Nonlinear observer based sensor fault tolerant control for nonlinear systems

Dalil Ichalal[†], Benoît Marx[‡], José Ragot[‡], Didier Maquin[‡]

 [†] Laboratoire d'Informatique, Biologie Intégrative et Systèmes Complexes (IBISC) Evry, France
[‡] Centre de Recherche en Automatique de Nancy (CRAN) Nancy, France

8th International IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes August 29-31, 2012, Mexico City, Mexico

To design a sensor fault tolerant controller for nonlinear systems

To design a sensor fault tolerant controller for nonlinear systems

- To describe the nonlinear behaviour using a Takagi-Sugeno model (with measurable premise variables)
- It design a residual generator able to detect and isolate sensor faults
- To estimate a "fault-free" state of the system by a judicious blending (based on the residual magnitude) of the different state estimates issued from a DOS structure
- To design an observer-based controller generating a Parallel Distributed Compensation (PDC) control law, using this "fault-free" state estimate

To design a sensor fault tolerant controller for nonlinear systems

- To describe the nonlinear behaviour using a Takagi-Sugeno model (with measurable premise variables)
- To design a residual generator able to detect and isolate sensor faults.
- To estimate a "fault-free" state of the system by a judicious blending (based on the residual magnitude) of the different state estimates issued from a DOS structure
- To design an observer-based controller generating a Parallel Distributed Compensation (PDC) control law, using this "fault-free" state estimate

To design a sensor fault tolerant controller for nonlinear systems

- To describe the nonlinear behaviour using a Takagi-Sugeno model (with measurable premise variables)
- It design a residual generator able to detect and isolate sensor faults
- To estimate a "fault-free" state of the system by a judicious blending (based on the residual magnitude) of the different state estimates issued from a DOS structure
- To design an observer-based controller generating a Parallel Distributed Compensation (PDC) control law, using this "fault-free" state estimate

To design a sensor fault tolerant controller for nonlinear systems

- To describe the nonlinear behaviour using a Takagi-Sugeno model (with measurable premise variables)
- It design a residual generator able to detect and isolate sensor faults
- To estimate a "fault-free" state of the system by a judicious blending (based on the residual magnitude) of the different state estimates issued from a DOS structure
- To design an observer-based controller generating a Parallel Distributed Compensation (PDC) control law, using this "fault-free" state estimate

To design a sensor fault tolerant controller for nonlinear systems

- To describe the nonlinear behaviour using a Takagi-Sugeno model (with measurable premise variables)
- It design a residual generator able to detect and isolate sensor faults
- To estimate a "fault-free" state of the system by a judicious blending (based on the residual magnitude) of the different state estimates issued from a DOS structure
- To design an observer-based controller generating a Parallel Distributed Compensation (PDC) control law, using this "fault-free" state estimate

- 2 Modelling of nonlinear systems
- Residual generator design
- Fault tolerant control strategy
- 6 Conclusions and perspectives

3 Residual generator design

Fault tolerant control strategy

5 Conclusions and perspectives

- 2 Modelling of nonlinear systems
- 3 Residual generator design
- 4 Fault tolerant control strategy
- 6 Conclusions and perspectives

- 2 Modelling of nonlinear systems
- 3 Residual generator design
- 4 Fault tolerant control strategy
- Conclusions and perspectives

- 2 Modelling of nonlinear systems
- 3 Residual generator design
- 4 Fault tolerant control strategy
- 5 Conclusions and perspectives

Modelling of nonlinear systems

Takagi-Sugeno model

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (A_i x(t) + B_i u(t))$$
$$y(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) C_i x(t)$$

• Convex sum property : $\sum_{i=1}^{r} \mu_i(\xi(t)) = 1$ and $0 \le \mu_i(\xi(t)) \le 1$, $\forall t, \forall i \in \{1, ..., r\}$

Modelling of nonlinear systems

Takagi-Sugeno model

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (A_i x(t) + B_i u(t))$$
$$y(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) C_i x(t)$$

• Convex sum property : $\sum_{i=1}^{r} \mu_i(\xi(t)) = 1$ and $0 \le \mu_i(\xi(t)) \le 1$, $\forall t, \forall i \in \{1, ..., r\}$

Notations

- r : number of submodels
- μ_i : weighting functions
- $\xi(t)$: premise (or decision) variable, assumed, here, to be measurable

Modelling of nonlinear systems

Takagi-Sugeno model

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (A_i x(t) + B_i u(t))$$
$$y(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) C_i x(t)$$

• Convex sum property : $\sum_{i=1}^{r} \mu_i(\xi(t)) = 1$ and $0 \le \mu_i(\xi(t)) \le 1$, $\forall t, \forall i \in \{1, ..., r\}$

Notations

- *r* : number of submodels
- μ_i : weighting functions
- $\xi(t)$: premise (or decision) variable, assumed, here, to be measurable

Obtention of that kind of model

- Linearisation of an existing nonlinear model around operating points
- Direct identification of the model parameters (once the structure has been chosen) from sets of input-ouput data

Didier Maquin (CRAN)

Nonlinear observer based sensor fault tolerant control

Faulty system (sensor faults)

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (A_i x(t) + B_i u(t))$$
$$y(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (C_i x(t) + G_i f(t))$$

Faulty system (sensor faults)

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (A_i x(t) + B_i u(t))$$
$$y(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (C_i x(t) + G_i f(t))$$

Residual generator

$$\begin{cases} \dot{\hat{x}}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (A_i \hat{x}(t) + B_i u(t) + L_i(y(t) - \hat{y}(t))) \\ \hat{y}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) C_i \hat{x}(t) \\ r(t) = M(y(t) - \hat{y}(t)) \end{cases}$$

Faulty system (sensor faults)

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (A_i x(t) + B_i u(t))$$
$$y(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) (C_i x(t) + G_i f(t))$$

Residual generator

$$\begin{cases} \dot{\hat{x}}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) \left(A_i \hat{x}(t) + B_i u(t) + L_i(y(t) - \hat{y}(t)) \right) \\ \hat{y}(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) C_i \hat{x}(t) \\ r(t) = M(y(t) - \hat{y}(t)) \end{cases}$$

Unknown gain matrices to be determined : L_i , i = 1, ..., r and M

Didier Maquin (CRAN)

Residual generator design

- A filter $W_{ref}(s) = \left(\frac{A_{ref}}{C_{ref}} \mid \frac{B_{ref}}{D_{ref}}\right)$ is introduced to model the desired response of the residual r(t) to the fault f(t).
- If W_{ref}(s) is diagonal each residual r_i(t) is made sensitive only to the fault affecting the ith output
- The gains L_i and M are computed to minimize the \mathcal{L}_2 gain from f(t) to $\tilde{r}(t) = r_{ref}(t) - r(t)$

- A filter $W_{ref}(s) = \left(\frac{A_{ref}}{C_{ref}} | \frac{B_{ref}}{D_{ref}}\right)$ is introduced to model the desired response of the residual r(t) to the fault f(t).
- If W_{ref}(s) is diagonal each residual r_i(t) is made sensitive only to the fault affecting the ith output
- The gains L_i and M are computed to minimize the ℒ₂ gain from f(t) to r̃(t) = r_{ref}(t) − r(t)

- A filter $W_{ref}(s) = \left(\frac{A_{ref}}{C_{ref}} | \frac{B_{ref}}{D_{ref}}\right)$ is introduced to model the desired response of the residual r(t) to the fault f(t).
- If W_{ref}(s) is diagonal each residual r_i(t) is made sensitive only to the fault affecting the ith output
- The gains L_i and M are computed to minimize the \mathcal{L}_2 gain from f(t) to $\tilde{r}(t) = r_{ref}(t) - r(t)$

FIGURE: Residual generator

- A filter $W_{ref}(s) = \left(\frac{A_{ref}}{C_{ref}} | \frac{B_{ref}}{D_{ref}}\right)$ is introduced to model the desired response of the residual r(t) to the fault f(t).
- If W_{ref}(s) is diagonal each residual r_i(t) is made sensitive only to the fault affecting the ith output
- The gains L_i and M are computed to minimize the ℒ₂ gain from f(t) to r̃(t) = r_{ref}(t) − r(t)

Ichalal D., Marx B., Ragot J., Maquin D. Fault diagnosis in Takagi-Sugeno nonlinear systems. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS'2009, Barcelona, Spain, June 30th - July 3rd, 2009. (doi :10.3182/20090630-4-ES-2003.00084)

Theorem 1

The robust residual generator exists if there exists symmetric and positive definite matrices P_1 and P_2 , and matrices K_i and M solving the following optimization problem

$$\min_{P_1,P_2,K_i,M}\gamma$$

under the following LMI constraints

$$\begin{cases} X_{ij} < 0, & i = 1, ..., r \\ \frac{2}{r-1} X_{ij} + X_{ij} + X_{jj} < 0, & i, j = 1, ..., r, i \neq j \end{cases}$$

where, for $(i,j) \in \{1,\ldots,r\}$, X_{ij} is defined by

$$X_{ij} = \begin{pmatrix} A_i^T P_1 + P_1 A_i - C_j^T K_i^T - K_i C_j & 0 & -K_i G_j & C_i^T M^T \\ * & A_{ref}^T P_2 + P_2 A_{ref} & P_2 B_{ref} & -C_{ref} \\ * & * & -\gamma I & G_i^T M^T - D_{ref}^T \\ * & * & * & -\gamma I \end{pmatrix}$$

The residual generator gains are given by $L_i = P_1^{-1} K_i$ and M. The attenuation level from the faults f(t) to the virtual residual $\tilde{r}(t) = r_{ref}(t) - r(t)$ is given by γ .

Use of an observer bank

The k^{th} observer is fed with the input of the system u(t) and the k^{th} output $y^k(t)$ and produces the estimate $\hat{x}^k(t)$

$$\begin{cases} \dot{\hat{x}}^{k}(t) = \sum_{i=1}^{r} \mu_{i}(\xi(t)) \left(A_{i} \hat{x}^{k}(t) + B_{i} u(t) + L_{i}^{k} \left(y^{k}(t) - \hat{y}^{k}(t) \right) \right) \\ \hat{y}^{k}(t) = \sum_{i=1}^{r} \mu_{i}(\xi(t)) C_{i}^{k} \hat{x}^{k}(t) \end{cases}$$

where C_i^k is the k^{th} row of the matrix C_i corresponding to the k^{th} sensor.

Use of an observer bank

► The k^{th} observer is fed with the input of the system u(t) and the k^{th} output $y^k(t)$ and produces the estimate $\hat{x}^k(t)$

$$\begin{cases} \dot{\hat{x}}^{k}(t) = \sum_{i=1}^{r} \mu_{i}(\xi(t)) \left(A_{i} \hat{x}^{k}(t) + B_{i} u(t) + L_{i}^{k} \left(y^{k}(t) - \hat{y}^{k}(t) \right) \right) \\ \hat{y}^{k}(t) = \sum_{i=1}^{r} \mu_{i}(\xi(t)) C_{i}^{k} \hat{x}^{k}(t) \end{cases}$$

where C_i^k is the k^{th} row of the matrix C_i corresponding to the k^{th} sensor.

• The different state estimates $\hat{x}^k(t), k = 1, ..., p$, are then blended to build a representative state estimate $\hat{x}_b(t)$ according to

$$\hat{x}_b(t) = \sum_{k=1}^p h_k(r(t))\hat{x}^k(t)$$

Use of an observer bank

The k^{th} observer is fed with the input of the system u(t) and the k^{th} output $y^k(t)$ and produces the estimate $\hat{x}^k(t)$

$$\begin{cases} \dot{\hat{x}}^{k}(t) = \sum_{i=1}^{r} \mu_{i}(\xi(t)) \left(A_{i} \hat{x}^{k}(t) + B_{i} u(t) + L_{i}^{k} \left(y^{k}(t) - \hat{y}^{k}(t) \right) \right) \\ \hat{y}^{k}(t) = \sum_{i=1}^{r} \mu_{i}(\xi(t)) C_{i}^{k} \hat{x}^{k}(t) \end{cases}$$

where C_i^k is the k^{th} row of the matrix C_i corresponding to the k^{th} sensor.

► The different state estimates $\hat{x}^k(t), k = 1, ..., p$, are then blended to build a representative state estimate $\hat{x}_b(t)$ according to

$$\hat{x}_b(t) = \sum_{k=1}^{p} \frac{h_k(r(t))\hat{x}^k(t)}{k}$$

The blending is ensured by smooth nonlinear functions h_k(r(t)), depending on the residual vector and satisfying the convex sum property

Computation of the blending functions $h_k(r(t))$

- ► If the k^{th} sensor is affected by a fault, the residual $r_k(t)$ is non zero then the function $h_k(r(t))$ must be close to zero in order to minimize the influence of $\hat{x}^k(t)$ affected by the k^{th} fault
- For example, the functions h_k , for k = 1, ..., p, can be defined as follows

$$\omega_k(r_k(t)) = \exp(-r_k^2(t)/\sigma_k)$$
$$h_k(r(t)) = \frac{\omega_k(r_k(t))}{\sum_{\ell=1}^{p} \omega_\ell(r_\ell(t))}$$

the parameters σ_k are used to take into account the spreading of r_k around zero.

With these definitions, a residual close to zero leads to a weight function tending to 1 when a residual significantly different from zero (in the sense of the variability σ_k) generates a weight tending to 0.

Computation of the blending functions $h_k(r(t))$

- ▶ If the k^{th} sensor is affected by a fault, the residual $r_k(t)$ is non zero then the function $h_k(r(t))$ must be close to zero in order to minimize the influence of $\hat{x}^k(t)$ affected by the k^{th} fault
- For example, the functions h_k , for k = 1, ..., p, can be defined as follows

$$\omega_k(r_k(t)) = \exp(-r_k^2(t)/\sigma_k)$$
$$h_k(r(t)) = \frac{\omega_k(r_k(t))}{\sum_{\ell=1}^p \omega_\ell(r_\ell(t))}$$

the parameters σ_k are used to take into account the spreading of r_k around zero.

With these definitions, a residual close to zero leads to a weight function tending to 1 when a residual significantly different from zero (in the sense of the variability σ_k) generates a weight tending to 0.

Computation of the blending functions $h_k(r(t))$

- ► If the k^{th} sensor is affected by a fault, the residual $r_k(t)$ is non zero then the function $h_k(r(t))$ must be close to zero in order to minimize the influence of $\hat{x}^k(t)$ affected by the k^{th} fault
- For example, the functions h_k , for k = 1, ..., p, can be defined as follows

$$\omega_k(r_k(t)) = \exp(-r_k^2(t)/\sigma_k)$$
$$h_k(r(t)) = \frac{\omega_k(r_k(t))}{\sum_{\ell=1}^p \omega_\ell(r_\ell(t))}$$

the parameters σ_k are used to take into account the spreading of r_k around zero.

With these definitions, a residual close to zero leads to a weight function tending to 1 when a residual significantly different from zero (in the sense of the variability σ_k) generates a weight tending to 0.

The proposed control law is chosen now as a classical PDC control law, but based on the knowledge of this "fault free" state estimate $\hat{x}_b(t)$

$$u(t) = -\sum_{j=1}^{r} \mu_j(\xi(t)) \mathcal{K}_j \hat{\mathbf{x}}_b(t)$$

The proposed control law is chosen now as a classical PDC control law, but based on the knowledge of this "fault free" state estimate $\hat{x}_b(t)$

$$u(t) = -\sum_{j=1}^{r} \mu_j(\xi(t)) \mathcal{K}_j \hat{\mathbf{x}}_b(t)$$

Observer and controller gain design

 k^{th} state estimation error $e^k(t) = x(t) - \hat{x}^k(t)$

$$\dot{e}^{k}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) \left(A_{i} - L_{i}^{k} C_{j}^{k} \right) e^{k}(t)$$

The proposed control law is chosen now as a classical PDC control law, but based on the knowledge of this "fault free" state estimate $\hat{x}_b(t)$

$$u(t) = -\sum_{j=1}^{r} \mu_j(\xi(t)) \mathcal{K}_j \hat{\mathbf{x}}_b(t)$$

Observer and controller gain design

 k^{th} state estimation error $e^k(t) = x(t) - \hat{x}^k(t)$

$$\dot{e}^{k}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) \left(A_{i} - L_{i}^{k} C_{j}^{k} \right) e^{k}(t)$$

Closed-loop system

$$\dot{x}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{p} h_{k}(r(t)) \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) \left((A_{i} - B_{i}K_{j})x(t) + B_{i}K_{j}e^{k}(t) \right)$$

The proposed control law is chosen now as a classical PDC control law, but based on the knowledge of this "fault free" state estimate $\hat{x}_b(t)$

$$u(t) = -\sum_{j=1}^{r} \mu_j(\xi(t)) \mathcal{K}_j \hat{\mathbf{x}}_b(t)$$

Observer and controller gain design

 k^{th} state estimation error $e^k(t) = x(t) - \hat{x}^k(t)$

$$\dot{e}^{k}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) \left(A_{i} - L_{i}^{k} C_{j}^{k} \right) e^{k}(t)$$

Closed-loop system

$$\dot{x}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{p} h_{k}(r(t)) \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) \left((A_{i} - B_{i}K_{j}) x(t) + B_{i}K_{j}e^{k}(t) \right)$$

Observer and controller gain design

Defining the augmented state vector

$$x_a^T(t) = [x^T(t) \ e^{1T}(t) \ \dots \ e^{pT}(t)]$$

the following closed-loop system is obtained

$$\dot{x}_{a}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t))\mu_{j}(\xi(t)) \left(\mathscr{A}_{ij} + \Delta \mathscr{A}_{ij}(t)\right) x_{a}(t)$$

where

$$\mathcal{A}_{ij} = \text{diag} \left(A_i - B_i K_j, A_i - L_i^1 C_j^1, \dots, A_i - L_i^p C_j^p \right)$$

and

$$\Delta \mathscr{A}_{ij}(t) = \begin{bmatrix} 0 & h_1(r(t))B_iK_j & h_2(r(t))B_iK_j & \dots & h_p(r(t))B_iK_j \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

Didier Maquin (CRAN)

Stability analysis

Stability analysis - beginning of the calculus only !

Stability analysis

Consider the quadratic Lyapunov function

$$V(x_a(t)) = x_a^T(t)Px_a(t), \ P = P^T = diag(X, P_1, ..., P_p) > 0$$

Stability analysis

Consider the quadratic Lyapunov function

$$V(x_a(t)) = x_a^T(t)Px_a(t), P = P^T = diag(X, P_1, ..., P_p) > 0$$

• The time derivative of V is given by

$$\dot{V}(x_{a}(t)) = x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) (\mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Delta \mathscr{A}_{ij}^{T}(t) P + P \Delta \mathscr{A}_{ij}(t)) x_{a}(t)$$

Stability analysis

Consider the quadratic Lyapunov function

$$V(x_a(t)) = x_a^T(t)Px_a(t), P = P^T = diag(X, P_1, ..., P_p) > 0$$

• The time derivative of V is given by

$$\dot{V}(x_{a}(t)) = x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t))\mu_{j}(\xi(t))(\mathscr{A}_{ij}^{T}P + P\mathscr{A}_{ij} + \Delta\mathscr{A}_{ij}^{T}(t)P + P\Delta\mathscr{A}_{ij}(t))x_{a}(t)$$

• The matrices $\Delta \mathscr{A}_{ij}(t)$ are time varying and can be reformulated as follows

$$\Delta \mathscr{A}_{ij}(t) = \underbrace{\begin{pmatrix} 0 & B_i K_j & \cdots & B_i K_j \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 0 \end{pmatrix}}_{\mathscr{K}_{ij}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & h_1(r(t))I & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & h_p(r(t))I \end{pmatrix}}_{\Sigma(t)}$$

Stability analysis

Consider the quadratic Lyapunov function

$$V(x_a(t)) = x_a^T(t)Px_a(t), P = P^T = diag(X, P_1, ..., P_p) > 0$$

• The time derivative of V is given by

$$\dot{V}(x_{a}(t)) = x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t))\mu_{j}(\xi(t))(\mathscr{A}_{ij}^{T}P + P\mathscr{A}_{ij} + \Delta\mathscr{A}_{ij}^{T}(t)P + P\Delta\mathscr{A}_{ij}(t))x_{a}(t)$$

• The matrices $\Delta \mathscr{A}_{ij}(t)$ are time varying and can be reformulated as follows

$$\Delta \mathscr{A}_{ij}(t) = \underbrace{\begin{pmatrix} 0 & B_i K_j & \cdots & B_i K_j \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}}_{\mathscr{K}_{ij}} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & h_1(r(t))I & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & h_p(r(t))I \end{pmatrix}}_{\Sigma(t)}$$

• Knowing that the functions $h_k(r(t))$ satisfy the convex sum property, it follows that $\Sigma^T(t)\Sigma(t) \le \text{diag}(0, I_n, ..., I_n)$

Stability analysis (Lyapunov)

• The derivative of the Lyapunov function is rewritten

$$\dot{V}(x_{a}(t)) = x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) (\mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Sigma^{T}(t) \mathscr{K}_{ij}^{T} P + P \mathscr{K}_{ij} \Sigma(t)) x_{a}(t)$$

Stability analysis (Lyapunov)

• The derivative of the Lyapunov function is rewritten

$$\dot{V}(x_{a}(t)) = x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) (\mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Sigma^{T}(t) \mathscr{K}_{ij}^{T} P + P \mathscr{K}_{ij} \Sigma(t)) x_{a}(t)$$

• It can be bounded as follows

$$\dot{V}(x_{a}(t)) \leq x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) (\mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Sigma^{T}(t) \Lambda \Sigma(t) + P \mathscr{K}_{ij} \Lambda^{-1} \mathscr{K}_{ij}^{T} P) x_{a}(t)$$

where Λ is a block diagonal positive definite matrix.

Stability analysis (Lyapunov)

• The derivative of the Lyapunov function is rewritten

$$\dot{V}(x_{a}(t)) = x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) (\mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Sigma^{T}(t) \mathscr{K}_{ij}^{T} P + P \mathscr{K}_{ij} \Sigma(t)) x_{a}(t)$$

• It can be bounded as follows

$$\dot{V}(x_{a}(t)) \leq x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) (\mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Sigma^{T}(t) \Lambda \Sigma(t) + P \mathscr{K}_{ij} \Lambda^{-1} \mathscr{K}_{ij}^{T} P) x_{a}(t)$$

where Λ is a block diagonal positive definite matrix.

The negativity of $\dot{V}(x_a(t))$ is satisfied if

$$\sum_{i=1}^{r} \sum_{j=1}^{r} \mu_i(\xi(t)) \mu_j(\xi(t)) Y_{ij}(t) < 0$$

where Y_{ij} is defined by

$$Y_{ij}(t) = \mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Sigma^{T}(t) \Lambda \Sigma(t) + P \mathscr{K}_{ij} \Lambda^{-1} \mathscr{K}_{ij}^{T} P$$

Stability analysis (Lyapunov)

• The derivative of the Lyapunov function is rewritten

$$\dot{V}(x_{a}(t)) = x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) (\mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Sigma^{T}(t) \mathscr{K}_{ij}^{T} P + P \mathscr{K}_{ij} \Sigma(t)) x_{a}(t)$$

• It can be bounded as follows

$$\dot{V}(x_{a}(t)) \leq x_{a}^{T}(t) \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(\xi(t)) \mu_{j}(\xi(t)) (\mathscr{A}_{ij}^{T} P + P \mathscr{A}_{ij} + \Sigma^{T}(t) \Lambda \Sigma(t) + P \mathscr{K}_{ij} \Lambda^{-1} \mathscr{K}_{ij}^{T} P) x_{a}(t)$$

where Λ is a block diagonal positive definite matrix.

The negativity of $\dot{V}(x_a(t))$ is satisfied if

$$\sum_{i=1}^{r} \sum_{j=1}^{r} \mu_i(\xi(t)) \mu_j(\xi(t)) Y_{ij}(t) < 0$$

where Y_{ij} is defined by

$$Y_{ij}(t) = \mathscr{A}_{ij}^{\mathsf{T}} \mathsf{P} + \mathsf{P} \mathscr{A}_{ij} + \boldsymbol{\Sigma}^{\mathsf{T}}(t) \Lambda \boldsymbol{\Sigma}(t) + \mathsf{P} \mathscr{K}_{ij} \Lambda^{-1} \mathscr{K}_{ij}^{\mathsf{T}} \mathsf{P}$$

Choosing Λ = diag (εI_n, λ₁I_n, λ₂I_n,..., λ_{p-1}I_n, λ_pI_n) and remembering that Σ^T(t)Σ(t) ≤ diag (0, I_n,..., I_n), we have

 $\Sigma^{T}(t)\Lambda\Sigma(t) \leq \overline{\Lambda}$ where $\overline{\Lambda} = \text{diag}(0, \lambda_{1}I_{n}, ..., \lambda_{p}I_{n})$

• Choosing $\Lambda = \text{diag}\left(\varepsilon I_n, \lambda_1 I_n, \lambda_2 I_n, ..., \lambda_{p-1} I_n, \lambda_p I_n\right)$ and remembering that $\Sigma^T(t)\Sigma(t) \leq \text{diag}\left(0, I_n, ..., I_n\right)$, we have

 $\Sigma^{T}(t)\Lambda\Sigma(t) \leq \overline{\Lambda}$ where $\overline{\Lambda} = \text{diag}(0, \lambda_{1}I_{n}, ..., \lambda_{p}I_{n})$

Due to the convex sum property of μ_i, and using a Schur complement, sufficient conditions ensuring the negativity of V(x_a(t)) are

$$\begin{pmatrix} \mathscr{A}_{ij}^{\mathsf{T}} \mathsf{P} + \mathsf{P} \mathscr{A}_{ij} + \bar{\Lambda} & \mathsf{P} \mathscr{K}_{ij} \\ \mathscr{K}_{ij}^{\mathsf{T}} \mathsf{P} & -\Lambda \end{pmatrix} < 0$$

• Choosing $\Lambda = \text{diag}\left(\varepsilon I_n, \lambda_1 I_n, \lambda_2 I_n, ..., \lambda_{p-1} I_n, \lambda_p I_n\right)$ and remembering that $\Sigma^T(t)\Sigma(t) \leq \text{diag}\left(0, I_n, ..., I_n\right)$, we have

 $\Sigma^{T}(t)\Lambda\Sigma(t) \leq \overline{\Lambda}$ where $\overline{\Lambda} = \text{diag}(0, \lambda_{1}I_{n}, ..., \lambda_{p}I_{n})$

Due to the convex sum property of μ_i, and using a Schur complement, sufficient conditions ensuring the negativity of V(x_a(t)) are

$$\begin{pmatrix} \mathscr{A}_{ij}^{\mathsf{T}} P + P \mathscr{A}_{ij} + \bar{\Lambda} & P \mathscr{K}_{ij} \\ \mathscr{K}_{ij}^{\mathsf{T}} P & -\Lambda \end{pmatrix} < 0$$

• Choosing $\Lambda = \text{diag}\left(\varepsilon I_n, \lambda_1 I_n, \lambda_2 I_n, ..., \lambda_{p-1} I_n, \lambda_p I_n\right)$ and remembering that $\Sigma^T(t)\Sigma(t) \leq \text{diag}\left(0, I_n, ..., I_n\right)$, we have

 $\Sigma^{T}(t)\Lambda\Sigma(t) \leq \overline{\Lambda}$ where $\overline{\Lambda} = \text{diag}(0, \lambda_{1}I_{n}, ..., \lambda_{p}I_{n})$

Due to the convex sum property of μ_i, and using a Schur complement, sufficient conditions ensuring the negativity of V(x_a(t)) are

$$\begin{pmatrix} \mathscr{A}_{ij}^{\mathsf{T}} \mathsf{P} + \mathsf{P} \mathscr{A}_{ij} + \bar{\Lambda} & \mathsf{P} \mathscr{K}_{ij} \\ \mathscr{K}_{ij}^{\mathsf{T}} \mathsf{P} & -\Lambda \end{pmatrix} < 0$$

 Some complementary calculus are necessary in order to state clearly the expression of the gain matrices of the controller (see the paper for the complete proof)

Choosing Λ = diag (εI_n, λ₁I_n, λ₂I_n,..., λ_{p-1}I_n, λ_pI_n) and remembering that Σ^T(t)Σ(t) ≤ diag (0, I_n,..., I_n), we have

 $\Sigma^{T}(t)\Lambda\Sigma(t) \leq \overline{\Lambda}$ where $\overline{\Lambda} = \text{diag}(0, \lambda_{1}I_{n}, ..., \lambda_{p}I_{n})$

Due to the convex sum property of μ_i, and using a Schur complement, sufficient conditions ensuring the negativity of V(x_a(t)) are

$$\begin{pmatrix} \mathscr{A}_{ij}^{\mathsf{T}} \mathsf{P} + \mathsf{P} \mathscr{A}_{ij} + \bar{\Lambda} & \mathsf{P} \mathscr{K}_{ij} \\ \mathscr{K}_{ij}^{\mathsf{T}} \mathsf{P} & -\Lambda \end{pmatrix} < 0$$

- Some complementary calculus are necessary in order to state clearly the expression of the gain matrices of the controller (see the paper for the complete proof)
- The paper also explain how it's possible to obtain relaxed stability conditions using Polya's theorem

System with r = 2 submodels

System matrices

$$A_{1} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -3 & 0 \\ 2 & 1 & -8 \end{pmatrix}, A_{2} = \begin{pmatrix} -3 & 2 & -2 \\ 5 & -3 & 0 \\ 1 & 2 & -4 \end{pmatrix}$$
$$B_{1} = \begin{pmatrix} 1 \\ 5 \\ 0.5 \end{pmatrix}, B_{2} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Weighting functions

$$\mu_1(y(t)) = \frac{1 - \tanh(y_2(t))}{2}, \quad \mu_2(y(t)) = 1 - \mu_1(y(t))$$

System with r = 2 submodels

System matrices

$$A_{1} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -3 & 0 \\ 2 & 1 & -8 \end{pmatrix}, A_{2} = \begin{pmatrix} -3 & 2 & -2 \\ 5 & -3 & 0 \\ 1 & 2 & -4 \end{pmatrix}$$
$$B_{1} = \begin{pmatrix} 1 \\ 5 \\ 0.5 \end{pmatrix}, B_{2} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Weighting functions

$$\mu_1(y(t)) = \frac{1 - \tanh(y_2(t))}{2}, \quad \mu_2(y(t)) = 1 - \mu_1(y(t))$$

2 outputs \Rightarrow 2 state observers

$$\omega_k(r_k(t)) = \exp(-r_k^2(t)/\sigma_k), \quad h_k(r(t)) = \frac{\omega_k(r_k(t))}{\sum_{\ell=1}^2 \omega_\ell(r_\ell(t))}, \quad \sigma_1 = \sigma_2 = 0.01$$

First case : sensor additive time varying faults

Two additive oscillatory faults; the first one is a low frequency fault affecting $y_2(t)$, while the second is a high frequency one affecting $y_1(t)$.

FIGURE: Faults, control signals and weighting functions

Didier Maquin (CRAN)

FIGURE: State comparison (system without FTC and with FTC)

Second case : sensor parametric fault

f(t) : multiplicative fault $f_2(t)$: additive fault

FIGURE: Faults, control signals and weighting functions

Didier Maguin (CRAN)

Nonlinear observer based sensor fault tolerant control

FIGURE: State comparison (system without FTC and with FTC)

Conclusions

- The design of a sensor fault tolerant controller has been proposed for nonlinear systems described by a T-S Model
- The approach is based on a bank of state observers, a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state estimate to compensate the effects of the faults on the system.
- The stability of the closed-loop system is studied by Lyapunov theory and LMI constraints are provided to design the gain matrices of the different blocks of the proposed FTC scheme

Conclusions

- The design of a sensor fault tolerant controller has been proposed for nonlinear systems described by a T-S Model
- The approach is based on a bank of state observers, a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state estimate to compensate the effects of the faults on the system.
- The stability of the closed-loop system is studied by Lyapunov theory and LMI constraints are provided to design the gain matrices of the different blocks of the proposed FTC scheme

Conclusions

- The design of a sensor fault tolerant controller has been proposed for nonlinear systems described by a T-S Model
- The approach is based on a bank of state observers, a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state estimate to compensate the effects of the faults on the system.
- The stability of the closed-loop system is studied by Lyapunov theory and LMI constraints are provided to design the gain matrices of the different blocks of the proposed FTC scheme

Conclusions

- The design of a sensor fault tolerant controller has been proposed for nonlinear systems described by a T-S Model
- The approach is based on a bank of state observers, a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state estimate to compensate the effects of the faults on the system.
- The stability of the closed-loop system is studied by Lyapunov theory and LMI constraints are provided to design the gain matrices of the different blocks of the proposed FTC scheme

- Extension of that work to T-S models with unmeasurable premise variables
- Study of the choice of the weighting functions $h_k(r(t))$
- Extension to the Generalized Observer Scheme (relaxation of observability conditions)

Conclusions

- The design of a sensor fault tolerant controller has been proposed for nonlinear systems described by a T-S Model
- The approach is based on a bank of state observers, a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state estimate to compensate the effects of the faults on the system.
- The stability of the closed-loop system is studied by Lyapunov theory and LMI constraints are provided to design the gain matrices of the different blocks of the proposed FTC scheme

- Extension of that work to T-S models with unmeasurable premise variables
- Study of the choice of the weighting functions $h_k(r(t))$
- Extension to the Generalized Observer Scheme (relaxation of observability conditions)

Conclusions

- The design of a sensor fault tolerant controller has been proposed for nonlinear systems described by a T-S Model
- The approach is based on a bank of state observers, a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state estimate to compensate the effects of the faults on the system.
- The stability of the closed-loop system is studied by Lyapunov theory and LMI constraints are provided to design the gain matrices of the different blocks of the proposed FTC scheme

- Extension of that work to T-S models with unmeasurable premise variables
- Study of the choice of the weighting functions h_k(r(t))
- Extension to the Generalized Observer Scheme (relaxation of observability conditions)

Conclusions

- The design of a sensor fault tolerant controller has been proposed for nonlinear systems described by a T-S Model
- The approach is based on a bank of state observers, a residual generator for diagnosis and a smooth selecting mechanism to choose an adequate state estimate to compensate the effects of the faults on the system.
- The stability of the closed-loop system is studied by Lyapunov theory and LMI constraints are provided to design the gain matrices of the different blocks of the proposed FTC scheme

- Extension of that work to T-S models with unmeasurable premise variables
- Study of the choice of the weighting functions $h_k(r(t))$
- Extension to the Generalized Observer Scheme (relaxation of observability conditions)

Get in touch

Didier Maquin

Professor in Automatic Control Université de Lorraine

High School of Electrical and Mechanical Engineering

Research Center for Automatic Control

didier.maquin@univ-lorraine.fr

More information?

Personal: http://www.ensem.inpl-nancy.fr/Didier.Maquin/en/

Research Lab: http://www.cran.uhp-nancy.fr/anglais/