OThSKF and RThSKF

RMSE ASKF OThSKF RThSKF

x1,k 1.02 1.02 1.56

x2,k 1.30 1.30 2.11

x3,k 0.97 0.97 1.50

fk 0.78 0.78 1.27

dk 0.75 0.75 0.90

flops(one iteration) 1340 1244 917

the OThSKF are fewer than that of the ASKF. On the other hand, the flops counted for the RThSKF are fewer than that of the
OThSKF.

4.2 Covariance matrices of fault and unknown input are not perfectly known

Here, we assume that the covariance matrices of the fault andthe unknown input are not perfectly known, so we take the
following values

Q
f
k = 12.5, Qd

k = 12.5, Q
xf
k = (0 0 0)T , Qxd

k = (0 0 0)T and Q
fd
k = 0
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−20
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20

40

State x
1,k

OThSKF
RThSKF
True

0 5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

15
Fault

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10
 Unknown input

Sampling time

Figure 8: State, fault and unknown input

According to the Table 4 and the Figures 8-10, we note that OThSKF and ASKF lose theirs performances, but the perfor-
mances of RTSKF remain unchangeable in spite of the significant error on the covariance matrices values.

14



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Sampling time

OThSKF
RThSKF

Figure 9: Trace of state covariance matrix
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Figure 10: Fault covariance matrix

Table 4: Performances of the ASKF, OThSKF and RThSKF

RMSE ASKF OThSKF RThSKF

x1,k 1.49 1.49 1.56

x2,k 1.66 1.66 2.11

x3,k 1.21 1.21 1.50

fk 1.23 1.23 1.27

dk 0.95 0.95 0.90

4.3 Models of fault and unknown input are completely unknown

In this case, the fault and the unknown input are given by

fk = 10us(k − 15) − 10us(k − 35) anddk = 6sin(0.5k)
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whereus(k) is the unit-step function.
To implement OThSKF we take the following values as covariance matrices of the fault and the unknown input

Q
f
k = 0, Qd

k = 0, Q
xf
k = (0 0 0)T , Qxd

k = (0 0 0)T and Q
fd
k = 0
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Figure 11: State, fault and unknown input

In Figure 11, we observe that the RThSKF gives the best state and fault estimation. Indeed, the evaluation of the RMSE

Table 5: Performances of the ASKF, OThSKF and RThSKF

RMSE ASKF OThSKF RThSKF

x1,k 3.62 3.62 2.00

x2,k 6.71 6.71 2.22

x3,k 5.39 5.39 1.53

fk 4.91 4.91 1.54

dk 1.38 1.38 1.24

presented in the Table 5 confirms this observation. But, the OThSKF completely loses its optimality.

5 Conclusion

In this paper,the robust three-stage Kalman filter is developedto obtain an effective state and fault estimation of linear stochas-
tic system in the presence of unknown inputs. To achieve thisaim, we had two cases ; in the first case,the OThSKF is usedas
the noise statistical properties of the fault and the unknown input were perfectly known. This filter is equivalent to ASKF and
makes it possible to guarantee optimality of estimation. Inthe second case,the RThSKF is appliedbecause the knowledge of
fault and unknown input models was not completely or partially known. Indeed, the RThSKF remains powerful (Tables 4 and
5) in spite of the errors made on the covariance matrices characterizing the noise of fault and unknown input. Moreover, it is
not necessary to know the initial values that are relativelyrelated to the fault and the unknown input subfilters.
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