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Abstract— This paper proposes a new approach of observer
design for nonlinear systems described by a Takagi-Sugeno
model. Its main contribution concerns models with premise
variables depending on the system states which are completely
or partially unknown. This case is more difficult than when the
premise variables are known or measured. Indeed, in that case,
weighting functions of the observer depend on state estimates
and the state estimation error is then governed by a Lipschitz
nonlinear system. Here, two main results are established.
Firstly, relaxed stability conditions guaranteeing asymptotic
stability of the observer by using a fuzzy Lyapunov function are
provided. This aims to reduce the conservativeness compared
to the existing works and enhance the maximal admissible
Lipschitz constant for which the linear matrix inequality (LMI)
conditions are feasible. Secondly, the Input-to-State Stability
concept combined to a polyquadratic Lyapunov function are
used for guaranteeing a bounded state estimation error which
relaxes the conservativeness related to the Lipschitz constant.
The robustness aspect is dealt with respect to some bounded
modeling uncertainties and additive bounded perturbations.
The stability conditions are expressed in terms of LMI.

Index Terms— Nonlinear systems, Takagi-Sugeno systems,
unmeasurable premise variables, LMI, observer design, Input-
to-state stability.

I. I NTRODUCTION

Observer design for nonlinear systems is a challenging
problem which is intensively studied in control and diagnosis
fields. Indeed, many approaches have been proposed in order
to estimate the states of such systems. Firstly, in [29],
the author proposed a method for systems modeled by a
linear part and a nonlinear Lipschitz one for which stability
conditions were proposed. Thereafter, in [22], an iterative
algorithm was proposed to deal with the problem of observer
design, however the method may fail even if the system is
observable. In [23], theH∞ formulation is exploited in order
to provide necessary and sufficient conditions for stability
of the state estimation error for Lipschitz systems. This
work is extended in [21] for dynamic gain observer design
for the same class of systems. Many other works were
also proposed, namely, sliding mode observers which are
interesting due to their insensitivity to modeling uncertainties
and external perturbations [6], or high gain observer which
are based on a mathematical transformation of the system by
using immersion techniques [7], [8].
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In these last years, the Takagi-Sugeno (T-S) approach,
introduced in [26], offered an interesting tool for studying
nonlinear systems. This structure may represent or approxi-
mate strongly nonlinear systems with a simple mathemat-
ical representation consisting in several linear submodels
weighted by nonlinear functions satisfying the convex sum
property. These weighing functions may depend on measur-
able premise variables (input, output of the system or external
variable as linear parameter variable (LPV) systems), or/and
unmeasurable premise variables (UPV) as the state of the
system. The T-S approach is interesting because it allows
to extend some control and observation methods, previously
dedicated to linear systems, to nonlinear ones [28].

The problem of state estimation of nonlinear systems
using T-S model approach has been addressed with different
methods, the most of the published works considered T-S
models with measurable premise variables [1], [2], [16], [20].
Clearly the case of measurable premise variables offers a
simpler way to generalize the methods already developed
for linear systems. However, T-S models with UPV naturally
arise when they are obtained from a nonlinear system ( ˙x=
f (x,u)) by mathematical transformations. The most well-
known is the so-called sector nonlinearity transformation
providing an exact T-S model with no loss of information,
in a compact set of the state space. Furthermore, the T-S
models with UPV may represent a larger class of nonlinear
systems compared to the T-S model with measurable premise
variables [31].

However, T-S models with UPV are more difficult to
deal with than those with measurable premise variables.
Consequently, few works are devoted to this class of models
despite of their advantages. Nevertheless, we can cite [5]
which is the first work dealing with the problem of observer
design for this class of nonlinear systems. Extensions of
this approach have also been published in [4] and [19].
Let us also mention [31] where a filter estimating the state
and minimizing the effect of disturbances is proposed. More
recently, new approaches have been proposed in [10], [11],
[12], [13]. In [10], the differential mean value theorem is
combined to sector nonlinearity transformation to re-write
the state estimation error as an autonomous T-S system
in order to be able to apply the classical stability studies
developed for T-S systems. A similar problem is studied
recently for a special case of discrete-time LPV systems with
uncertain parameters in [9] and [17].

In this work, observer design approaches are proposed for
estimating the state of nonlinear systems represented by a T-
S model with UPV. The contributions of this paper concern:



the establishing of relaxed stability conditions by the use
of a polyquadratic Lyapunov function, the increasing of the
maximal admissible Lipschitz constant allowing to obtain a
solution and finally, the combination of polyquadratic Lya-
punov function with input-to-state stability (ISS) to ensure
the bounded state estimation error which is used to deal with
T-S systems with modeling uncertainties. The established
inequalities are stated in an adequate form for applying
several relaxations provided in the literature as Polya’s
theorem [24], Tuan’s lemma [30], or the use of non quadratic
Lyapunov functions [27]. The paper is organized as follows:
In section II, an observer ensuring asymptotic convergence
is proposed by using a polyquadratic Lyapunov function
and the Lipschitz condition. In section III, an approach
combining polyquadratic Lyapunov function and ISS concept
is proposed in order to overcome the problem related to the
Lipschitz constant and finally, in the last section, conclusion
and future works are discussed.

II. A SYMPTOTIC OBSERVER DESIGN

Let us consider a nonlinear system described by the
following T-S model







ẋ(t) =
r
∑

i=1
µi(x(t))(Aix(t)+Biu(t))

y(t) =Cx(t)
(1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

nu is the input
vector andy(t) ∈ R

ny represents the output vector.Ai ∈
R

n×n, Bi ∈ R
n×ny, Ci ∈ R

ny×n are known matrices andr is
the number of sub-models. The functionsµi(x(t)) are the
weighting functions depending on the state variablesx(t)
which are non measurable variables. These functions verify
the so-called convex sum properties

r

∑
i=1

µi(x(t)) = 1, 0≤ µi(x(t))≤ 1 ∀i ∈ {1, ..., r} (2)

The output equation is chosen to be linear with regard the
state, which is frequently the case in practice.

A. Observer structure

Let us first introduce the following notations

Xµ =
r

∑
i=1

µi(x(t))Xi , Xµµ =
r

∑
i=1

r

∑
j=1

µi(x(t))µ j(x(t))Xi j (3)

Xµ̂ =
r

∑
i=1

µ̂i(x(t))Xi , Xµ̂ µ̂ =
r

∑
i=1

r

∑
j=1

µ̂i(x(t))µ̂ j(x(t))Xi j (4)

whereXi andXi j stands for any matrices, e.g.Ai or Bi . Using
these notations, the system (1) becomes

{

ẋ(t) = Aµx(t)+Bµu(t)
y(t) =Cx(t)

(5)

The proposed observer is given by
{ ˙̂x(t) = Aµ̂ x̂(t)+Bµ̂u(t)+P−1

µ̂ Lµ̂(y(t)− ŷ(t))
ŷ(t) =Cx̂(t)

(6)

where the matricesLi and the symmetric positive definite
matricesPi are to be determined. The state estimation error

e(t) = x(t)− x̂(t) is governed by the following nonlinear
differential equation depending on the system statex(t), its
estimate ˆx(t), the system inputu(t) and the state estimation
error e(t)

ė(t) = Φµ̂ µ̂e(t)+δ (x, x̂,u) (7)

where

Φµ̂ µ̂ = Aµ̂ −P−1
µ̂ Lµ̂C (8)

δ (x, x̂,u) = f (x̂,x,u)− f (x,x,u) (9)

f (x̂,x,u) = Aµ̂x(t)+Bµ̂u(t) (10)

with Pi = PT
i > 0. In this section, the following assumptions

are made

• A1. The function f in (10) is Lipschitz with respect to
its first variable. Then, there exists a positive scalarη
such thatδ T(x, x̂,u)δ (x, x̂,u)≤ η2eT(t)e(t).

• A2. There exists positive scalarsρi such that the weight-
ing functions satisfy|µ̇i(x̂(t)| ≤ ρi .

B. Stability analysis

First sufficient LMI conditions for asymptotic convergence
of the state estimation error (7) are given in the next theorem.

Theorem 1:Under the assumptionsA1 and A2, if there
exists a matrixP0, symmetric and positive definite matrices
Pi , gain matricesLi and a positive scalarλ satisfying the
following LMI

Mi j < 0, i, j = 1, . . . , r (11)

Pi −P0 ≥ 0, i = 1, . . . , r (12)

where

Mi j =

(

Ωi j Pj

Pj −λ I

)

(13)

and

Ωi j = AT
i Pj +PjAi −CTLT

i −LiC+
r

∑
i=1

ρi(Pi −P0)+λη2I

(14)
then the state estimation error asymptotically converges
towards zero.

Proof: To prove the stability of the state estimation
error (7), let us consider the fuzzy Lyapunov function

V(e(t)) = eT(t)Pµ̂e(t) (15)

The matricesPi being symmetric positive definite and the
weighting functions satisfying (2), the functionV(e(t)) is
positive too. Its time derivative is given by

V̇(e(t)) = ėT(t)Pµ̂e(t)+eT(t)Pµ̂ ė(t)+eT(t)Ṗµ̂e(t) (16)

The derivative ofPµ̂ is given by

Ṗµ̂ =
r

∑
i=1

µ̇i(x̂)Pi (17)

SubstitutingṖµ̂ and (7) in (16), one obtains

V̇(e(t)) = eT(t)
(

ΦT
µ̂ µ̂Pµ̂ +Pµ̂ Φµ̂ µ̂ + Ṗµ̂

)

e(t)

+ 2eT(t)Pµ̂ δ (x, x̂,u) (18)



With assumptionA1 and since it is well known that the
following inequality holds

XTY+YTX ≤ XTΣX+YTΣ−1Y (19)

for any matricesX, Y andΣ = ΣT > 0, then, for any positive
λ , it follows

2eT(t)Pµ̂ δ (x, x̂,u)≤ λη2eT(t)e(t)+λ−1eT(t)Pµ̂Pµ̂e(t)
(20)

and, with assumptionA2, Ṗµ̂ is bounded by

Ṗµ̂ ≤
r

∑
i=1

|µ̇i(x̂)|Pi =
r

∑
i=1

ρiPi (21)

Moreover, due to (2), it obviously follows

r

∑
i=1

µ̇i(x̂) = 0⇒
r

∑
i=1

µ̇i(x̂)P0 = 0 (22)

for any matrixP0 which is a slack variable introducing an
additional degree of freedom [18]. In the remaining of the
paper,P0 is chosen to be symmetric. Then, the time derivative
of the Lyapunov function is bounded as follows

V̇(e(t)) ≤ eT(t)(ΦT
µ̂ µ̂Pµ̂ +Pµ̂ Φµ̂ µ̂

+
r

∑
i=1

ρi(Pi −P0)+λη2I +λ−1Pµ̂Pµ̂)e(t)

≤ eT(t)(AT
µ̂Pµ̂ +Pµ̂Aµ̂ −CTLT

µ̂ −Lµ̂C

+
r

∑
i=1

ρi(Pi −P0)+λη2I +λ−1Pµ̂Pµ̂)e(t)(23)

wherePi −P0 ≥ 0. The negativity ofV̇(e(t)) is ensured if

AT
µ̂Pµ̂ +Pµ̂Aµ̂ −CTLT

µ̂ −Lµ̂C

+
r

∑
i=1

ρi(Pi −P0)+λη2I +λ−1Pµ̂Pµ̂ < 0 (24)

This inequality can be expressed as follows using the Schur
complement

Mµ̂ µ̂ < 0 (25)

whereMi j is defined by (13). Since the weighting functions
satisfy (2), the inequality (25) holds if the LMIs (11) are
satisfied, which achieves the proof.

C. Relaxed LMI formulation of stability conditions of the
state estimation error

Note that the negativity of (25) is largely studied in the
literature. An intuitive and first result on stability of T-S
systems is the negativity of each term of the sum (25),
leading to the result presented above. This result may be very
conservative; relaxed stability conditions have been provided
using various approaches like Tuan’s lemma [30] and Polya’s
theorem [24]. Let us examine the use of Tuan’s lemma.
Inequality (25) holds if the following following inequalities
are satisfied

{

Mii < 0, i = 1, ..., r
2

r−1Mii +Mi j +M ji < 0, j 6= i
(26)

The power of this result is its significant conservatism reduc-
tion without adding slack variables to increase the number
of degree of freedom.

Another less restrictive approach is given by simple ma-
nipulations of the sums in order to obtain the LMIs [24],
[14], in instance, by multiplying by one sum, one obtains















Mii < 0, i = 1, ..., r
Mii +Mi j +M ji < 0, j 6= i
Mi j +M ji +Mik +Mki +M jk +Mk j < 0,
i 6= j, i 6= k, j 6= k

(27)

Note also that most of relaxed stability approaches proposed
recently are expressed as LMI with double summation in-
dexes, as the LMI given in (25). Consequently, one of the
advantages of using polyquadratic Lyapunov functions is,
especially, to find an inequality with a double sum as shown
in (25).

III. G UARANTEED BOUNDED RECONSTRUCTION ERROR

In this section, a robust observer is designed for T-S sys-
tems with UPV. The objective is to provide LMI conditions
where the Lipschitz constantη is not needed. The second
objective is to design a robust observer with respect to mod-
eling uncertainties. For that purpose, a bounded estimation
error convergence is proven instead of asymptotic one, by
considering ISS.

A. Bounded estimation error

Let us consider the system (5) and the corresponding
proposed observer (6). The state estimation error dynamicsis
given by (7). Consider also the same polyquadratic Lyapunov
function defined in (15) as well as the following assumptions

• A3. The inputu(t) is bounded
• A4. The system is input-to-state stable (ISS),i.e. the

system statex(t) is bounded for bounded inputu(t)
• A5. There exists positive scalarsρi such that the weight-

ing functions satisfy|µ̇i(x̂(t)| ≤ ρi .

These assumptions lead to a bounded perturbation term
δ (x, x̂,u). For the sake of clarity, this term will be noted
δ (t) in the following. One can note that the Lipschitz
assumption of the functionf (x̂,x,u) is no longer needed.
The convergence conditions of the state estimation error are
established in the theorem 2.

Definition 1: [25] The system (7) is said to be ISS if there
exists aK L function β : Rn×R→ R and aK function
α :R→R such that, for each inputδ (t) satisfying‖δ (t)‖∞ <

∞ and each initial conditione(0) ∈ R
n, the trajectory of (7)

associated withe(0) andδ (t) satisfies

‖e(t)‖ ≤ β (‖e(0)‖ , t)+α (‖δ (t)‖∞) ,∀t (28)

Theorem 2:Under the assumptionsA3, A4 andA5, given
a scalar α > 0. If there exists a matrixP0, symmetric
and positive definite matricesPi , gain matricesLi and a
positive scalarsγ andc solution to the following optimization
problem

min
P0,Pi ,Li ,γ ,c

γ



under the constraints

Pi −P0 ≥ 0, i = 1, . . . , r (29)














Ξii < 0, i = 1, ..., r
Ξii +Ξi j +Ξ ji < 0, j 6= i
Ξi j +Ξ ji +Ξik +Ξki +Ξ jk +Ξk j < 0,
i 6= j, i 6= k, j 6= k

(30)

whereΞi j is defined by

Ξi j =





AT
i Pj +PjAi −LiC−CTLT

i +
r
∑

i=1
ρi(Pi −P0)+αPj Pj

Pj −cI





(31)
c−αγ ≤ 0 (32)

then the error dynamics (7) is ISS with respect toδ (t) and
satisfy the following inequality

‖e(t)‖2 ≤
√

α2

α1
‖e(0)‖2e−

α
2 t +

√

c
αα1

‖δ (t)‖∞ (33)

The gainsLi of the observer are obtained directly and the
attenuation level of the transfer fromδ (t) to e(t) is

√

c
αα1

.

Proof: Let us consider the fuzzy Lyapunov function
defined by (15). Following the same steps as in (16)–(18),
one obtains

V̇(e(t)) = eT(t)
(

ΦT
µ̂ µ̂Pµ̂ +Pµ̂ Φµ̂ µ̂ + Ṗµ̂

)

e(t)

+ 2eT(t)Pµ̂ δ (t) (34)

With (21)–(22), the equality (34) is bounded as follows

V̇(e(t)) ≤ eT(t)

(

ΦT
µ̂ µ̂Pµ̂ +Pµ̂ Φµ̂ µ̂ +

r

∑
i=1

ρi(Pi −P0)

)

e(t)

+2eT(t)Pµ̂ δ (t) (35)

From assumptionsA3, A4 andA5, the termδ (t) is bounded.
The inequality (35) is equivalent to

V̇(e(t))≤ eT
a (t)Ξµ̂ µ̂ea(t)−αeT(t)Pµ̂e(t)+cδ T(t)δ (t) (36)

where

Ξµ̂ µ̂ =





ΦT
µ̂ µ̂Pµ̂ +Pµ̂ Φµ̂ µ̂ +

r
∑

i=1
ρi(Pi −P0)+2αPµ̂ Pµ̂

Pµ̂ −cI





(37)
and α, c are positive scalars andea(t) = [eT(t) δ T(t)]T .
If the inequality (30) holds, the inequalityΞµ̂ µ̂ < 0 is also
satisfied, then, it follows

V̇(e(t)) ≤ −αeT(t)Pµ̂e(t)+cδ T(t)δ (t) (38)

≤ −αV(e(t))+cδ T(t)δ (t) (39)

One obtains

V(e(t))≤V(0)e−αt +c

t
∫

0

e−α(t−s) ‖δ (s)‖2
2ds (40)

Due to the fact that the weighting functionsµi(x̂) satisfy
(2), then it is easy to derive that, for anye(t) ∈ R

n, it holds

α1‖e(t)‖2 ≤V(e(t))≤ α2‖e(t)‖2
,∀e(t) ∈ R

n (41)

where α1 = min
1≤i≤r

λmin (Pi) and α2 = max
1≤i≤r

λmax(Pi), where

λmin(M) (resp. λmax(M)) denotes the minimal (resp. max-
imal) eigenvalue of the matrixM. The inequality (40) be-
comes

α1‖e(t)‖2
2 ≤ α2‖e(0)‖2

2e−αt +
c
α
‖δ (t)‖2

∞ (42)

which leads to

α1‖e(t)‖2
2 ≤ α2‖e(0)‖2

2e−αt +
c
α
‖δ (t)‖2

∞ (43)

Finally, using the square root on equation (43), on obtains

‖e(t)‖2 ≤
√

α2

α1
‖e(0)‖2e−

α
2 t +

√

c
αα1

‖δ (t)‖∞ (44)

From this equation, we conclude that if‖δ (t)‖∞ = 0 then
‖e(t)‖2 → 0 whent → ∞. Moreover, in the presence of the
perturbationδ (t), the error‖e(t)‖2 is bounded byγ ‖δ (t)‖∞
where γ =

√

c
αα1

in the steady state. As a conclusion, the

Input-To-State (ISS) stability is proven with the inequality
(44).

Note that the size of the convergence setD depends of
the selected matricesPi and the parametersα and c. The
set D should be made as small as possible to ensure a
good accuracy of convergence. The choice ofα, c and P
providing a small set of convergence is not obvious because
the problem is not convex. In the next, a technique is
proposed to transform the non convex problem to a convex
one under LMI constraints. Let us consider the following
inequality

√

c
αα1

≤√
γ (45)

where γ is a positive scalar to minimize. Let us consider
the assumption thatPi ≥ I , then α1 = min

1≤i≤r
λmin (Pi) = 1. It

follows, form (45) that

c−αγ ≤ 0 (46)

Then, by fixing the parameterα > 0, the optimization
problem given in the theorem 2 are obtained, which ends
the proof.

B. Robustness with respect to modeling uncertainties

The observer proposed in the last section guarantees
bounded estimation error. It is easy to prove that this observer
is robust for some bounded modeling uncertainties. Indeed,
the uncertainties can be included in the disturbance-like term
obtained from the fact that the weighting functions of the T-S
model are unmeasurable. Consider the uncertain system:

{

ẋ(t) = (Aµ +∆Aµ)x(t)+(Bµ +∆Bµ)u(t)
y(t) = (C+∆C)x(t)

(47)

with the observer (6), the state estimation error obeys to the
differential equation

ė(t) = Φµ̂ µ̂e(t)+δ (x, x̂,u) (48)



whereΦµ̂ µ̂ = Aµ̂ −P−1
µ̂ Lµ̂C and

δ (x, x̂,u) =
(

Aµ −Aµ̂ +∆Aµ −P−1
µ̂ Lµ̂ ∆C

)

x(t)

+
(

Bµ −Bµ̂ +∆Bµ
)

u(t) (49)

Note that the state estimation error (48) has the same form
as that given in (7). All the uncertain terms are included
in the disturbance-like termδ (x, x̂,u). This fact allows to
use the result obtained in the last section and hence to
prove the ISS fromδ to the state estimation error. The only
difference concerns the bound of this perturbation term. Then
by minimizing the effect ofδ (x, x̂,u) a robust observer is
obtained with respect to some modeling uncertainties.

Remark 1: It is known that using a fuzzy Lyapunov
function is less conservative than using a quadratic one,
especially when the T-S model contains a large number of
sub-models. Furthermore, the LMI problem can be solved
for larger Lipschitz constant compared to the existing results
(see the example) [3], [5], [15].

Remark 2:The second result aims to provide LMI con-
ditions without needing any calculation of the Lipschitz
constant. Then, this last has a larger domain of applicability
compared to the first one. However, the price to pay is the
loss of asymptotic convergence which is replaced by an ISS
property.

Remark 3:The proposed results are firstly given in the
form of double sums inequalities represented in general by

Mµ̂ µ̂ < 0 (50)

This is an adequate form to use the recent result on conser-
vatism reduction, namely the Polya’s theorem which provides
asymptotic necessary and sufficient stability conditions.It is
easy to derive these conditions (as given in the theorem 2)
(for more details, the reader can refer to [14], [24]).

Remark 4:The ISS is also preserved if any bounded ad-
ditive disturbancesω(t) andv(t) respectively affect the state
dynamics and measurement equations. Indeed, it can easily
be seen that the termδ (x, x̂,u) can include the disturbances
as follows

δ (x, x̂,u) =
(

Aµ −Aµ̂
)

x+
(

Bµ −Bµ̂
)

u+ω +P−1
µ̂ Lµ̂v (51)

For boundedω(t) and v(t), then δ (x, x̂,u) is still bounded.
In addition, the proposed observer can take into account
uncertainties on the premise variables.

Remark 5:Note that the results are easily extended to
systems with nonlinear output equation given by

y(t) =
r

∑
i=1

µi(x)Cix(t) (52)

Remark 6: In the first proposed approach, asymptotic
convergence of the state estimation error is sought, based
on the (assumed) Lipschitz property of the disturbance-like
term. This can only be ensured for some values of the
Lipschitz constant (feasibility of the LMIs). In the second
approach, the goal is no longer asymptotic convergence,
but only convergence in a ball. In that case, the Lipschitz
assumption is not needed.

IV. SIMULATION EXAMPLE

Due to space limitation, only the second approach is
illustrated and discussed. Let us consider the Rossler chaotic
system modeled in the form of (1) with two sub-models
(r = 2) defined as follows

A1 =





−10 10 0
28 −1 −x1max

0 x1max −0.37



 ,

A2 =





−10 10 0
28 −1 −x1min

0 x1min −0.37



 ,

B1 = B2 =





0
0
0



 , C=

(

0 1 0
0 0 1

)

The premise variable isx1(t) which is bounded byx1min =
−9.8693 andx1max= 13.8164. The weighting functions are
defined by

µ1(x(t)) =
x1(t)−x1min

x1max−x1min

µ2(x(t)) =
x1max−x1(t)
x1max−x1min

The time derivatives ofµi(x), i ∈{1,2} are bounded byρ1 =
ρ2 = 4.5. The Lipschitz constant of the termδ (t) is computed
and given byη = 173.35. The approach given in [3] does not
provide any solution to this example, since solution can only
be obtained for Lipschitz constant smaller than 29.73. The
LMIs given in the theorem 1 of the present paper are feasible
for a maximal value of the Lipschitz constantηmax= 476.87
which is larger than the real Lipschitz constantη = 173.35.
Maximization of the Lipschitz constant can take into account
some uncertainties in the nonlinear termδ (t). On the other
hand, solving the optimization problem given in the theorem
2 with SEDUMI (YALMIP), the LMIs are feasible forα =
10 and the attenuation level of the transfer ofδ (t) towards
e(t) is

√γ = 0.0549 which is greater than or equal to
√

c
αα1

(in this example, the obtainedγ is exactly the same as the
quantity

√

c
αα1

). The result of the state estimation is depicted

on figure 1.
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Fig. 1. State variables (blue line) and their estimates (red dashed lines)

A second simulation is performed with a centered mea-
surement noiseν(t) in the range−0.33 and 0.33. This case



corresponds to a perturbation termδ (t) given in equation
(51) with ω(t) = 0. The norms‖e(t)‖2 and γ ‖δ (t)‖∞ are
depicted in the figure 2 and illustrates that the norm of the
error is always less thanγ ‖δ (t)‖∞.
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Fig. 2. Time evolution of||e(t)|| and γ||δ (t)|| with noised measurement

V. CONCLUSIONS AND FUTURE WORKS

In this paper, some advances in observer design for Takagi-
Sugeno systems with UPV are proposed. A focus has been
made on some problems, namely, the conservativeness of
the existing results on observer design for T-S systems
with UPV and the maximal admissible Lipschitz constant
allowing to solve the LMI constraints, and the robustness
with respect to bounded modeling uncertainties and bounded
additive perturbations. The first problem is dealt with by
using a polyquadratic Lyapunov function and asymptotic
stability conditions are provided. For the second problem,
the polyquadratic Lyapunov function and ISS concept are
combined. The obtained results are expressed in terms of
LMIs and optimization problem with LMI constraints. For
future work, it is interesting to extend the results for both
state and unknown input estimation for possible application
in fault diagnosis and fault tolerant control of nonlinear sys-
tems. AN extension of some recent results will be considered
for LMI conditions independent from derivative bounds of
the weighting functions.
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