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Abstract: The paper propose the observer synthesis for uncertainneanl systems affected by
unknown inputs described by the multi-model formulationthaiinmeasurable decision variables. A
proportional multi-integral observer is considered inasrth estimate the state and the unknown inputs
and minimize the influence of the model uncertainties. Thbibty analysis and the observer synthesis
are expressed through linear matrix inequalities basedehyapunov method. The performances of the
proposed observer synthesis method are highlighted thrtheyapplication to a waste-water treatment
plant model, which is an uncertain nonlinear system aftebteunknown inputs.

1. INTRODUCTION Tanaka and Wang [2001], Marx et al. [2007]. The MM under
study in this paper involves unmeasurable decision vagabl
Environmental as technological systems have complex behalepending on the state variables -frequently met in praictic
ior caused by the non linearity of the relationship betwewen t Situations- that are not always accessible.
variables of the process, a large operating domain or \@mit
of system parameters and external perturbations. On theg ot
hand, in the field of the observer/controller synthesis édtf

proportional multi-integral (PMI) observer approach Nag
iss etal. [2011] for uncertain nonlinear systems with umkn
; . : . inputs presented under a MM form is proposed in this paper.
diagnosis and control purpose, the extension of linear atith The state and unknown input estimation given by this observe

to nonlinear Systems is generally a difficult problem..ThIUS, is made simultaneously and the influence of the model un-
a need to build systems that can operate over a wide rangeC%f

. " -certainties is minimized through ain. The convergence
operating conditions, such as models based on a decommosnbo gh&; g 9

of the system model into a number of simpler linear models, nditions of the state and unknown input estimation errors
Multi-model (MM) has proven to be a powerful tool in the re expressed through LMIs (Linear Matrix Inequalitiesy&o

representation of nonlinear systems on a compact set ofdtee s etal. [1994], Tanaka and Wang [2001] by using the Lyapunov

space, as mentioned in chap, 14 of Tanaka and Wang [2001] method and thel, approach. PMI observers were previously

also in the analysis and synthesis of a nonlinear controésys posed by Jiang et al. [2000] for linear systems, by Koenig
Murray-Smith and Johansen [1997], Angelis [2001]. [2005], Gao and Ho [2004] in order to estimate a large class

of polynomial signals for LTI descriptor systems and by leha
Several techniques for obtaining MM were developed Johanset al. [2009] to estimate state and unknown inputs of nonlin-
et al. [2000], Tanaka and Wang [2001], Nagy et al. [2010]. Thear systems expressed under Takagi-Sugeno form but without
sector nonlinearity approach Tanaka and Wang [2001] allowg®nsidering uncertainties affecting the system. Theegfthis

to exactly rewrite a nonlinear system into a MM, but the ckoicmotivates us to derive a novel PMI observer technique that
of the decision variables has not been systematicallyzeli handles the uncertainties influence on the estimation.error

A systematic multi-modeling rewriting with a motivated &® o oo ctical contribution of this paper is to apply the g
o:‘ltheSF Var'aglfhs 1S proclesltalnted In l}[{agy etda![' [301OLwhlgh1§\l modeling and observer method to the realistic model of a
Iaows c;]a:j/m " be mo dehlnee]}rlzagon_ an Ihs I\r/lal\\;lv acRBS 1 \vaste-water treatment process (WWTP) modeled by an ASM1
ast method will be used here for obtaining the ' nonlinear model with ten states, that is equivalently reemias
This paper mainly focuses on the use of multi-models foR MM. The measures used for simulation process are those of
observer synthesis Bergsten et al. [2002], Marx et al. [007the European program benchmark Cost 624 Coop [2002]. The
The observer design represents, in the last decades, a&a ac@hoice of the known/unknown inputs, the measures and the rea
research field owing to its particular importance in observeconditions is made by taking into account the propertiehief t
based control, fault diagnosis and fault tolerant contenidka Bleesbruck treatment station from Luxembourg. The nunaéric

and Wang [2001], Chen and Saif [2007], Koenig and Mammagimulation results for the proposed application show gdates
[2002], Ichalal et al. [2010]. and unknown inputs estimation performances.

Most of the existing works, dedicated to observer desigedbasSection 2 presents the multi-modeling approach and give the
on MM are established for MM with measurable decisiorprob_lem statement. Section 3 gives the proposed obsermer sy
variables (inputs/outputs), that represents a simplifiecion  thesis. Some results and performances of the proposedvebser



are illustrated and designed in section 4 through a complex . r
model of WWTP. Conclusions and future works are given in ~ &(t) = _ pi(&(t), u(t)) (Aii“( ) + Biu(t) + Eid(t)

the end of this proposal. i=1
+Lpi(y(t) —4(1))) (53)
§(t) =Ca(t) + Gd(t 5b
2. MULTI-MODELLING APPROACH .y( ) ,fj( ) ®) (5)
. . do(t) = ps(@(t), u(t)) LY (y(t) — §(t)) + da (5¢)
Generally, a nonlinear system can be described by: i=1
i(t) = f(t),u(t), d(t) ) =S J (0(8) — G0 + d
J0) = glelt),ult), d(t)) CORO —;um), u(D) Ly, (1) = 9(0)) +dyr (50)
The MM approach allows to represent any nonlinear dynaml _ 1 and wherel;, i = 1,2, . (g —1) are the

zy(?éiqm avzlttr;(;nc;etﬁzlgttlstse 2ngcaeﬁvev?ttﬁ i tégnlﬂlginggvgt;ir:]gltjit;nlg t|mat|ons of thég — 1) first derivatives ofi( ). The state and
; P P . known inputs estimation errors are:
linear sub-models Nagy et al. [2010]:
T 6:.177@, €p :dfdo, ceey €g—1 :dq—l 7dq_1
=57 gl u) [(A; + AA;(1)a(t) + Eid(t) | | _
=1 The observer design ) reduces to find the gains
+(B; + ABi(1))u(t)] (2a) ﬁﬁ = [L9F : Lt » L] ak?d Ltpi s.:. lt)r|1e statte and un-
y(t) =C(t) + Gd(t) 2b nowrl input estimation error.o ey to a sta gsys em.
” Notation 3.1.The symbol=« in a block matrix denotes the
ZM(%U) —1, piz,u) > 0,¥(z,u) € R" x R™ (2¢) blocks induced by symmetry.TFor any square matdixS(M )
P is defined byS(M) = M + M*.
wherez(t) € R™ is the system statet) € R™ is the known Theorem 2.The observer (5) esuma}tmg.the state ar_ld unknown
: na : n, input of the system (2) and minimizing th&;-gain v of
input, d(t) € R™ is the unknown inputy(¢t) € R™v is the the K 4 unk " the stat d unk
measured output and the matrices of appropriate dimenaiens e known and unknown inputs on the state and unknown

known and constant excepteXi; () and A B, (t) that satisfy input estimation error is obtained by finding symmetric pesi
the following equations definite matrices?;, € R(ntana)x(ntana) gnd p, € R™*",

matricesP; € R(+ana)xny and positive scalars;; andey;
AA;(t) = MPF,(t)N?, with FI(t)F,(t)<I (3a) foralli = 1,---,r that minimize the scalaf under the

AB;(t) = MPF,(H)N?, with FT(#)F,(t)<I  (3b) following LMI constraints

where bothF, (t) € R1*f1 and Fy(t) € R/2*/2 are unknown Mg <0, j =1 ©
and time varying and/¢, M?, N® andN? are known matrices WhereM,; is defined by

of appropriate dimensions. One can note that the activating
functions i; depend on the system state that is not available

ell e e et P P,

* @22 PQB PQE P,ME  PyM?

to the measurement. « o« 0¥ 0 0 0
In the sequel, the following assumption is made: M=, 7] “Fl,, 0 0
Hypothesis 1.The unknown inputl € CY is assumed to be a ok % #  —eulp 0
bounded time varying signal with nujf” derivative: * ok % * * —eailp,
(D (1) = o L
d'?(t) = 0 (4) O =Lt gy +S(PIA; — P;0)  ©12 =Py(4; - 4j)
13 __ R._ . 14 _ I I
In proportional integral (P1) observer design the assuompin O =P1(Bi — Bj) O =Pi(Bi — Ej) ™

the constancy of the unknown inpui & 0) is needed for the ~ ©% ==1: N/ N +8(F2A;) @33 =e2iNJT N} = Fln,

theoretical proof of the estimation error convergence K@en and where the over-lined and tilde matrices are defined by
and Mammar [2002]. This first hypothesis still gives goodites

T

if the unknown inputs vary slowly. Although, for fast vaiiis ¢ Ay B; 00 -+ 0
of the unknown input no good estimation are obtained. Then, B g |00 g 00
PMI observer is more adequate for this problem, because the C= s A= . S
observer estimates thig — 1) derivatives of the unknown : 0 0 0 i I,
input and gives a good precision for the estimation of the 0 00 0
unknown inputs as in Ichalal et al. [2009]. For instance, one A, MP(¢)
will see, in section 4, that good estimation results areinbth 0 0
with this last hypothesis 1. Ai=| . |.Ei= Mi=| . | ®
0 0
3. OBSERVER DESIGN FOR UNCERTAIN NONLINEAR  The observer gains are then obtained by:
SYSTEMS Lpj 15
L'[ij]Pl Pj 9)

In order to estimate both the system state and the unknown
input, the following PMI Observer is proposed: Proof. Let us define an augmented state and its estimate



zo(t) = [z d)" dy(t)T - dq_l(t)T]T (10)  With some Schur complements and definilg = P, L; and
) T AT 5 T R T 5 =~2, the previous inequality becomes
Zo(t) = [2(0)T d®)T dr(®)" -+ dg_1(t)7] (11)

The augmented state estimation error is defineccly) = ZZ”? Za(t)) 15 (Za(t))M;; <0 (21)
2q(t) — Z,4(t). Using (2a) and (4), the system and observer i=1 j=1
equations can be respectively written as It follows that (20) is satisfied if the LMI (6) holds, which
achieves the proof. For more details see Nagy-Kiss et @ R0
Z pri(2a (), u(t)) [(A; + AA(t))xa(t) where a Pl observer was proposed for a reduced ASM1 model.
(R. AB;(t))u (t)] (12a) The proposed estimation method requires that the systerh mus
— be quadratically robustly stable, as shown in the block)(&f2
" y(t) =Czq(2) (12b) the LMI M.
i B; NOT NaT The performance analysis and the synthesis of observer for
0 6 6 multi-model is based on the resolution of LMI by using the
B; = T T — Lyapunov method. Because of the convex sum property of
S N o the weighting functions (2c), the LMI are only evaluated at
0 0 0 the polytope verticeéA;, B;) (or in the uncertain case adding
— s — —a 0 the termsA A; and AB;) and the weighting functions do not
ABi(t) = M FP(t)N;,  AA(t) = M F*(1)N; - (13)  occur in the resolution of the LMIs. It is to mention that the
and LMI formulation of observer design for MM consists only in
_ sufficient but not necessary conditions. That is the readon w
Z 11 (&4 (), u(t)) [Aj2q(t) + Bju(t) it is essential to propose the appropriate MM structureaDet
choice criteria for MM are discussed in Nagy et al. [2010];
+LJ (y(t) — g(t))] (14a) it is to mention here the observability criteria, which mean
§(t) =Cia(t) (14b) that MM structure with observable submodels are necessary.

%’hus avoid submodel matrice8; with null columns is an
X bservability requirement. It should be also mentioned &a
onz,(t), whereas they depend an(t) in (14a) and then the \1\1 with a low number of submodels is preferred, which leads

comparison of the state, (12b) and its reconstruction (14a) y, |ess computational requirements by reducing the number o
seems to be difficult. In order to cope with the difficulty of X | \1i 10 be solved.

pressing the augmented state estimation error in a trachaby, . .
(12b) is re-written, based on the property (2c). ConsedgqentRe_mark 3.1.If the system is also affected by unknown input
the augmented state estimation error obeys to the foIIowiﬁ/(f;h'Ch estimators are not needed, the system (2) becomes

nonlinear system

One should note that in (12a) the activating functions ddpe

)] Zuz ) [(As + AA; (1) (t)
@ = (e (), w(®)) i (T (t), ult
Lﬂ(t)} ;;” (@alt), wl)its (Ga(t). u(E) B+ ABA0)u(t) + Bud(t) + Faolt)]  (228)
y(t) = Cx(t) + Gd(t) + Hw(t) (22b)
A1) ea(t) + Bj;(t) u(t) (15a) - )
J x(t) J d(t) wherew(t) € R™ denotes these type of unknown inputs. In
(1) this case, the previous result can readily be adapted irr tmde
eq(t) =Ingny 0] [e“(f) (15b) estimate both:(t) andd(t) while minimizing the influence of
e w(t) on the estimation errors. One should see that the matrices
where - o M,; in (6) should be replaced byt;; defined by
_|A; — L;C A — A + AA (L) N » g
B~ B, + ABi(t) B — £ -~ R
Bi;(t) —[ Bi 1 ABi(t ©) B J} A7) with w2 = [(P,H - PF)T FIP, 00), H = [HT 0]
— —T
AA(t) = [A4; )T 0 0]" 18) andF; = [F70].

The candidate Lyapunov function for (15) is

Jea®]' [P 0 ea(t)}
Vi@a(t),z(®)) {ﬂf(t)] [ 0 Pz] [x(t) (19) 4.1 Process description and ASM1 model
whereP; and P, are symmetric positive definite matrices. The
objective is to find the gain&; of the observer that minimize The widely used activated sludge based waste-water treatme
the £,-gain from the known and unknown inputét) andd(t)  consists in mixing waste waters with a rich mixture of baeter
to the state and unknown input estimation eerglit). Itis well  in order to degrade the organic matter Olsson and Newell

u(t)} 0.6, (1) [1999].

. . d(t) In this work, a part of the COST Benchmark is considered.
IS bounded byy if The Benchmark is based on the most common WWTP: a
Vea(t),z(t)) + el (t)eq(t) — v (u” (t)u(t) +d* (t)d(t)) <0  continuous flow activated sludge plant, performing niteifion

(20) and de-nitrification. A configuration with a single tank wah

4. WASTE-WATER TREATMENT PLANT

known Boyd et al. [1994] that th&,-gain from




settler/clarifier was developed. The objective of this gtisdto

Xpcol(t) So(t)

use the data generated by this benchmark. 1(t) =mn Kaeo + Xpco () Kon + So(t) Xpnu(t)

For observer/controller design, models of reduced conifglex ¢2(t) =pninog XDif(t) e SN%(t) - I];"hX‘ZH(tt)
are generally used. Nevertheless, this paper considerge qu s deo + DCO(S) no+no(t) Kon+So(t)
complete ASM1 model for WWTP involving the following s(t) =pa ni () o® Xpal(t)
components: soluble carbdiy, particulateX g, dissolved oxy- Knn,a +Sna(t) Ko+ Solt)

gen S, heterotrophic biomasX s, ammoniaSy g, nitrate  #4(t) =bnXpBr (1)

Sno, autotrophic biomas 54, soluble inertS;, suspended #5(t) =baXBa(t)

inert X;, soluble organic nitrogerSyp and suspended or- ¢6(t) =kaSnp(t)Xpw(t)

ganic nitrogenX y p. Only the following components are not ¢ (t) =k, Xpco(t)n(t)Xpw(t)

considered in the ASM1 model: the inert componént and  ¢s(t) =k, Xnp (8)n(t) X (t)

the alkalinity S,;.. As in practical situation, a single organic 1

compound, denoted pco, will be considered by adding the #n(t) = X oo SO(SBH“) Seo®
soluble partSg and the particulate paX s Smets et al. [2003]. Kaco + 32505 [Koh,+so<t> oh+so<t> Kno+sNo(t>]

The following state vector is taken:
z(t) = [Xpco(t), So(t), Snu(t), Snvo(t), Xpu(t) -
- Xpal(t), Sr(t), Xi(t), Snp(t), Xnp(H)]"  (24)
The following assumptions are considered: the dissolvgd ox
gen concentration inputSE ;,) is null, Syo:;, = 0 and
Xpa.in =0, whichis in conformity with the European Bench-

mark COST 624 Coop [2002].
In practice, the concentratiol$pco.in, SN a,in ANAd X B in

are not measured online. Thus, these concentrations are rep. (¢

placed with their respective daily mean values. A daily mean
value will be considered foX pco i and X g . The con-
centrationSy i, is considered as unknown input. The mea-
surements ofJ((DCO, So, Syg andSy) are considered to be
available online. Consequently, the outguthe known input:

The input/output balance is defined by:

D1 (t) = Din(t) [XDCOzn(t) Xpco(t)]

Da(t) = Din(t) [=So ()] + K¢a(t) [S0,sat — So(t)]
D3(t) = Din(t) [SNH in(t) — Snm(t )]
Da(t) = Din(t) [~Sno(?)]
Ds(t) = Din®) | Xpsum(t) — Xpr(t) + f’“f“; }f’“x o)
Do(t) = Din(t) | ~Xpa(0) + %xmw}
) Dzn(t) _SI,'L'n(t) - Sf(t)]

0 = Din®) [X1n(®) = %10+ S | 0
Dg(t) = Din(t) __SND,in(t) - SND(t)]
D1o(t) = Din(t) [XND,m(t) — Xnp(t) + 7]0}(;_'_ i )} Xnp(t)

and the unknown input vectors are: (29)
whereD;,,(t) = 22 The following heterotrophic growth
B T and decay kinetic parameters are used Olsson and Newell
y(t) = [Xpco(t), So(t), Snu(t), Sno(t)] (25 [1999]: 1, = 3.733[1/24h], p, = 0.3[1/24h), K, =
U(t) = [XDCO,in(t)a qa<t)7 XBHJn» SLin(t)v T 20[g/m3]1 fss - (3))791 Koh = 02[9/771:]1 Ko,a = 04[9/7713},
) ) ) ) T K., = 0.5[g/m?], Kuna = 1llg/m?], by = 0.3[1/24h],
X1in(t), SN in (), XnDin(*)] (26) ba = 0.05[1/24h], nnoy = 0.8. The stoichiometric parameters
d(t) = Snm,in(t) (27) arey, = 0.6[g cell], Y, = 0.24[g cell], i,; = 0.086[g

Let us consider the dynamic ASM1 model with the state vectd}” iop = 0.06[g N], f, =
concentration isSo g4t = 10

(24 cone
Xpco(t) = = - lea(t) + wa(t)] + (1= fy) [t
+5(t)] + Di(t) 4.
Solt) == r(t) + = alt) + Da(t)

Snu(t) = — i1 (t) + pa(t)] — |:Z:nb + ; } @3(t)

0.1 and the oxygen saturation
[g/m?]. The fractionsf, and f,:
= 1.1, f, = 0.04 and the tank volume i¥ = 1333[m?].

2 Multi-model description for ASM1

For lack of space, only the essential points are given in the
following. For more details the reader is referred to Nagslet
[2010]. The idea is to equivalently rewrite the ASM1 model
(28) under the MM form (2), e.e. to fing, the matrices4,,

4 (b — foiap)oa(t) + o5()] + Ds(t)  Bis Ein AA; and the weighting functions, (z, u). First, the
) 1 1 decision variables are defined as nonlinearities of theesyst
Sno(t) 9867, pa(t) + 7@3@) + Dy (1) (28):
. h a ) (t)
Xpu(t) =p1(t) +¢2(t) — pa(t) + Ds(t) z1(z, u) Zq”‘l/
XB-A(t) =p3(t) — ps5(t) + Ds(t) 2o, 0) = Xpcol(t) So(t)
Si(t) =Dx(t) Kico + Xpco(t) Kon + So(t)
X1(t) =folpa(t) + ps(t)] + Ds(t) afa) = 15 SNHét) Xpal)
Snp(t) == ps(t) + ps(t) + Do(t) SO“+ olt) Knha + Sxu(t)
Knp(t) =(ias — Fyiep)pal®) + pa(t)] — ps(t) + Duofr) () =Sl
(28) (o) = Xpeol(t) Sno(t) Kon
whereY,, Y, fp, iz andi,, are constant coefficients and Kaco + Xpco(t) Kno + Sno(t) Kon +So(t)
©i(t), i=1,--- 8 are given by: z6(z, u) =Xpco(t)n(t)



Remark 4.1.In order to avoid potential infeasible LMI solu-
tions for the observer design, the number of decision vir$ab

wheref = {% - 1] The rest of matrices compounds

should be reduced. Small dynamic variations and values cBft mentioned here are zero. Using this, the reduced MM form
be observed fors, z5 and z; compared to the other decision (Remark 4.1) of the ten state reduced ASM1 is completed. It

variables, which allows to consider their meafys z5 and zg
for the construction of the MM form (2).

should be said that the reduced MM represent very good the
reduced ASM1 (28), excepting the two concentratidhg,
and X yp for which a quite good representation is nevertheless

A convex polytopic transformation is performed for all theobtained, as seen in figure 1.

decision variablesj(= 1, 2,4), as follows:
zj(w,u) =Fja(zj(x,u) 1 + Fia(z(z,u) 22 (31)
where the scalars; i, z; 2 are respectively the maxima a
minima ofz; (z, u) andF; 1 (z;), F} 2(2;) are defined by
Fj1(2) :% Fjo(z5) =
By multiplying the functionsF; ;(z;(z,u)), ther = 8
weighting functions are obtained: '

zj,1 — z(@, u)

23,1 T 25,2

(32

1i(2) = Fy g1 (21(0)) Fy o2 (22(%, u)) Fy 54 (24(7, 1)) (33)

The constant matrices;, B; and E; defining the8 sub-models
are given by:

Ai = A(zl,o.l ) 22,025 2470'4) (34&)
B; = B(z 1) (34b)
Bi=E(z101),i=1,..,8, j=1,2,4 (34c)

where the matricesi[a; ;| € R'©*19 B[y, ;] € R"*¢ and

Ele; ;] € R%%1 are defined by the following compounds:

a1 (z,u) = azs(z,u) = aga(r,u) = ar7(x,u) = ago(x,u)
= by (z,u) =b73(x, u) = bg a(x,u) =bg 5(x,u) =b1o,6(x,u) =
6371(177 U) =—21 (U), b272 = KSO,sat and

ar5(z,u) =— %zg(a@,u) + (1= fp)bn — %z},
h h
ar6(z,u) =(1— fp)ba
ag2(r,u) =— z1(u) — K qo — 4.57};7}/(1/% z3
as5(z,u) :(Yh;JzQ(:c,u)
h

da2(e,0) = = (ian + 3 o 5
az,5(x,u) =(igh — fpizp)bh — lappin[22(2,u) + NNOg Z5)
az,6(x,u) =(izh — fpiep)ba

1 -
aq2(z,u) ?aua23

Y, —1 -
a4}5(x, u) :mﬂh TINOg %5
as,5(x, ) = 22(z,u) — by, + i INog Z5 + 21(u) f
ag (T, u) =pq 23
ag6(z,u) =21 (u)f — b,
as,5(x, u) = fybn
as¢(z,u) =fpba
as gz, u) :le(u)
ag 5(z,u) = — kg za(x,u) + kp, Z6

a10,5(x,u) =(igp — fpiep)bn — kn Z6
a10,6(2,u) =(izy — fpicp)ba
(2, u)

(35)

g/m3

N W A~ O

time[day]

time[day]

Fig. 1. Comparison between the reduced MM(dashed) and
ASM1(solid)

In order to take into account parameter uncertaintiesgpand

ba, the MM structure is slightly modified. These parameters
appear in the coefficients;s, aig, ass, asg, ass; andagg in
(35), allowing to separate the uncertain pArti(¢) from the
known oneA(t). The parameter variation dn; (resp.b4) is of
20% (resp.25%) of its nominal value, i.eby € [0.25 ; 0.35]
(resp.bs € [0.04 ; 0.06]).The uncertain terms of ASM1
AB;(t) = 0andAA;(t) = AA(t) are written under the form

AA(t) = M°F,(t)N* where:
1010100101]"
Ma_1010010101} (36)
_[Aabg() 0O
Fa(t) - I 0 AbA(t) (37)
« [0000100000
N‘_ooooomooo} (38)

The data used for simulation are generated with the complete
ASM1 model ¢ = 13) Henze et al. [1987], in order to represent
a realistic behavior of a WWTP. Applying the Theorem 1 for
g = 4 the observer (5) is designed by finding positive scalars
€14, €2, pOsitive definite matrice®; and P, and matrices’;

(# = 1,---,8) -that are not given here due to space limitation-
such that the convergence conditions, given in Theoremd. hol
The value of the attenuation rate from the known and unknown
inputs u(t) and d(t) to the state and fault estimation error
eq.(t) isy = 0.52. The positive scalars regrouped in vectors
are e; = [0.3313, 0.3339, 0.3428, 0.3424, 0.3064, 0.3099,
0.3167, 0.3185], ¢; =[0.2767, 0.2766, 0.2772, 0.2777, 0.2772,
0.2763, 0.2778, 0.2788]. A comparison between the actual state
variables, the unknown inputs and their respective estisniat
depicted in figures 2 and 3. In fig. 2, the estimation errors for
Syo andX yp are in part generated by the reduction made on
the MM (see the Remark 4.1).

5. CONCLUSIONS AND FUTURE WORKS
5.1 Conclusions

A MM approach provides the state of the art solutions to
many problems involving estimation, filtering, control déor
modeling. As a major advantage of the MM against a general
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nonlinear model there is the possibility to use many tool'g2
developed in the framework of linear system. '

5.2 Future Works
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