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Abstract— This paper proposes a new approach of observer  In these last years, the Takagi-Sugeno (T-S) approach,
design for nonlinear systems described by a Takagi-Sugeno introduced in [26], offered an interesting tool for studyin
model. Its main contribution concerns models with premise nonlinear systems. This structure may represent or approxi

variables depending on the system states which are completely te st | i t ith imol h t
or partially unknown. This case is more difficult than when the mate strongly nonlinear systems with a simple mathemat-

premise variables are known or measured. Indeed, in that case, ical representation consisting in several linear subnsodel

weighting functions of the observer depend on state estimates weighted by nonlinear functions satisfying the convex sum

and _the state estimation error is th_en governed by a LipS.ChitZ property. These weighing functions may depend on measur-
nonlinear system. Here, two main results are established. able premise variables (input, output of the system or aater

Firstly, relaxed stability conditions guaranteeing asymptotic . . .
stability of the observer by using a fuzzy Lyapunov function are variable as linear parameter variable (LPV) systems)ndr/a

provided. This aims to reduce the conservativeness compared Unmeasurable premise variables (UPV) as the state of the
to the existing works and enhance the maximal admissible system. The T-S approach is interesting because it allows
Lipschitz constant for which the linear matrix inequality (LMI)  to extend some control and observation methods, previously
conditions are feasible. Secondly, the Input-to-State Stability dedicated to linear systems, to nonlinear ones [28].

concept combined to a polyquadratic Lyapunov function are Th bl f stat timati f i t
used for guaranteeing a bounded state estimation error which ) € problem or state esumation of non |near_ sy; ems
relaxes the conservativeness related to the Lipschitz constant USing T-S model approach has been addressed with different
The robustness aspect is dealt with respect to some bounded methods, the most of the published works considered T-S
modeling_ _uncerta!r_lties and additive b_ounded perturbations. models with measurable premise variables [1], [2], [16]][2
The stability conditions are expressed in terms of LMI. Clearly the case of measurable premise variables offers a
Index Terms— Nonlinear systems, Takagi-Sugeno systems, simpler wav to generalize the methods alreadv developed
unmeasurable premise variables, LMI, observer design, Input- ! p way 9 12 . y develop
to-state stability. for linear systems. However, T-S models with UPV naturally
arise when they are obtained from a nonlinear system (
|. INTRODUCTION f(x,u)) by mathematical transformations. The most well-

. known is the so-called sector nonlinearity transformation

Observer design for nonlinear systems is a Cha"eng'r}groviding an exact T-S model with no loss of information
problem which is intensively studied in control and diag':slosi a compact set of the state space. Furthermore, the 'I"—S

I|elds.tilnd(taedt,hmanty f\pprofacheihavetbeen pl):rpptcl)seq In;é ddels with UPV may represent a larger class of nonlinear
0 estimate the states of such systems. Firstly, in | stems compared to the T-S model with measurable premise
the author proposed a method for systems modeled by 3 .

. . . ) ; ~7vdriables [31].

linear part and a nonlinear Lipschitz one for which stapilit

conditions were proposed. Thereafter, in [22], an IteeﬁltlVdeal with than those with measurable premise variables.

algorithm was proposed to deal with the problem of ObserV(:(Eonsequently, few works are devoted to this class of models

design, however the method may fail even if the system |(§ - ; :
L NS espite of their advantages. Nevertheless, we can cite [5
observable. In [23], thél, formulation is exploited in order P g [5]

. e e ... which is the first work dealing with the problem of observer
to provide necessary and sufficient conditions for stabilit g P

o . . .design for this class of nonlinear systems. Extensions of
of th<=T state estlrr_]anon error for ITIpSCf_]ItZ systems. T_h'fhis approach have also been published in [4] and [19].
work is extended in [21] for dynamic gain observer deS|gr|1_et us also mention [31] where a filter estimating the state

for the same class of systems. Many other works Welghd minimizing the effect of disturbances is proposed. More

?ISO prpposed, namgly, slidi.n.g.mode obsgrvers WhiCh aFScentIy, new approaches have been proposed in [10], [11],
interesting due to their insensitivity to modeling uncattias %;é

However, T-S models with UPV are more difficult to

2], [13]. In [10], the diff tial lue th i
and external perturbations [6], or high gain observer whic , [13]. In [10], the differential mean value theorem is

based th fical t ¢ i fh A ombined to sector nonlinearity transformation to re-gvrit
are based on a mathematical transtormation of the system state estimation error as an autonomous T-S system
using immersion techniques [7], [8].

in order to be able to apply the classical stability studies
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the establishing of relaxed stability conditions by the use(t) = x(t) — X(t) is governed by the following nonlinear
of a polyquadratic Lyapunov function, the increasing of thelifferential equation depending on the system sidtg, its
maximal admissible Lipschitz constant allowing to obtain &stimatex(t), the system inputi(t) and the state estimation
solution and finally, the combination of polyquadratic Lya-error e(t)

punov function with input-to-state stability (ISS) to ensu é&(t) = dppe(t) + 5(x,X,u) @
the bounded state estimation error which is used to deal wit

T-S systems with modeling uncertainties. The establishef"€"®

inequalities are stated in an adequate form for applying Dp :Aﬂ_PﬂflLﬁc (8)
several relaxations provided in the literature as Polya’s SR = F(&xU) — (%X U) )
theorem [24], Tuan’s lemma [30], or the use of non quadratic 7 o o

Lyapunov functions [27]. The paper is organized as follows: f(%,x,u) = Apx(t) +Bgu(t) (10)

In section Il, an observer ensuring asymptotic convergencgin P= PiT > 0. In this section, the following assumptions
is proposed by using a polyquadratic Lyapunov functio;e made

and the Lipschitz condition. In section Ill, an approach
combining polyquadratic Lyapunov function and ISS concept
is proposed in order to overcome the problem related to the
Lipschitz constant and finally, in the last section, conicins
and future works are discussed.

« Al. The functionf in (10) is Lipschitz with respect to
its first variable. Then, there exists a positive scajar
such thatd" (x,%,u)8(x, %, u) < n2e' (t)e(t).

« A2. There exists positive scalgpssuch that the weight-
ing functions satisfy 4 (X(t)| < pi.

Il. ASYMPTOTIC OBSERVER DESIGN B. Stability analysis

Let us consider a nonlinear system described by the _. fici - f .
following T-S model First su |C|ent LMI conditions for a;ymptotlc convergence
of the state estimation error (7) are given in the next thmore

. [ Theorem 1:Under the assumption&1 and A2, if there

X(t) = P (x(t iX(t) + Bju(t : ; . " :

®) iglu'( (D) (AX(D) + Biu(t)) (1) exists a matrix®, symmetric and positive definite matrices
y(t) =Cx(t) P, gain matrices.; and a positive scalak satisfying the

wherex(t) € R" is the state vectom(t) € R™ is the input following LM

vector andy(t) € R"Y represents the output vectol € Mij <0, i,j=1,....r (11)
R™N By ¢ R™Y, G € RY*" are known matrices and is o
the number of sub-models. The functiopgx(t)) are the R=R=201=1..r1 (12)
weighting functions depending on the state variablds where
which are non measurable variables. These functions verify Mij = (Qij P ) (13)
the so-called convex sum properties SE—

r and

Z\M(X(t)) =1 0<p(x(t) <1l Vvie{l..,r} (2 r

i= Qij =ATP+PA—CTL] —LiC+ Zpi(P. —Ry) +An?l

The output equation is chosen to be linear with regard the i= (14)

state, which is frequently the case in practice. then the state estimation error asymptotically converges

towards zero.
Proof: To prove the stability of the state estimation
error (7), let us consider the fuzzy Lyapunov function

V(e(t)) = €' (t)Pae(t) (15)

A. Observer structure
Let us first introduce the following notations

X, = _iiui ()X + Xy = zi ilui KOO @)
= i=1j=
53 A(x(0) s (X())%; (@)

i=1]=1

ro The matricesR being symmetric positive definite and the
X :'Z\Hi (X)X, Xpp = weighting functions satisfying (2), the functiovi(e(t)) is
= positive too. Its time derivative is given by

whereX; andX;; stands for any matrices, e 4. or B;. Using

these notations, the system (1) becomes V(e(t)) = €' ()Pae(t) +e' ()Pae(t) + €' (Pae(t)  (16)
(1) = The derivative ofP; is given b
X(t) = Aux(t) + Byu(t) ) p1sg y
y(t) = Cx(t) .l
o P.=Y (NP (17)
The proposed observer is given by H i; A
{ X(t) = AR(t) +Bau(t) + Py M La(y(t) — V(1)) (©) SubstitutingP; and (7) in (16), one obtains
y(t) = Cx(t) . .
BN T D Pt P-
where the matrices; and the symmetric positive definite vier) = e (q)““P“JrP“q)““JFP“) e(t)
matricesP, are to be determined. The state estimation error + 2€" (t)Pad(x,%,u) (18)



With assumptionAl and since it is well known that the The power of this result is its significant conservatism edu
following inequality holds tion without adding slack variables to increase the number
of degree of freedom.

Another less restrictive approach is given by simple ma-

for any matricesX, Y and2 = =T > 0, then, for any positive nipulations of the sums in order to obtain the LMIs [24],
A it follows [14], in instance, by multiplying by one sum, one obtains

Mi <0,i=1,...,r
Mi + Mij +Mji <0, j #i

XTY +YTX < XTEx +YTz 1y (19)

26" (t)PyS(x, %, u) < An2eT (t)e(t) +A e (t)PyPye(t)

(20) (27)
. . - Mi; + Mji + Mik + My + Mk + Mg; < O
and, with assumptio2, P; is bounded b N ! P>
g G Y FANETS
r r
P.<Si(RIR=YS pPR (21) Note also that most of relaxed stability approaches prapose
b= i I i : S
i; i; recently are expressed as LMI with double summation in-
Moreover, due to (2), it obviously follows dexes, as the LM! given in (25). Qonsequently, one of the
advantages of using polyquadratic Lyapunov functions is,
r r . . . . .
C ooy N especially, to find an inequality with a double sum as shown
i;u. (R)=0= i;m ()P =0 (22) (25).
for any matrix Ry which is a slack variable introducing an 1ll. GUARANTEED BOUNDED RECONSTRUCTION ERROR

additional degree of freedom [18]. In the remaining of the | this section, a robust observer is designed for T-S sys-
paperP, is chosen to be symmetric. Then, the time derivativgems with UPV. The objective is to provide LMI conditions

of the Lyapunov function is bounded as follows where the Lipschitz constant is not needed. The second
Viet) < o (t)(Pl-Pr 4 Prdsn opjectlve Is to d_eS|gn a robust observer with respect to qu-
(&) < r( (PP + Pa P eling uncertainties. For that purpose, a bounded estimatio
+ Pi(R —Po) +An21 + A 1P, Py e(t) error convergence is proven instead of asymptotic one, by
iZ\ o considering ISS.

U Tp. . T .
< e OAP+PuAr —CTL; —LiC A. Bounded estimation error
r
+ Zpi(P' —PRy)+An2+A —1pﬂ Pa)e(t)(23) Let us consider the system (5) and the corresponding
i proposed observer (6). The state estimation error dynamics
given by (7). Consider also the same polyquadratic Lyapunov

whereR —Py > 0. The negativity oW/ (e(t)) is ensured if function defined in (15) as well as the following assumptions

ALPy +PuA —CTLL —LiC « A3. The inputu(t) is bounded

r ) L « A4. The system is input-to-state stable (IS&¢, the
+ _Zpl(Pl —R)+ANT+AT PPy <0 (24) system state(t) is bounded for bounded inpuit)

i=

« Ab. There exists positive scalgpssuch that the weight-
This inequality can be expressed as follows using the Schur ing functions satisfyf [ (X(t)| < pi.
complement These assumptions lead to a bounded perturbation term
Mpp <0 (25)  3(x,%,u). For the sake of clarity, this term will be noted

whereM;; is defined by (13). Since the weighting functionsé(t) in the following. One can note that the Lipschitz

. X . ; assumption of the functiorf(X,x,u) is no longer needed.
sat!sf_y (2), t_he mequahty (25) holds if the LMIs (11) arThe convergence conditions of the state estimation erer ar
satisfied, which achieves the proof.

established in the theorem 2.

C. Relax_ed I__MI formulation of stability conditions of the pefinition 1: [25] The system (7) is said to be ISS if there
state estimation error exists a7 % function B : R" x R — R and a.# function
Note that the negativity of (25) is largely studied in thed : R — R such that, for each inpui(t) satisfying||5(t)||,, <
literature. An intuitive and first result on stability of T-S  and each initial conditior(0) € R", the trajectory of (7)
systems is the negativity of each term of the sum (25pssociated witle(0) and 4(t) satisfies
leading to the result presented above. This result may he ver
conservative; relaxed stability conditions have been iy le®l < B (l1eO)] ) +a (o)) ¥t (28)
using various approaches like Tuan’s lemma [30] and Polya’s Theorem 2:Under the assumptiors3, A4 andA5, given
theorem [24]. Let us examine the use of Tuan's lemma scalara > 0. If there exists a matrix%, symmetric
Inequality (25) holds if the following following inequaiéts and positive definite matriceB, gain matricesL; and a
are satisfied positive scalary andc solution to the following optimization

M <0,i=1,...r 26) problem |
MMy My <0 71 W Y



under the constraints
P—-PR>0i=1,...r
Zi<0i=1,..r
Si+Sij+Zi <0, A
Zij +Zji =kt =k + 2k + =k <0,
i# ], i#k j#k

where=j; is defined by

(29)

(30)

Pi —cl
(31)
c—ay<0 (32)

then the error dynamics (7) is ISS with respecdid) and
satisfy the following inequality

el < |/ S lle@ e %+ /22 a0l @3

The gainsL; of the observer are obtained directly and the

attenuation level of the transfer frobit) to e(t) is O%al
Proof:
one obtains
V() = € () (PhaPu+Paag +Fu) eft)
+ 2eT(1)Pyo(t) (34)
With (21)—(22), the equality (34) is bounded as follows

Vi) < € <¢,E,~1Pn +Pa®p +A_ilpi<P. - Po)> et)

+2€ (t)P;6(t) (35)

From assumptionA3, A4 andA5, the termd(t) is bounded.

The inequality (35) is equivalent to
V(e(t)) < el (t)=ppealt) — ae’ (t)Pie(t) +cd (t)3(t) (36)

where
r
== ®haPatPu®yp+ 3 AR —Po)+2aP Py
Pa —cl
(37)

and a, c are positive scalars aneh(t) = [e (1) &7 (1)] .
If the inequality (30) holds, the inequality;; < 0 is also
satisfied, then, it follows

V(et) < —ae’(t)Pie(t)+cd(1)d(t)  (38)
< —aV(et))+cdT (1)a(t) (39)
One obtains
t
V(e(t)) gV(O)e*‘“Jrc/e"’(t*S) 15(s)|2ds  (40)

0

Due to the fact that the weighting functiops(X) satisfy
(2), then it is easy to derive that, for aegt) € R", it holds

ax [le(t)[? < V(e(t)) < az[le(t)|*, vet) eR"  (41)

r
_ (A,-TPj—l—PjA.-—LiC—CTLiT—i-_lei(P.—Po)—i-an P,-)
—=ij = i=

Let us consider the fuzzy Lyapunov function
defined by (15). Following the same steps as in (16)—(18?h

where a; = min Apin (R) and a; = maxAmax(P), where
1<i<r 1<i<r

Amin(M) (resp. Amax(M)) denotes the minimal (resp. max-
imal) eigenvalue of the matrid. The inequality (40) be-
comes

_ c
o e(®)[3 < 2 () 3+ 3M)E  (42)
which leads to
_ c
a1 [le(t)||3 < azle(0)]15e ‘“+EH5(I)H§, (43)

Finally, using the square root on equation (43), on obtains

el < |/ S le@ e 2+ [ a0l @

From this equation, we conclude that]|ib(t)||,, = O then
le(t)|l, — O whent — . Moreover, in the presence of the
perturbationd(t), the error||e(t)||, is bounded byy||d(t)],
wherey = O%al in the steady state. As a conclusion, the

Input-To-State (ISS) stability is proven with the ineqtali

Note that the size of the convergence Betlepends of

e selected matriceB and the parameterg andc. The

set D should be made as small as possible to ensure a
good accuracy of convergence. The choiceagfc and P
providing a small set of convergence is not obvious because
the problem is not convex. In the next, a technique is
proposed to transform the non convex problem to a convex
one under LMI constraints. Let us consider the following

inequality
c
— <
Voo S VY

where y is a positive scalar to minimize. Let us consider
the assumption tha® > I, thena; = 1min Amin(R) =1. 1t
<i<r

follows, form (45) that

(45)

c—ay<0 (46)

Then, by fixing the parametea > 0, the optimization
problem given in the theorem 2 are obtained, which ends
the proof. |

B. Robustness with respect to modeling uncertainties

The observer proposed in the last section guarantees
bounded estimation error. It is easy to prove that this aleser
is robust for some bounded modeling uncertainties. Indeed,
the uncertainties can be included in the disturbance-tke t
obtained from the fact that the weighting functions of thg T-
model are unmeasurable. Consider the uncertain system:

{ X(t) = (Au+DAL)X(t) + (B +AByu(t)
y(t) = (C+AC)X(t)

with the observer (6), the state estimation error obeysdo th
differential equation

(47)

&(t) = dppe(t) + 5(x,X,u) (48)



-1
where®p; = Ay — Pﬁ L;C and IV. SIMULATION EXAMPLE

R 1 Due to space limitation, only the second approach is
o(xxu) = (Au — A+ DA Py LﬂAC) X(t) illustrated and discussed. Let us consider the Rosslettichao
+ (Bu—Ba+ABy)u(t) (49) system modeled in the form of (1) with two sub-models

(r =2) defined as follows
Note that the state estimation error (48) has the same form 10 10 0

as that given in (7). All the uncertain terms are included A 08 1 —x
in the disturbance-like ternd(x,%,u). This fact allows to 1= 0 x _82?
use the result obtained in the last section and hence to Lmax '

prove the ISS fron?d to the state estimation error. The only -10 10 0
difference concerns the bound of this perturbation ternenTh Ay = 28 -1 —Ximin |,
by minimizing the effect ofd(x,X,u) a robust observer is 0 Xymin —0.37
obtained with respect to some modeling uncertainties. 0
Remark 1:1t is known that using a fuzzy Lyapunov 0 10
L . . . Bi=B,=| 0 |, C=
function is less conservative than using a quadratic one, 0 0 0 1

especially when the T-S model contains a large number of
sub-models. Furthermore, the LMI problem can be solve@ihe premise variable i (t) which is bounded by min =
for larger Lipschitz constant compared to the existing ltesu —9.8693 andx; max= 13.8164. The weighting functions are

(see the example) [3], [5], [15]. defined by
Remark 2: The second result aims to provide LMI con- X1 (t) — X1 min
ditions without needing any calculation of the Lipschitz Ha(X(t)) = Xt e — Xamin
constant. Then, this last has a larger domain of applid¢gbili Xlr:‘:)((* Xlr&')n
compared to the first one. However, the price to pay is the Ho(X(t) = —————=
loss of asymptotic convergence which is replaced by an ISS o X_lmax_xlm'”
property. The time derivatives ofi (x), i€ {1,2} are bounded bp; =

Remark 3:The proposed results are firstly given in theP2 =4-5. The Lipschitz constant of the terait) is computed

form of double sums inequalities represented in general bnd given byn = 17335. The approach given in [3] does not
provide any solution to this example, since solution cary onl

M <0 (50)  be obtained for Lipschitz constant smaller than729 The

This is an adequate form to use the recent result on cons P—MS given mlthel theofr(tar:n 1L.Of thhgtpreserlt papeiir7e6f§$5|ble
vatism reduction, namely the Polya’s theorem which pravide or a maximal value of the Lipschitz constalfhax =

asymptotic necessary and sufficient stability conditidhis Wh'c.h IS I?rger ft?r? n Ehe rﬁf”tu L|pscth |tzt consttalq?t:. j't7335¢'
easy to derive these conditions (as given in the theorem aximization ot the Lipschitz constant can take nto acdoun

(for more details, the reader can refer to [14], [24]). sbme uncertainties in the r_lonlmear ‘35“(?)- O_n the other
Remark 4:The ISS is also preserved if any bounded ad[1and, solving the optimization problem given in the theorem
s . . 2 with SEDUMI (YALMIP), the LMIs are feasible foo =
ditive disturbanceso(t) andv(t) respectively affect the state .
dynamics and measurement equations. Indeed, it can eaéif% and the attenuation level of the transferadf) towards
) . . . C
be seen that the termi(x,%,u) can include the disturbances &) 1S /¥ = 0.0549 which is greater than or equal {pg5;

as follows (in this example, the obtained is exactly the same as the
N _ uantity, /-¢-). The result of the state estimation is depicted
3(x%,%U) = (Ay —Ag) X+ (By —By) u+w+ Py 'Lav (51) gn ﬁgu{e f"l) P
For boundedw(t) andv(t), thend(x,X,u) is still bounded.
In addition, the proposed observer can take into accou 30—
uncertainties on the premise variables. SN
Remark 5:Note that the results are easily extended t 10t ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
systems with nonlinear output equation given by W 3 15 2 25 3 3% 4 45 °
r 5 o/\/—~
yt) = 3 HXIGxX(t) 2) Wy i b s v e s
Remark 6:In the first proposed approach, asymptotic ~_ s =~ "~ "~ 7 T T T
convergence of the state estimation error is sought, bas < /\_/\\
on the (assumed) Lipschitz property of the disturbance-lik % 05 1 15 2 tz(;s) 3 35 4 45 5

term. This can only be ensured for some values of the
Lipschitz constant (feasibility of the LMIs). In the second fig. 1. state variables (blue line) and their estimates (shed lines)
approach, the goal is no longer asymptotic convergence,

but only convergence in a ball. In that case, the Lipschitz A second simulation is performed with a centered mea-
assumption is not needed. surement noise(t) in the range—0.33 and 033. This case



corresponds to a perturbation terdft) given in equation
(51) with w(t) = 0. The norms|e(t)||, and y||5(t)|,, are
depicted in the figure 2 and illustrates that the norm of the[gl
error is always less thap||d(t)

(8]

oo-

[20]
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—YIBOIl
500 —lle®ll
11
400 (11
300 [12]
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lll i
) [13]
% o5 1 15 2 25 3 35 4 45 5
(s)
[14]
Fig. 2. Time evolution of||e(t)|| and y||d(t)|| with noised measurement
[15]

V. CONCLUSIONS AND FUTURE WORKS

In this paper, some advances in observer design for Takagi:
Sugeno systems with UPV are proposed. A focus has beéen
made on some problems, namely, the conservativeness of
the existing results on observer design for T-S systent%]
with UPV and the maximal admissible Lipschitz constan
allowing to solve the LMI constraints, and the robustness
with respect to bounded modeling uncertainties and bound
additive perturbations. The first problem is dealt with by
using a polyquadratic Lyapunov function and asymptotic
stability conditions are provided. For the second problerﬂ}9
the polyquadratic Lyapunov function and ISS concept are
combined. The obtained results are expressed in terms [&6]
LMIs and optimization problem with LMI constraints. For
future work, it is interesting to extend the results for bothzy;
state and unknown input estimation for possible applicatio
in fault diagnosis and fault tolerant control of nonlinegss
tems. AN extension of some recent results will be considered
for LMI conditions independent from derivative bounds of

the weighting functions. (23]
[24]
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