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Abstract

The paper studies the problem of simultaneously estimating the state andltha fmear stochastic discrete-time vary-
ing systems with unknown inputs. The fault and the unknown inputs dfetttthe system state and output. However, if the
dynamical evolution models of the fault and the unknown inputs are alailaé filtering problem is solved by the Optimal
Three-Stage Kalman Filter (OThSKF). The OThSKF is obtained afteruggicg the covariance matrices of the Augmented
state Kalman Filter (ASKF) using a Three-Stage U-V transformation. itfesless, if the fault and the unknown inputs mod-
els are not perfectly known the Robust Three-Stage Kalman Filter (RFS applied to give an unbiased minimum-variance
estimation. Finally, a numerical example is given in order to illustrate thegsexpfilters.

Key words : stochastic systems, state estimation, fault estimation, unknown inputsggliecy three-stage Kalman filter.

1 Introduction

Unknown input filtering (UIF) for linear stochastic systehas gained the interest of many researchers during thedestlds.
In this context, this problem has been extensively stud#dguthe Kalman filtering approach, see e.g. [1]-[9].

When the model of the unknown inputs is available, it is pdegibobtain an optimal estimation by using the Augmented
State Kalman Filter (ASKF). To reduce computation costshef ASKF, [2] has introduced the Two-Stage Kalman Filter
(TSKF). His approach consists in decoupling the ASKF inte shate subfilter and unknown inputs subfilter. Friedland’s
filter is only optimal for constant bias. Many authors havéeaged the Friedland’s idea to treat the stochastic bigs, e.
[1, 10, 14, 15]. In the same context, [6] have generalizeddfaind’s filter by destroying the bias noise effect to obtaim
Optimal Two-Stage Kalman Filter (OTSKF). [8] proposed agatfization of the OTSKF to get the Optimal Multi-Stage
Kalman Filter (OMSKF). Recently, [11] have developed anpida version of TSKF noted ATSKF (Adaptive Two-Stage
Kalman Filter) and they have analysed the stability of thierfin [12].

On the other hand, when the unknown inputs model is not &laildhe unbiased minimum variance (UMV) state es-
timations are insensitive with the unknown inputs. [16] daseloped a Kalman filter with unknown inputs by minimizing
the trace of the state error covariance matrix under an edgebonstraint. [13] have used a parameterizing techniguan
extension of the Kitanidis’s results to derive an UMV estiara[5] has developed a robust filter in two-stage noted RFSK
(Robust Two-Stage Kalman Filter) equivalent to Kitaniglififter. Next, the same author [3] has proposed an extensitire o
RTSKF (named ERTSKF) to solve the addressed general unkimqpun filtering problem. For obtain ERTSKF, the author
has introduced a new constrained relationship to modifyofiteanal unbiased minimum-variance filter (OUMVF) presehte
in [4]. Recently, [7] solved the problem of unbiased fauld &tate estimation for linear system with unknown distudesrin
the case when we do not have a prior knowledge about the dgabeviolution of the fault and the unknown disturbances.

The main objective of this paper is to develop two new filteudures, that can solve the problem of simultaneously
estimating the state and the fault in presence of the unknigputs. In this case, when the dynamical evolutions of thit fa



and the unknown inputs are availablee Optimal Three-Stage Kalman Filter (OThSKF) is uskldwever, when the fault
and the unknown inputs are npérfectlyknown, we develop the Robust Three-Stage Kalman Filter 8KH). This latter
is obtained by using a modification in measurement updatat@ms of the fault and the unknown inputs subfilters of the
OThSKEF. This idea constitutes an extension of RTSKF in [5].

The remainder of this paper is organized as follows. SeQistates the problem of interest. In section 3, the design
of the ASKF, OThSKF and RThSKF are developed. Finally, arstliative example of the proposed approach techniques is
presented.

2 Statement of the problem

The problem consists of designing a filter that gives a robtege and fault estimation for linear time-varying stocitas
systems in the presence of unknown inputs. This problemseried by the bloc diagram &igure 1
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Figure 1: State and fault estimator filter

The plantP represents the linear time-varying discrete stochasstesys with unknown inputs and additive faults and is
described by

p.) T = Az + Brug + FY fio + Efdy + wi,
Yk = Hyxy, + F fr + Eldy, + vy,

)

wherex;, € R™ is the state vectory, € R" is the known control inputf;, € RP is the additive fault vectord, € RY is
the unknown inputs angl, € R™ is the observation vector. Matrices,, By, I}, £, Hy, Ffj andE,Z are known and have
appropriate dimensions.
We should treatl;, and f;, as a stochastic processes with given wide-sense représenta
Thus, the dynamics af;, may be assumed as

dk+1 =di + w,”cl (2)
The additive faultsf;, is generated by

fra1 ka—&—w,{ )
Assumptions :
e A, :the noisesv{ etw;, are zero-mean white noise sequences with the followingréavees :

E(wiwfT) = Qfdke
5(’0}@1}}) = Rk(skz
E(wpvl) =0

where” denotes transpose afigh denotes the Kronecker delta function.



e A, :the noiseew,f andw{ are zero-mean white noise sequence with the following ¢anees:

E(wiw]") = Qf ok

E(wiwi") = Qfore

Ewiw]") = Q1 bre )
E(wiwi") = QF*oxe

g(w}:w;lT) = Q£d5k£

e A3 :the initial state is a gaussian random variable and is watzied with the white noise processes andvy, :
(‘:(.’Ijo) =T andE((acO — fo)(xo _ EO)T) — Pow

e A, : the initial fault and unknown input satisfy the followings

E(fo) = fo

E(dy) = dp

E((fo—TFo)((fo—Fo)") =Pf

E((do — do)((d — do)™) = P ©®)
E((wo — fo)((zo — fo)T) = Py’

E((zo — do)((zo — do)T) = Py

E((fo — do)((fo — do)T) = P{*

e Aj: the first conditions omatricesranks:
rank(Hygy1) = m(> max(p, q)), rank(E7) = p, rank(Hy41 FY) = p, rank(E}) = ¢ andrank(H11Ef) = ¢
e Ag: the second conditions anatricesranks:
rank(Hp 1 FY + FY ;) = p and rank(Hp 1 Ef + E] ) = q
In this work, two cases will be considered:

o firstly, we assume that the noise statistical propertdes) @nd the initial conditions of the fault and the unknown itgou
(A4) are already known, so we will develop the OThSKF for stafanlt optimal estimation,

e secondly, when the dynamical evolution models are not plyfenown, we implement the RThSKF for state and fault
robust estimation.

3 Filters design

In this section, devoted to the state filter design, we firsalighe structure of the augmented stli@manfilter, then the
UV transformation is defined which is after used to decouptestugmented state Kalman filter equations into three sensfilt
Finally, the three-stage Kalman filter (ThSKF) in two versas developed: optimal (OThSKF) and robust (RThSKF).

3.1 Augmented State Kalman Filter (ASKF)

Treatingzy, , fr, anddy, as the augmented system state, the ASKF is described by

Tiyie = AkTiye + Biuk (6)
Piye = A%Pz?/kA%T + Qr (7)
Tivi/pr1 = Tk T K (Y1 — Hiq @) (8)
Kipy = Pgﬂ/ngzl(HZHPJ?H//@HI?L + Ryq1) ! 9)
Pl?+1/k+1 = (I- KIZHHI?H)PJ?HM (10)



where

() A, FP B} By,
ey =\ folAR=10o 1 o |Bi=]o | Hi=
dyy 0 0 I 0

Py FBORY Q Q
Py =\ply Pl P Q=@ Qf
pdz ng P(L.i) gr Zf

) )

zd
Qx

fd
k

Q4

The filter model (6)-(10) may be used to produce the optinakststimate if the assumptioAs, — A4 are checked. But,
this filter has two main disadvantages: the increase of thepotational cost with the augmentation of the state dinwensi
and the rise of numerical problems during the implementdt$. So, to solve these problems, we should use the theege st

Kalman filtering technique.

3.2 U-V transformations

According to [5] and [6], the ThSKF is obtained by the appiima of a three-stage U-V transformation in order to deceupl
the ASKF covariance matrices, i.8,'., , andP; , , . The aimis to find matriceS}.,, andVj., such that

PI?+1/k = Uk+1?k+1/kUE+1

a - D T
Pevisesr = Ver1Pryajpi1 Vi

(11a)
(11b)

with P( ) = diag {F?_),?{ ),F‘Z)} Whereﬁi),ﬁ{_ ) and?‘(i_) denote the transformed covariance matrices.

We define the structures of tlig..; andV}; matrices aollow:

I Uik Ui
Ui =10 1 U,
0 0 1

12 13
I Vk+1 Vk+1
23
Vk—i—l

0 O 1

Vier= 10 I

UZandV,7 fori =1or 2and j = 2 or 3 are to be determined later.

Using the transformations (12), the equations (6),(8) & auie transformed into

a . —a
Lrt1/k = Uk+195k+1/k
a _ —a
Thp1/k+1 = Ver1Thq1/kt1
a _ —a
Kit1 = Vi1 Ky

(12a)

(12b)

(13a)
(13b)
(13c)



The inversaransformation®f Uy, andVj1 (12) will have this form

I Uiy Ui
1 ~ ~
Upr =Ukr1=10 1 U,

o o I

12 13
I Vk+1 Vk+1

Vi =Veri= |0 I vV,

0 0 I
By direct computation, it is straigthforward to obtain
[Zklil =-Uil., gliil = U Uil — Uiy andg/?i1 =-Ui,
Viti = —Vidn Vil = Vi V& — Vg and V2, = -V

Using these inverse transformations (14), we have

—a _TT7 a
Liy1/k = Uk+11’k+1/k

ﬁk+1/k = Uk+1P§+1/kUkT+1

—a s a

Thog1/h+1 = Ver1Z541 /641
L ~ "
Kk+1 = Vk+1Kk+1

He _ 1 a T
Pk+1/k+1 - Vk+1Pk+1/k+1Vk+1

where
() Py 00 K,
—a _ | | p* _ f 70 _ | —=f
H=folPo=]0 P, o0 andk () = K,
_ d —d
dg.) 0 0 Py Ky

3.3 Decoupling

Usingthe two-step substitution method, the filter model (6)-($@yansformed into

Tiyie = ﬁk+1vk+1fZ/k + Ups1 By,
ﬁz"‘l/k = (77€+1(Uk+1pka/kﬁz+1 + Qz)ﬁk-rl
Thti/htl = ‘7"’+1U’“+1EZ+1/k + Ko (1 — Sk-+1Th41 /1)
FZJA = ‘7’<+1U’€+1PZ+1/I€SI?+1(5k+1pz+1/kSkT+1 + Rypy1) ™t
Proisr = VenUkin — Ky Siet) Py e (Vi1 Upgn) ™!

where

=12 —=13
Ap Uk+1 Uk+1

Ui =4Ve=|0 1 Tp,
0 0 I

S = |: 1 2 3
L= S Sirr Sk

(14a)

(14b)

(15a)
(15b)

(16a)
(16b)
(16c)

17)
(18)
(19)
(20)
(21)

(22a)

(22b)



with

3 —
Si41 =

—12
Uk—‘,—l - AkaH + Fkx
Uyry = AV + FPV2 4+ B
Uii1 = Vk23

1
Sk+1 = Hk+l

2
Siir =Hep1Upty + FYLy

Hyo1 Uty + FYLL U + B

Now, by developing the equations (18) we obtain respegtivel

—z —x —1
Pre = AP AL +Qy
—>f Sf 2
P = P+ Qy
— —d
Pryyw = Prpt Qs
23 —d
0 = (Upp —UB )P+ QM -ULQf
—13 —d .
0 = Uy — Uk+1)Pk/k +Q™ - U, Qf
—12 — —23T 13 —d 23T
0 = UkJrlPk/k Uk+1pk+1/k + Uk+1Pk/kUk+1 U1 Prya/eUia
where
—1 —f =127 f —d  ==13T d
Qp, = Q +Uk+1Pk/kUk+1 Upti P Unh +Uk+1Pk/kUk+1 Ut P Uiy
—=2 — —23T d
Qp = Qk + Uk+1Pk/kUk+1 Uk+1pk+1/kUlgiZ£
Referringto (28)-(30), we obtain
—13 —d Jp—, _
Uk+1 = (Ugs1Prs +de)(Pk+1/k) !
—23 —d dy 4 _
Upt, = (Uks1Prk +Q£ )(PkJrl/k) !

Uk+1 =

The development of (21), leads to
Pﬁﬂ/kﬂ =
ﬁ£+l/k+1 =
ﬁk-ﬁ-l/k-&-l =
0 =
0 =
0 =

Referringto (39)-(41), we obtain

Vity
Vk+1

Vk+1

— —d —23T —f -/ -
(Uk+1Pk/k +Uk+1Pk/kUk+1 Ups Py Uy +Qy )(Pryiyn) "

=T =T

(I_ Kk+1Sli+1)Pk+1/k
b7al -/

(I - Kk+1513+1)Pk+1/k
—d —d

(I - Kk+152+1)Pk+1/k

7L 2
Uk+1 Vk-l—l Kk+1Sk+1

Uk+1 VkJrl k+1Uk+1 Vk+1 k+1 Kk+1Sk+1

Uk+1 Vk+1 Kk+1skr+1

2
- Uk-‘rl Kk+1Sk+1

——f 3 x 3
Uk+1 Vk+lKk+1Sk+1 - Kk+lSk+1

3
- Uk+1 Kk+1Sk+1

(23a)
(23b)
(23c)

(24a)
(24b)
(24¢)

(25)
(26)
(27)

(28)
(29)
(30)

(1)
(32)

(33)
(34)
(39)

(36)
(37)
(38)
(39)
(40)
(41)

(42)
(43)
(44)



With reference to (17), (19) and (20), we obtain respeagtivel

Tpyie = ATpsp + Brug + Ty (45)

Feviw = Trp 70 (46)

i = dig (47)

Thotjhtt = Tapik + Ky Wker — SeyaTrsisn) (48)

Frvirr = Fryim+ ?£+1(yk+1 — Sk Thr1/k — Sl%+17k:+1/k) (49)

di1/ks1 = dpgye + FZ-H(?JIH-I — Sii1Trg1/ke — SiiSrein — Seardisiyn) (50)

Kp = ﬁglerl/kSI}:Il(Si+1ﬁi+1/ksizl + Ryq1)”! (51)

Fﬁ—i—l = Pk-i-l/kSk-H(Sk+lpk+1/k‘9k+1 + 5é+1ﬁz+1/k5é£1 + Rpq1) ! (52)

FZH = Pk+1/kSk+1(Sk+1pk+1/ksk+1 + Sk+1Pk+1/kSk+1 + Sé+1pz+1/k51£1 + Ryq1) " (53)
where

W, = (Ullc2+1 - Ulgﬂ)?k/k + (Ullju Uty — Uk+1(Ui3+1 — Uik (54)

T = Ui — U dip (55)

3.4 Optimal Three-Stage Kalman filters (OThSKF)

To correct the estimation of the state and the fault, we shfmlilow these equations

Trgr/ker = Trarkar + Vit Freryper T Vi1 etk (56)
PI?+1/I€+1 = ﬁz+1/k+1 + Vklilpi+1/k+lvkli{ + Vklilﬁz+1/k+1vk+1 (57)
frevmrr = Frvme + Vidhidrsin (58)
P/f+1/k+1 = ﬁ£+1/k+1 + VkZ-ilPZ-i-l/k-&-leQ-i? (59)
Now, the state and the fault estimate can be obtained by OFhBKimplement the OThSKF, we assume to know the

following :

e Control inputu

e MatricesAy, By, Hy, F' ,F/, E{ andE}

« Covariance matrices@?, Ry, Q1, Q%, Q+/, Qi? andQ]*

e Initial valueszy, f,, do, P¢, P, P4, PY, Pydand P

Table 1 gathers the different steps of the filtering desighFagure 2shows the interactions between the different blocks of
calculus.

Table 1: OThSKF algorithm
Algorithme 1: state and fault estimation by OThSKF

e Step 0 : initialization
k=0
V013 = Pyl(PH 1 V@ = PJY(PH ™!
V (sz VlSpvaST)(Pf V23pdv23T)
Zo/0 = To — Va2 fo — Vi3do, dojo = do,
f0/0 = fo Vo 3do
—f .
PO/O_PO!PO/O :P({_Vozspdvst



ﬁg/o _ P[.)m- _ %12P({V012T _ %13P6ivo13T

e Step 1 : preliminary
—12 —13 —23

To calculate/, |, Uy, U from (23)

To calculatePy, , ., ULy, UZ , Qp, Proy i U2, W), 0 respectively from (27), (33), (34), (32), (26), (35), (354)
and (55)

To calculateS} , ;, S¢, , andS; ,, from (24)
e Step 2 : state subfilter

To calculateTy, 1 ik, Pry1 ks Ky 1s Tha1/ir10 Proy/ig1 T€SPECtively from (45), (25), (51), (48) and (36).
e Step 3 : fault subfilter

To calculatef , , /., fiﬂ, Frr1/b41 and?iﬂ/,wrl respectively from (46), (52), (49) and (37).
e Step 4 : unknown inputs subfilter

To calculated), ;1 /i, FZH, diot1 /541 andﬁzﬂ/,Hl respectively from(47), (53), (50) and (38).
e Step 5 : the correction of the state and the fault estimations

To updateV,'?,, V12, , V2, respectively from (42), (43) and (44).

To calculateiy, y /i, P,;”H/k, Frvi/man andﬁ,fﬂ/k+1 respectively from (56)-(59).
e Step 6 :k = k£ + 1 and return to step 1

We denote;~! is a delay operator such that 'y, = yi_1

3.5 Robust Three-Stage Kalman Filter (RThSKF)

The OThSKEF is optimal in the minimum mean square error (MMSd)se. However, this filter loses its optimality, when the
statistical properties of models (2) and (3) are unknownadperfectly known. So, it would be better to use a robustehre
stage Kalman filter (RThKF) to get a good estimation of statéfault in presencef unknown inputs. This filter is obtained
by modifyingthe measurement update equations of the unknown inputdteubfid the fault subfilter of the OThSKF. The
measurement update equations of the fault subfilter andrtkieown inputs subfilter are rewritten as follow:

?k+1/k+1 = (I - K£+1Slz+1)?k+1/k + F£+1(yk+1 - Sli+1fk+1/k) (60)
F£+1 = F£+1/k+151%£101:ﬁ1 (61)
8lc-i-l/lc—s-l = (I - FZHSIEH)Ek/k + ?Z-s-l(yk—s-l - Sli+1fk+1/k - Slz-&-l?k-&-l/k) (62)
Kl = Proin ST (SEaPlopSih + Cun) ™ (63)

whereCy 1 = Hi1 Py yy i HE 4 + Ric

Firstly, to eliminate the two termg, ., ,, andd,. , we will choosethe gain matrices?(',’:/Jrl and?iJrl that can satisfy the
followings algebraic constraints

(I-Kl1S8) = 0 (64)
(I = Ki1Sip) = 0 (65)
KinSta = 0 (66)
In this case (60) and (62ecome
Frsipn = ?£+1(yk+1*5é+1fk+1/k) (67)
diyijpr1 = Kzﬂ(ykﬂ—siﬂfkﬂ/k) (68)



yk+l

3
Vi T'
+

Figure 2: Bloc diagram of the OThSKF

P )—bf
k+1/k+1
+

Secondlywith substituting (61 and 63) into (64 and 65) and using (fﬁ:‘;f)ﬂ/kﬂ, Pzﬂ/kﬂ and?Z+1 can be rewritten as

7f _ _
Pk+1/k+1 = (Sk+1ck-|}1‘glz+1) !
P = (SihiCofSic)™

Fkﬂ = Pk+1/k+152110k_4i1

The equations (45) and (46) are rewritten, respectivelfolésy:

where
U =

up, =

Tprie = Awlip + Brug + U

Frevie = Tk/k'i-ﬂ%

(

Fy — Ulg-l)?k/k + (Ef —
—23
(Ukg1 —

In order to return (72) and (73) robust against the fault &ieclinknown inputs we can choose taat= 0 andu? =

Ut ) di

Uk—i—l

In this case, the new matricég?,, U3, andU}3, arewritten as follow

Ui UR ) dy

(69)
(70)
(71)

(72)
(73)

(74)
(75)



Ul?il = ﬁii—l = Vk23

Ul = Ff

Ul =Ef+ U2 U, =Ef + FFv2
Finally, the robust three-stage Kalman filter (RThSKF) diquis is summarizedh Table 2. Figure 3 shows the interactions
between the different blocks of calculus.

Table 2: RThSKF algorithm

Algorithme 2: state and fault estimation by RThSKF

e Step 0 : initialization
k=0
Zo/0 =0 , Py = Py and Vi
e Step 1: state subfilter
Tit1/k = ArZ/k + Brug
Pl = Akpl?/kA% + Q%
Ferl = ﬁz+1/k5ézlclgjl
Tit1/k+1 = Tht1/k T ?z+1(yk+l — Sh i Thy1/k)
Priipr =T =K1 SE) Py
e Step 2: fault subfilter
U, = F
Sti1 = Hen Ui, + FYy
ﬁ£+1/k+1 = (Slgilclc_-i}lslg+1)71
?£+1 = ?k+1/k+1513£10k_ﬁ1
?k+1/k+1 = FiJrl(ykJrl — Sk 1 Tha1/k)
e Step 3: unknown input subfilter
UE, =
UEs = B + RV
524—1 = Hk+1UI£-1 + FI?+1U13-?;-1 + EIngl
PZ+1/k+1 = (5121101;:152“)_1
Fiﬂ = ﬁZJrl/kJrlSlgIlCl;}l
8k-&-l/k+1 = FZH(ZJICH - Sli+1fk+1/k)
e Step 4: the correction of the state and the fault estimations
Vk'l-i2-1 = U/ﬁl - ?iﬂsiﬂ
Vkl-i?:l = Ulﬁl - Vkl-&Q-1F£+ISI?+1 - XiﬁLlSz-&-l
Vk,2-i3-1 = Vk23 - F£+ISI%+1 . _
Tht1/k+1 = Tha1 k41 T Vkl—zlfk-&-l/k-i-l + Vklildk+1/k+1
]31?+1/k+1 = ﬁerl/kJrl + Vk}flﬁiﬂ/kﬂvﬁrf + Vkl—&?zlﬁZJrl/kJerkli?
fk+1/k+1 = Frtiyprr T Viidrra/nm

~ —f —d
P];;f_i,_l/k.l,_l = Pk+1/k+1 + Vk231Pk+1/k+1Vk2—i{
e Step 5:k = k£ + 1 and return to step 1.

10
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Figure 3: Bloc diagram of the RThSKF
4 lllustrative example

In this section, wevill apply the proposed filters (OThSKF and RThSKF) to trémee different cased he parameters of the
system (1) and the models (2) and (3) are given by

T1k ar, 0.1 0.2 9
Tk = |2y A= 101 06 0.3],0.=05+0.35sin(k),Br=|_15
T3,k 0.2 0.1 0.25 0.5
1 -1 0 ! 1 0t 0.3
Hy, = CEe=1os | F = | EL=|o2], Bl=
0 1 2 1 0.6
—0.5 1

Q% =0.5I3x3, Rp=02I42,Q] =05, Q=05
v =002 001 0.02)7,Qi=(0.01 002 0027, Q=001

T
The initial values of the state ig) = {2 1 3} , the fault isf, = 0 and the unknown inputs i = —1.

All filters are initialized by taking the following values

0 0
T _ _
foz[o 0 0} Fo=0,do =0,P% = 20I3,3, P{ =20, P¢ =20, P = ||, Pe? = |o| and P4 =0

0 0

11



Figure 4 presents the input/output sequence of the systhatiffie of simulation isV = 50.

Figure 4: input/output of system

4.1 Covariance matrices and initial conditions of fault andunknown input are known

In this case, we take the exact values of covariance mawiadbnoises used in (2) and (3) to implement ASKF and OThSKF

Qf =05,Q¢=05,Q7" =(0.02 001 0.02)7,Q=(0.01 0.02 0.02)7 andQ{* = 0.01.

Figure 5 presents the actual state vector first compongnf( the fault (f;;) and the unknown inputsl() and theirs estimated
values obtained by the proposed filter OThSKF and RThSKF.

State X3k

I 1 I I I I I I I
9] 5 10 15 20 25 30 35 40 45 50
Sampling time

Figure 5: State, fault and unknown input

Convergence of the trace of the state covariance mﬁ’gpgt /k+1 @nd fault covariance matrik;

et 1/k41 Q€ shown in Figures
6 and 7 respectively.

12



35 T T

30 q

25 q

20H 4

0 5 10 15 20 25 30 35 40 45 50
Sampling time

Figure 6: Trace of state covariance matrix

9 T T

0 5 10 15 20 25 30 35 40 45 50
Sampling time

Figure 7: Fault covariance matrix

The simulation results in Tables 3-5, show the average r@amsquare errors (RMSE) in the estimated states, fault and
unknown input. For example, the RMSE of the first componerstatie vector is calculated by

RMSE(z1 ) = \/%ij:l(m,k — &1 k)2

In Table 3, it can be proved that the OThSKF and ASKF are etprivavhere the demonstration has been made in Thle
OThSKF and ASKF give the best estimations. However, thelrebtained by RThSKF is not an optimal solution because
this filter is not equivalent to the ASKF. The computationdvantage of the OThSKF over the ASKF was demonstrated by
using the floating-point operations or "flops” in Matlab fareoiteration as a measure of the computational complexjt§][6
Each multiplication and each addition contribute on floprdo\ccording to the Table 3, we note that the flops counted for

13



Table 3: Performances of the ASKF, OThSKF and RThSKF

RMSE ASKF | OThSKF | RThSKF
1k 1.02 1.02 1.56
Dok 130 | 1.30 2.11
T3k 0.97 0.97 1.50
i 078 | 0.78 1.27
dj 0.75 0.75 0.90
flops(one iteration) | 1340 1244 917

the OThSKF are fewer than that of the ASKF. On the other hdedflops counted for the RThSKF are fewer than that of the
OThSKF.

4.2 Covariance matrices of fault and unknown input are not pefectly known

Here, we assume that the covariance matrices of the faultrendnknown input are not perfectly known, so we take the
following values

Q =125Q¢=125Q =0 0 07, Q=0 0 0)Tand Q[*=0

State X1k
40 T T T T T T T T T
4
20 P /\ g
0 4
----- OThSKF
-20 RThSKF | 1
- — = True
-40 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

L
0 5 10 15 20 25 30 35 40 45 50
Sampling time

Figure 8: State, fault and unknown input

According to the Table 4 and the Figures 8-10, we note thatSKFhand ASKF lose theirs performances, but the perfor-
mances of RTSKF remain unchangeable in spite of the signtfeaor on the covariance matrices values.
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Figure 9: Trace of state covariance matrix

10 T T T T T T T T T
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(o] 5 10 15 20 25 30 35 40 45 50
Sampling time

Figure 10: Fault covariance matrix

Table 4: Performances of the ASKF, OThSKF and RThSKF

RMSE | ASKF | OThSKF | RThSKF
1,k 1.49 1.49 1.56
ok 1.66 1.66 211
3k 121 1.21 1.50

fx 1.23 1.23 1.27
dy, 0.95 0.95 0.90

4.3 Models of fault and unknown input are completely unknown
In this case, the fault and the unknown input are given by

fr = 10uy(k — 15) — 10u,(k — 35) andd;, = 6sin(0.5k)
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whereu, (k) is the unit-step function.
To implement OThSKF we take the following values as covagamatrices of the fault and the unknown input

Ql=0, @i=0, Q=0 0 007,Q¢*=0 0 0)Tand Q"=0

State X3k

----- oThskF| |
RThSKF

= = = True
40 45 50

35

Unknown input

-10 L L L L L L I I I
(o] 25

Sampling time

Figure 11: State, fault and unknown input

In Figure 11, we observe that the RThSKF gives the best statdault estimation. Indeed, the evaluation of the RMSE

Table 5: Performances of the ASKF, OThSKF and RThSKF

RMSE | ASKF | OThSKF | RThSKF
z1 | 362 | 362 2.00
vor | 671 | 671 2.22
zsx | 539 | 5.39 1.53

fo | 491 | 401 1.54
d, | 1.38 | 1.38 1.24

presented in the Table 5 confirms this observation. But, {ieSKF completely loses its optimality.

5 Conclusion

In this paperthe robust three-stage Kalman filter is develdpaabtain an effective state and fault estimation of lingaclsas-

tic system in the presence of unknown inputs. To achieveaihiswe had two cases ; in the first cases OThSKF is useds

the noise statistical properties of the fault and the unkmiput were perfectly known. This filter is equivalent to ASKnd
makes it possible to guarantee optimality of estimatiorthtnsecond casthe RThSKF is applietbecause the knowledge of
fault and unknown input models was not completely or pdytiahown. Indeed, the RThSKF remains powerful (Tables 4 and
5) in spite of the errors made on the covariance matricesactenizing the noise of fault and unknown input. Moreoveis i
not necessary to know the initial values that are relativelgted to the fault and the unknown input subfilters.
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