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Abstract. In this paper, we propose a method to model a fleet of identi-
cal machines. These latest may work in the same or in different operating
conditions. Firstly, the method consists in estimating a linear model, us-
ing PCA, based on the data collected on the machine itself. Secondly,
the common parts of the models of the different machines are identified.
New models for the machines are then generated taking into account the
identified common parts. An academic example is finally presented to il-
lustrate the results of the method.
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1 Introduction

In many industrial sectors, a fleet of identical machines (nuclear power plants,
wind farms, etc.) can be exploited by the same process; however those machines
may work in different conditions. The problem consists in modelling each ma-
chine of the fleet using not only the knowledge issued from the machine itself, as
it is done classically, but also all the data collected from the identical machines
of the fleet. This problem is commonly known as multi-task learning problem.
Under linearity hypothesis of the models and considering that the environmen-
tal variables appear explicitly as explanatory variables in addition to the ones
peculiar to the machines, we can suppose that the models are composed of two
parts: a common one made up of the variables of the machines themselves (with
the same structure and the same coefficients) and a distinct part related to the
environmental variables. One can logically suppose that the explanatory power
of the environmental variables is lesser than that of the other variables. The last
part of the models can also be divided into two parts. The first one is formed
by the variables shared by all the models but with different coefficients and the
second one is made up of variables that affect the behavior of at least one ma-
chine. Identifying the common parts to the models may be of a benefit because
it reduces the cost of the identification of the models of the machines, facilitates
the construction of the model of a new machine of the fleet, and, on the long
term, can reduce the cost of the maintenance system of the fleet of the machines.
Figure 1 gives an example of models of three machines. In this figure, a bar of
the specified color of the machine number q (q ∈ {1, 2, 3}) at the position of the



variable xi (i ∈ {1, . . . , 7}) means that this variable constitutes an explanatory
variable of the model of the qth machine. The magnitude of the bar reflects the
value of the coefficient of the corresponding variable.
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Fig. 1. Example on the fleet effect

From Fig. 1, we can conclude that: the model of the first machine is composed
of variables x1 and x3 to x7; the model of the second machine is composed of
x2 and x4 to x7 and the model of the third machine is composed of all the vari-
ables. The coefficient of the variable x6 is common to all three models. However,
although x4 appears in the three models, its coefficient is common to models 2
and 3 but not 1. The coefficient of x5 is common to the three models, however
it is too small and one can wonder if omitting variable x5 from the models does
not give simpler models with the same results. The coefficients of x1 and x7 are
common to the models of the machines 1 and 3.
In [3, 8], the authors present a method to identify simultaneously the structure
and the coefficients of linear models based on data collected over all the machines
via a generalization of the LASSO [10] regularization technique. However, the
proposed method supposes that all the models have the same structure and it
does not identify explicitly the common part of the models. The estimation of
the parameters of two linear models having the same structure and identical
coefficients is done in [6]. In [7], a method for estimating coefficients of models
sharing some a priori known common part is proposed. In [9], authors present a
method addressing the same problem in addition to the problem of partitioning
models into different classes depending on the a priori known common part they
share. When the common parts of the models are not a priori known, as it is
commonly supposed, methods for identifying the models of different machines
and their common parts were presented in previous works [1, 2].



However, all existing works deal with multiple-input/single-output models and
suppose that each machine can be described by only one equation. Hence, two
hypotheses are considered:

– the number of linear models, describing the normal behavior of the machines,
is limited to one and their structures are known,

– only the output variables are measured with errors: the explanatory variables
are error free.

In this paper, we make no previous hypothesis neither on the number of models of
the machines nor their structures. In Sect. 2, an approach to identify models with
no distinction between input and output variables is presented. These error-in-
variables models take benefit of the presence of identical machines for modelling
the behavior of each machine. Section 3 presents the results of the application of
the proposed method on a simulation example. To conclude, Sect. 4 summarizes
the results of this paper and the future perspectives.

2 PCA Modelling and Fleet Effect

Suppose there are Q identical machines in a fleet. For each machine q, a model
describing its normal behavior is built. Suppose that nq measurements for m
variables, denoted xqi (i = 1, . . . ,m), are available for each machine and set Xq

the matrix containing these measurements (Xq ∈ IRnq×m). The work presented
in this paper enables to establish models for Q machines taking into account the
fleet effect: these models share some common variables with identical coefficients.
The proposed method consists of the following steps:

1. identify the models (and their number) describing the normal behavior of
each machine independently from the others,

2. interpret these models to identify their structures and their common parts,
3. identify new models considering their structures their common parts,
4. validate the new models by a quantitative analysis of the residuals.

2.1 Identifying the Model of Each Machine Independently

As stated earlier, the first step of the method consists in identifying the models,
describing the normal behavior of each machine, and their number. Consider
the case of the machine number q and suppose that all data contained in Xq

corresponds to a normal behavior of the machine. Principal Component Analysis
(PCA) determines an optimal linear transformation of the data matrix Xq in
terms of capturing the variation in the data [5]:

T q = XqP q and Xq = T qP q
T

(1)

where T q ∈ IRnq×m is the principal component matrix and the matrix P q ∈
IRm×m contains the principal vectors which are the eigenvectors associated to
the eigenvalues λqi of the covariance matrix Σq of Xq:

Σq = P qΛqP q
T

with P qP q
T

= P q
T

P q = Im (2)



where Λq = diag(λq1 . . . λ
q
m) is a diagonal matrix with diagonal elements in de-

creasing magnitude order and Im is the identity matrix of appropriate dimension.
The eigenvectors associated to null or quasi-null eigenvalues depict the linear or
quasi-linear relationships between the variables xqi , ∀ i. Different approaches
described in the literature permit to identify these eigenvectors. A simple way
consists in fixing a threshold on the amplitude of the eigenvalues in order to iden-
tify those that can be considered quasi-null. We set P̃ q the matrix containing
the corresponding rq eigenvectors.

2.2 Comparaison of the PCA Models

Suppose that, for each machine q, matrix P̃ q is known. The column vectors of all
the matrices P̃ q define, after appropriate transformations, the same subspace [5].
Hence, in order to compare the elements of those different matrices, we propose to
transform them such that ”0” and ”1” appear at specific places. More explicitly,
we can easily find a transformation function gq:

gq : IRm×rq 7−→ IRm×rq

P̃ q 7−→ P
q

(3)

such that:

P̃ q =



p̃q1,1 p̃q1,2 · · · p̃q1,rq
p̃q2,1 p̃q2,2 · · · p̃q2,rq

...
...

. . .
...

p̃qrq,1 p̃qrq,2 · · · p̃qrq,rq
p̃qrq+1,1 p̃

q
rq+1,2 · · · p̃

q
rq+1,rq

...
...

. . .
...

p̃qm,1 p̃qm,2 · · · p̃qm,rq


7−→ P

q
=



1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1
pqrq+1,1 p

q
rq+1,2 · · · p

q
rq+1,rq

...
...

. . .
...

pqm,1 pqm,2 · · · pqm,rq


.

(4)

Remark 1. The choice of the variables over which we normalize the eigenvec-
tors is not unique. In order to avoid the numerical problems, we can chose to
normalize these vectors considering the variables having the biggest coefficients.

Remark 2. Denote r = min (r1, . . . , rQ). For a matrix P̃ q for which rq < r,
normalizing its columns using a transformation matrix of rank rq may not be
the best transformation to realize. We may try searching for all the possible
transformation matrices of rank r between the columns of P̃ q and then apply
each transformation to the set of vectors concerned with this transformation.
However, instead of having rq new vectors, we will have Crrq vectors to form the

new matrix P
q

(C
rq
r is the number of r-combinations over rq).

Denote P
q

sq the sthq column of P
q
. In order to identify all the common parts to

models of the machines number q and `, a comparison of P
q

sq should not only

be made with P
`

s`
but also with −P `s` (sq = 1, . . . , rq and s` = 1, . . . , r`).



Example 1. Assume that P
q

sq = (0 1 − 0.40 − 1.00 − 1.53)
T

and P
`

s`
=

(0 1 0 1.02 1.50)
T

. By comparing these vectors, we can conclude that only

the coefficient of the second variable is common to models q and `. However,−P `s`
has the coefficients of the fourth and fifth variables similar to those of P

q

sq . A
larger common part is hence identified for the models of the machines q and `.

Furthermore, while examining the elements of P
q

sq , ∀q, we can notice that some
of them are significantly smaller than the others. This can lead to the conclu-
sion that the associated variables to those coefficients may be omitted from the
models (by setting their coefficients to zero).
In a general way, the identification of the common coefficients of the rq models
of the machines q with the r` models of the machine ` can easily be done:

1. calculate the difference between the coefficients pqsq,i and p`s`,i (−p`s`,i), i =
1, . . . ,m, and use a binary coding to reflect the proximity between the coeffi-
cients: ”1” if the calculated difference is smaller than a predefined threshold
δ and ”0” if not. Hence, a vector of distances, denoted dq,`sq,s` , is obtained,

2. construct an occurrence vector Iq,`sq,s` for each couple of vectors P
q

sq and P
`

s`
:

at the position i, put ”1” if both pqsq,i and p`s`,i are larger than ε (a prefixed

threshold under which the coefficients are considered null) and ”0” if not,
3. calculate cq,`sq,s` = dq,`sq,s`⊗I

q,`
sq,s`

(⊗ stands for the binary product). This vector

indicates the common coefficients to P
q

sq and P
`

s`
. In this work, we are only

interested in vectors having at least two non zero elements.

2.3 Identification of New Models

All the common coefficients are now known, the ones small enough to be con-
sidered null are also identified, our aim is to identify the models of the different
machines taking into account the common coefficients to the shared variables
and the nullity of some coefficients. In order to identify the new models, we
propose to solve a total least squares problem under equality constraints:

min
θ

1

2
‖Xθ‖22

s.t. Hθ = 0
(5)

where X =


X1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 XQ

 ∈ IRN×M , θ =


θ1

θ2

...
θQ

 ∈ IRM with N = n1 +

· · · + nQ is the total number of observations and M = mQ is the total number

of measured variables. The selection matrix H ∈ IRC×M (C is the total number
of constraints) is constructed in a way to select the coefficients of the models to
be set identical or those to be set to zero. It is only composed of 1, 0 and -1.
In order to solve the problem in (5), we can use a constraint elimination technique
composed of three steps [4]:



1. transform the optimization problem under constraints into another one of
lower dimension by eliminating the constraints,

2. solve the new problem,
3. deduce the solution of the original problem.

Transform the Original Problem into Another of Lower Dimension.
Matrix H is of full row rank C. We can easily find a permutation matrix Π ∈
IRM×M (ΠΠT = IM ) that transforms H into H∗ = HΠ with:

H∗ = [H∗
1 H∗

2 ] ∈ IRC×M (6)

where H∗
1 ∈ IRC×C is a regular matrix and H∗

2 ∈ IRC×(M−C).
Set θ∗ = ΠT θ and partition it into θ∗1 ∈ IRC and θ∗2 ∈ IRM−C . The constraints
Hθ = 0 lead to:

θ∗1 = −H∗−1

1 H∗
2 θ

∗
2 . (7)

Hence, the vector θ∗ can be written as:

θ∗ = T θ∗2 (8)

where T =

(
−H∗−1

1 H∗
2

IM−C

)
and IM−C is the identity matrix of appropriate di-

mension (M −C)× (M −C). This way, the original problem (5) is transformed
into:

min
θ∗2

1

2
‖XΠT θ∗2‖

2
2 . (9)

Solution of the New Problem. Denote Z = XΠT , the final problem to be
solved is then:

min
θ∗2

1

2
‖Zθ∗2‖

2
2 . (10)

We impose a normality constraint on the vector θ∗2 :

‖θ∗2‖22 = 1 . (11)

The problem to solve is nothing else than a total least squares problem for
which the solution θ̂∗2 is obtained as the eigenvector associated to the smallest
eigenvalue of the matrix ZTZ.

Solution of the Original Problem. The solution of the initial problem (5)
can easily be obtained:

– using (10) and (11), an estimate θ̂∗2 is found,

– an estimate θ̂∗ of θ∗ is obtained using (8),

– an estimate of the original vector of coefficients is θ̂ = Πθ̂∗.

The new models are finally validated by examining the residuals and evaluat-
ing the possible loss of information compared to the models identified on each
database independently from the others as illustrated in the following example.



3 Application

Suppose that four databases are available and that each database contains the
measurements of 7 different variables. The coefficients of the models identified
applying the PCA on each database independently from the others, after deter-

mining their structures, are given in Table 1. We denote θqsq =
(
θqsq,1, . . . , θ

q
sq,7

)T
the vector of the coefficients associated to P

q

sq (q = 1, . . . , 4).

Table 1. Estimated coefficients for each database independently from the others

i

1 2 3 4 5 6 7

P
1
1 1 0 0.45 -1.03 0 1.04 0

P
1
2 0 1 -1.18 -1.51 0 1.08 0

P
2
1 1 0 0 -0.51 -0.48 0 0

P
2
2 0 1 0 0.49 1.50 0.98 0

P
2
3 0 0 1 -1.03 2.05 0 1.04

P
3
1 1 0 0 1.52 0 0 1.05

P
3
2 0 1 0 0 1.48 -2.05 1.01

P
3
3 0 0 1 -1.52 1.97 -1.02 0

P
4
1 1 0 0 1.50 0 -0.96 -0.99

P
4
2 0 1 0 0 1.59 -1.92 1.43

P
4
3 0 0 1 -0.89 1.92 0 1.18

The analysis of the contents of Table 1 considering the proximity of the coeffi-
cients and the occurrence of the variables in the models enabled us to deduce
the following constraints:

θ31,1 = θ41,1 θ12,2 = θ22,2 θ22,2 = θ32,2 θ22,2 = θ42,2 θ12,4 = θ41,4
θ23,3 = θ33,3 θ23,3 = θ43,3 θ31,4 = θ41,4 θ23,4 = θ43,4 θ12,6 = θ41,6
θ22,5 = θ32,5 θ22,5 = θ42,5 θ23,5 = θ33,5 θ23,5 = θ43,5 θ32,6 = θ42,6
θ12,6 = θ22,6 θ32,7 = θ42,7 θ23,7 = θ43,7

In addition to these constraints, constraints of type θqsq,i = 0 are also considered
and the total number of constraints is 59. The new estimated coefficients taking
into account all the constraints are given in Table 2. In this table, we used the

notation
ˆ̂
P
q

sq to denote a second sub-model issued from P
q

sq after taking into

account other constraints than those used to obtain P̂ qsq .
In order to validate the new models, we examine the variation of the residual
criteria, here considered as the means of the quadratic error, compared to the
ones obtained by the applying the PCA on each database independently from
the others. Table 3 gives the values of the residual criteria where J

q

sq (resp. Ĵqsq



Table 2. Estimated coefficients considering the constraints

i

1 2 3 4 5 6 7

P̂ 1
1 1 0 0.45 -1.02 0 1.04 0

P̂ 1
2 0 1 -1.29 -1.51 0 1.05 0

ˆ̂
P

1

2 0 1 -1.12 -1.52 0 1.01 0

P̂ 2
1 1 0 0 -0.50 -0.48 0 0

P̂ 2
2 0 1 0 0.49 1.63 1.05 0

P̂ 2
3 0 0 1 -0.93 2.018 0 0.97

P̂ 3
1 1 0 0 1.52 0 0 1.04

P̂ 3
2 0 1 0 0 1.63 -2.00 1.06

P̂ 3
3 0 0 1 -1.54 2.01 -1.08 0

P̂ 4
1 1 0 0 1.52 0 -0.98 -1.01

ˆ̂
P

4

1 1 0 0 1.52 0 -1.01 -1.05

P̂ 4
2 0 1 0 0 1.63 -2.00 1.06

P̂ 4
3 0 0 1 -0.93 2.01 0 0.97

and
ˆ̂
J
q

sq ) corresponds to the residual criterion associated to the relation P
q

sq

(resp. P̂ qsq and
ˆ̂
P
q

sq ), q = 1, . . . , 4 and sq = 1, . . . , rq.

Table 3. Residual criteria

q J
q
1 Ĵq

1
ˆ̂
J
q

1 J
q
2 Ĵq

2
ˆ̂
J
q

2 J
q
3 Ĵq

3

1 0.053 0.053 0.048 0.052 0.049
2 0.017 0.017 0.060 0.076 0.074 0.081
3 0.053 0.053 0.083 0.096 0.073 0.077
4 0.071 0.072 0.074 0.172 0.180 0.101 0.110

Table 3 shows no major deterioration in the residual criteria. In order to verify
that the identified common parts correspond to variables contributing the most
in the models, we give at Table 4 the variations in the residual criteria resulting
from omitting each variable at a time from the corresponding model.
From Table 4, we can notice that the largest loss of information is due, most
of the time, to the variables having a shared coefficient by at least two models.
This confirms the hypothesis made in the introduction of this paper that the
fleet effect appears on the variables having the most explanatory power in the
models. Figure 2 shows the evolution of x41 and its estimates x41,1 and x̂41,1,
obtained respectively by the old and the new models.
Figure 2 shows that x̂41,1 estimates x41 as good as x41,1. The same phenomenon



Table 4. Variations in the residual criteria

Model x3 x4 x5 x6 x7

P
1
1 0.02 0.33 0.16

P
1
2 0.08 0.52 0.17

P
2
1 0.24 0.09

P
2
2 0.19 0.26 0.22

P
2
3 0.24 0.37 0.18

P
3
1 0.48 0.37

P
3
2 0.26 0.34 0.38

P
3
3 0.40 0.32 0.14

P
4
1 0.54 0.22 0.08

P
4
2 0.03 0.26 0.16

P
4
3 0.96 0.52 0.41
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Fig. 2. Evolution of signals x4
1, x4

1,1 and x̂4
1,1

is observed for the other available variables. Hence, considering the fleet effect
does not affect the quality of estimation of the models of the four machines.

4 Conclusions

In this paper, we presented a method in order to identify linear models describ-
ing the normal behavior of identical machines of a fleet such that the models
may share some common parts. The method supposes no previous knowledge
neither on the number of models of each machine nor their structures. At first,
the method proceeds by identifying the models describing the normal behav-
ior of each machine independently from the others. Secondly, an analysis of the
models is realized in order to determine their structures and their common parts.
New models are then identified taking into account the identified common parts.
These models are finally validated using quantitative analysis of the residuals.



The results of applying the proposed method on a simulation example are sat-
isfying.
In perspective, a study on the best transformation matrices to apply to the prin-
cipal component matrices will be conducted. The influence of omitting some of
the variables from the models on the total explained variance by the models will
be studied. On the long term, the contribution of this type of modelling to the
diagnosis of a fleet of identical machines will be explored and the extension of
the method to the dynamical models may be conceivable.
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