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Motivation and proposition

Motivation
To design a sensor fault tolerant controller for nonlinear systems

Proposition and outline
1 To describe the nonlinear behaviour using a Takagi-Sugeno model (with

measurable premise variables)

2 To design a residual generator able to detect and isolate sensor faults

3 To estimate a “fault-free” state of the system by a judicious blending (based on
the residual magnitude) of the different state estimates issued from a DOS
structure

4 To design an observer-based controller generating a Parallel Distributed
Compensation (PDC) control law, using this “fault-free” state estimate
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Modelling of nonlinear systems

Takagi-Sugeno model




ẋ(t) =
r

∑
i=1

µi (ξ (t))(Aix(t) + Biu(t))

y(t) =
r

∑
i=1

µi (ξ (t))Cix(t)

• Convex sum property :
r
∑

i=1
µi (ξ (t)) = 1 and 0≤ µi (ξ (t))≤ 1, ∀t , ∀i ∈ {1, ..., r}

Notations

r : number of submodels
µi : weighting functions
ξ (t) : premise (or decision) variable, assumed, here, to be measurable

Obtention of that kind of model
I Linearisation of an existing nonlinear model around operating points
I Direct identification of the model parameters (once the structure has been

chosen) from sets of input-ouput data
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Residual generator design

Faulty system (sensor faults)




ẋ(t) =
r

∑
i=1

µi (ξ (t))(Aix(t) + Biu(t))

y(t) =
r

∑
i=1

µi (ξ (t))(Cix(t) + Gi f (t))

Residual generator




˙̂x(t) =
r

∑
i=1

µi (ξ (t))(Ai x̂(t) + Biu(t) + Li (y(t)− ŷ(t)))

ŷ(t) =
r

∑
i=1

µi (ξ (t))Ci x̂(t)

r(t) = M(y(t)− ŷ(t))

Unknown gain matrices to be determined : Li , i = 1, . . . , r and M
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Residual generator design

In the field of observer design and diagnosis of nonlinear sys-
tems using multiple model approach, Patton et al. [1998] pro-
posed an observer-based method to generate residual generator
and using an observer bank in order to achieve isolation, an
application to DCmotor is proposed. In Akhenak et al. [2007], a
sliding mode observer for TS systems is proposed to detect and
estimate actuator faults. In these works, the authors assumed
that the weighting functions depend on measurable premise
variables (input or output) of the system. It is clear that the
choice of measurable premise variables offers a good simplicity
to generalize the methods already developed for linear systems.
But in the case where the premise variables are not measurable,
the problem becomes very hard. However, this formalism is
very important in both the exact representation of the nonlinear
behavior by multiple model (see the simulation example) and
in diagnosis method based on observer banks to detect and
isolate actuator and/or sensor faults. Indeed in this case, the
use of measurable premise variables requires to develop two
different multiple models, but using multiple models with un-
measurable premise variables allows to develop only one model
of the system behavior to detect and isolate both actuator and
sensor faults using observer banks. In the literature, few works
are devoted to the case of unmeasurable decision variables.
Nevertheless, we can cite Bergsten et al. [2002], Palm and
Bergsten [2000], where the authors proposed the fuzzy Thau-
Luenberger observer which is an extension of the classical
Luenberger observer. The main contribution of this paper is
to propose a method for fault diagnosis of nonlinear systems
described by TS models with measurable and unmeasurable
premise variables using the standardH∞ framework developed
for linear systems.

3. RESIDUAL GENERATOR DESIGN

The residual generator design for nonlinear systems described
by Takagi-Sugeno multiple model is addressed in this section.
Two cases are studied, the first case deals with TS models
where the decision variables are measurable and the second one
concerns TS models with unmeasurable decision variables.

3.1 case 1: measurable premise variables

Let consider the TS nonlinear system subject to disturbances
and sensor and actuator faults modeled in (1) An observer-
based residual generator is proposed in the following form





˙̂x(t) =

r∑

i=1

µi(ξ)(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) =

r∑

i=1

µi(ξ)(Cix̂(t) + Diu(t))

r(t) = M(y(t) − ŷ(t))

(3)

where x̂(t) ∈ Rn is the estimated state vector and r(t) ∈ Rnf

is the residual signal that is structured in order to be sensitive
to the fault f(t). The matrices Li ∈ Rn×ny and M ∈ Rnf ×ny

are the residual generator gains. The objective is to design the
gains Li and M in order to minimize the transfer from the
disturbances w(t) and to maximize the transfer of the faults
f(t) to the residual signal r(t). Let define the state estimation
error e(t) = x(t) − x̂(t). Its dynamic is deduced from (1) and
(3) as follows

{
ė(t) = Aξe(t) + Eξd(t) + Fξf(t)
r(t) = Cξe(t) + Gξd(t) + Rξf(t)

(4)

where

Aξ =

r∑

i=1

r∑

k=1

µi(ξ)µj(ξ)(Ai − LiCk)

Eξ =
r∑

i=1

r∑

k=1

µi(ξ)µj(ξ)(Ei − LiGk)

Fξ =
r∑

i=1

r∑

k=1

µi(ξ)µj(ξ)(Fi − LiRk)

Cξ =

r∑

i=1

µi(ξ)MCi, Gξ =

r∑

i=1

µi(ξ)MGi,

Rξ =
r∑

i=1

µi(ξ)MRi

(5)

For convenience, the system (4) can be written under the
following compact form

r = Grdd + Grff (6)
where Grd represents the transfer from the disturbances d(t) to
r(t) and defined by

Grd :=

(
Aξ Eξ

MCi Gξ

)
(7)

and Grf is the transfer from f(t) to r(t) which is defined by

Grf =

(
Aξ Fξ

Cξ Rξ

)
(8)

In standardH∞ framework (see figure 1), the maximization of

System

r(t)
Residual Generator

re(t)

+

−

Wf

y(t)u(t)

f (t)d(t)

Fig. 1. Scheme of robust residual generation

the effect of the faults f(t) on the residual r(t) can be expressed
as a minimization problem. Indeed, by introducing a weighting
parameterWf , the problem is reduced to a minimization of the
effect of the faults on the residual error

re(t) = r(t) − Wff(t) (9)
As explained in Stoustrup and Niemann [2000] the FDI prob-
lem depends on the selected structure of the weight parameter
Wf . Indeed, the fault estimation problem is obtained when
Wf = I and the detection problem is considered when Wf ∈
R1×nf . In addition,Wf can be chosen as a dynamic parameter.
Consider the parameterWf defined

Wf =

(
Af Bf

Cf Df

)
(10)

Wf ∈ S where S is the set of stable filters which have the
following property

‖Wf‖− = infw∈R (σ (Wf (jw))) ≥ 1 (11)
(see Mazars et al. [2008] and Mazars et al. [2006] for more
details). The interest of this kind of filters is that there is no

Wref

rref (t)

r̃(t)

FIGURE: Residual generator

I A filter Wref (s) =

(
Aref Bref
Cref Dref

)

is introduced to model the desired
response of the residual r(t) to the
fault f (t).

I If Wref (s) is diagonal each residual
ri (t) is made sensitive only to the fault
affecting the i th output

I The gains Li and M are computed to
minimize the L2 gain from f (t) to
r̃(t) = rref (t)− r(t)

Ichalal D., Marx B., Ragot J., Maquin D. Fault diagnosis in Takagi-Sugeno nonlinear systems. 7th IFAC

Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS’2009,

Barcelona, Spain, June 30th - July 3rd, 2009. (doi :10.3182/20090630-4-ES-2003.00084)
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Residual generator design

In the field of observer design and diagnosis of nonlinear sys-
tems using multiple model approach, Patton et al. [1998] pro-
posed an observer-based method to generate residual generator
and using an observer bank in order to achieve isolation, an
application to DCmotor is proposed. In Akhenak et al. [2007], a
sliding mode observer for TS systems is proposed to detect and
estimate actuator faults. In these works, the authors assumed
that the weighting functions depend on measurable premise
variables (input or output) of the system. It is clear that the
choice of measurable premise variables offers a good simplicity
to generalize the methods already developed for linear systems.
But in the case where the premise variables are not measurable,
the problem becomes very hard. However, this formalism is
very important in both the exact representation of the nonlinear
behavior by multiple model (see the simulation example) and
in diagnosis method based on observer banks to detect and
isolate actuator and/or sensor faults. Indeed in this case, the
use of measurable premise variables requires to develop two
different multiple models, but using multiple models with un-
measurable premise variables allows to develop only one model
of the system behavior to detect and isolate both actuator and
sensor faults using observer banks. In the literature, few works
are devoted to the case of unmeasurable decision variables.
Nevertheless, we can cite Bergsten et al. [2002], Palm and
Bergsten [2000], where the authors proposed the fuzzy Thau-
Luenberger observer which is an extension of the classical
Luenberger observer. The main contribution of this paper is
to propose a method for fault diagnosis of nonlinear systems
described by TS models with measurable and unmeasurable
premise variables using the standardH∞ framework developed
for linear systems.

3. RESIDUAL GENERATOR DESIGN

The residual generator design for nonlinear systems described
by Takagi-Sugeno multiple model is addressed in this section.
Two cases are studied, the first case deals with TS models
where the decision variables are measurable and the second one
concerns TS models with unmeasurable decision variables.

3.1 case 1: measurable premise variables

Let consider the TS nonlinear system subject to disturbances
and sensor and actuator faults modeled in (1) An observer-
based residual generator is proposed in the following form
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Residual generator design

Theorem 1
The robust residual generator exists if there exists symmetric and positive definite
matrices P1 and P2, and matrices Ki and M solving the following optimization problem

min
P1,P2,Ki ,M

γ

under the following LMI constraints
{

Xii < 0, i = 1, ..., r
2

r−1 Xii + Xij + Xji < 0, i , j = 1, ..., r , i 6= j

where, for (i , j) ∈ {1, . . . , r}, Xij is defined by

Xij =




AT
i P1 + P1Ai −CT

j Ki
T −KiCj 0 −KiGj CT

i MT

∗ AT
ref P2 + P2Aref P2Bref −Cref

∗ ∗ −γI GT
i MT −DT

ref
∗ ∗ ∗ −γI




The residual generator gains are given by Li = P−1
1 Ki and M. The attenuation level

from the faults f (t) to the virtual residual r̃(t) = rref (t)− r(t) is given by γ.
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Fault tolerant control strategy

Use of an observer bank
I The k th observer is fed with the input of the system u(t) and the k th output yk (t)

and produces the estimate x̂k (t)




˙̂xk (t)=
r

∑
i=1

µi (ξ (t))
(

Ai x̂
k (t) + Biu(t)+Lk

i

(
yk (t)− ŷk (t)

))

ŷk (t)=
r

∑
i=1

µi (ξ (t))Ck
i x̂k (t)

where Ck
i is the k th row of the matrix Ci corresponding to the k th sensor.

I The different state estimates x̂k (t),k = 1, . . . ,p, are then blended to build a
representative state estimate x̂b(t) according to

x̂b(t) =
p

∑
k=1

hk (r(t))x̂k (t)

I The blending is ensured by smooth nonlinear functions hk (r(t)), depending on
the residual vector and satisfying the convex sum property

Didier Maquin (CRAN) Nonlinear observer based sensor fault tolerant control Safeprocess 2012 8 / 22



Fault tolerant control strategy

Use of an observer bank
I The k th observer is fed with the input of the system u(t) and the k th output yk (t)

and produces the estimate x̂k (t)




˙̂xk (t)=
r

∑
i=1

µi (ξ (t))
(

Ai x̂
k (t) + Biu(t)+Lk

i

(
yk (t)− ŷk (t)
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Fault tolerant control strategy

FIGURE: Fault detection and fault tolerant control block
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Fault tolerant control strategy

Computation of the blending functions hk (r(t))

I If the k th sensor is affected by a fault, the residual rk (t) is non zero then the
function hk (r(t)) must be close to zero in order to minimize the influence of x̂k (t)
affected by the k th fault

I For example, the functions hk , for k = 1, . . . ,p, can be defined as follows

ωk (rk (t)) = exp(−r2
k (t)/σk )

hk (r(t)) =
ωk (rk (t))

∑
p
`=1 ω`(r`(t))

the parameters σk are used to take into account the spreading of rk around zero.

I With these definitions, a residual close to zero leads to a weight function tending
to 1 when a residual significantly different from zero (in the sense of the variability
σk ) generates a weight tending to 0.
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Fault tolerant control strategy

Control law
The proposed control law is chosen now as a classical PDC control law, but based on
the knowledge of this “fault free" state estimate x̂b(t)

u(t) =−
r

∑
j=1

µj (ξ (t))Kj x̂b(t)

Observer and controller gain design

k th state estimation error ek (t) = x(t)− x̂k (t)

ėk (t) =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))
(

Ai −Lk
i Ck

j

)
ek (t)

Closed-loop system

ẋ(t) =
r

∑
i=1

r

∑
j=1

p

∑
k=1

hk (r(t))µi (ξ (t))µj (ξ (t))
(

(Ai −BiKj )x(t) + BiKje
k (t)

)
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Observer and controller gain design

k th state estimation error ek (t) = x(t)− x̂k (t)

ėk (t) =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))
(

Ai −Lk
i Ck

j

)
ek (t)

Closed-loop system

ẋ(t) =
r

∑
i=1

r

∑
j=1

p

∑
k=1

hk (r(t))µi (ξ (t))µj (ξ (t))
(

(Ai −BiKj )x(t) + BiKje
k (t)

)
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Fault tolerant control strategy

Observer and controller gain design
Defining the augmented state vector

xT
a (t) = [xT (t) e1T (t) . . . epT (t)]

the following closed-loop system is obtained

ẋa(t) =
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))
(
Aij + ∆Aij (t)

)
xa(t)

where
Aij = diag

(
Ai −BiKj , Ai −L1

i C1
j , ..., Ai −Lp

i Cp
j

)

and

∆Aij (t)=




0 h1(r(t))BiKj h2(r(t))BiKj . . . hp(r(t))BiKj
0 0 0 . . . 0

0 0 0
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 0



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Fault tolerant control strategy

Stability analysis

• Consider the quadratic Lyapunov function

V (xa(t)) = xT
a (t)Pxa(t), P = PT = diag(X ,P1, ...,Pp) > 0

• The time derivative of V is given by

V̇ (xa(t)) = xT
a (t)

r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))(A T
ij P + PAij + ∆A T

ij (t)P + P∆Aij (t))xa(t)

• The matrices ∆Aij (t) are time varying and can be reformulated as follows

∆Aij (t) =




0 Bi Kj · · · Bi Kj

0 0
. . .

...
...

...
. . . 0

0 · · · 0 0




︸ ︷︷ ︸
Kij




0 0 · · · 0

0 h1(r(t))I · · ·
...

...
...

. . .
...

0 · · · 0 hp(r(t))I




︸ ︷︷ ︸
Σ(t)

• Knowing that the functions hk (r(t)) satisfy the convex sum property, it follows that

ΣT (t)Σ(t)≤ diag(0, In, ..., In)
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Fault tolerant control strategy

Stability analysis (Lyapunov)
• The derivative of the Lyapunov function is rewritten

V̇ (xa(t)) = xT
a (t)

r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))(A T
ij P + PAij + ΣT (t)K T

ij P + PKij Σ(t))xa(t)

• It can be bounded as follows

V̇ (xa(t))≤xT
a (t)

r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))(A T
ij P+PAij+ΣT (t)ΛΣ(t)+PKij Λ

−1K T
ij P)xa(t)

where Λ is a block diagonal positive definite matrix.

The negativity of V̇ (xa(t)) is satisfied if
r

∑
i=1

r

∑
j=1

µi (ξ (t))µj (ξ (t))Yij (t) < 0

where Yij is defined by

Yij (t) = A T
ij P + PAij + ΣT (t)ΛΣ(t) + PKij Λ

−1K T
ij P
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Fault tolerant control strategy

Stability analysis (Lyapunov)
I Choosing Λ = diag

(
εIn,λ1In,λ2In, ...,λp−1In,λpIn

)
and remembering that

ΣT (t)Σ(t)≤ diag(0, In, ..., In) , we have

ΣT (t)ΛΣ(t)≤ Λ̄ where Λ̄ = diag(0,λ1In, ...,λpIn)

I Due to the convex sum property of µi , and using a Schur complement, sufficient
conditions ensuring the negativity of V̇ (xa(t)) are

(
A T

ij P + PAij + Λ̄ PKij

K T
ij P −Λ

)
< 0

...

I Some complementary calculus are necessary in order to state clearly the
expression of the gain matrices of the controller (see the paper for the complete
proof)

I The paper also explain how it’s possible to obtain relaxed stability conditions
using Polya’s theorem
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Results on academic examples

System with r = 2 submodels
System matrices

A1 =



−2 1 1

1 −3 0
2 1 −8


 , A2 =



−3 2 −2

5 −3 0
1 2 −4




B1 =




1
5

0.5


 , B2 =




3
1
−1


 , C =

(
1 1 1
1 0 0

)

Weighting functions

µ1(y(t)) =
1− tanh(y2(t))

2
, µ2(y(t)) = 1−µ1(y(t))

2 outputs⇒ 2 state observers

ωk (rk (t)) = exp(−r2
k (t)/σk ), hk (r(t)) =

ωk (rk (t))

∑
2
`=1 ω`(r`(t))

, σ1 = σ2 = 0.01
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First case : sensor additive time varying faults

Two additive oscillatory faults ; the first one is a low frequency fault affecting y2(t),
while the second is a high frequency one affecting y1(t).
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FIGURE: Faults, control signals and weighting functions
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Second case : sensor parametric fault

y1(t) = f (t)C1x(t) + f2(t)

f (t) : multiplicative fault f2(t) : additive fault
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Conclusions and perspectives

Conclusions
I The design of a sensor fault tolerant controller has been proposed

for nonlinear systems described by a T-S Model
I The approach is based on a bank of state observers, a residual

generator for diagnosis and a smooth selecting mechanism to
choose an adequate state estimate to compensate the effects of
the faults on the system.

I The stability of the closed-loop system is studied by Lyapunov
theory and LMI constraints are provided to design the gain
matrices of the different blocks of the proposed FTC scheme

Perspectives
I Extension of that work to T-S models with unmeasurable premise

variables
I Study of the choice of the weighting functions hk (r(t))

I Extension to the Generalized Observer Scheme (relaxation of
observability conditions)
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