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Abstract— This paper deals with Fault Tolerant Control
design for continuous nonlinear Takagi-Sugeno faulty systems.
The goal is to ensure both state and fault estimation and the
state reference tracking even if faults occur. In this study, the
faults affecting the system behavior are considered as time
varying functions modeled by exponential functions or first
order polynomials. Based on descriptor redundancy property,
solutions are proposed for both cases, exponential and polyno-
mial faults, in terms of Linear Matrix Inequalities (LMI). In
order to illustrate the applicability and the effectiveness of the
proposed approaches, numerical examples are considered.

I. I NTRODUCTION

The modern control of physical systems uses new algo-
rithm approaches in order to increase the performances and
the safety requirements. The classical control methodologies
for nonlinear complex systems can lead to unsatisfactory
performances, or even in some cases, to the instability if any
malfunction occurs in the process components (as sensors
or actuators). To overcome these drawbacks, new control
system techniques have been developed in order to guarantee
the overall system stability and acceptable performances,
despite the failure situation. This new strategy of system
control is called Fault Tolerant Control (FTC). The main
idea of this strategy relies on the adaptation of the control
law on the basis of the estimation of the faults affecting the
system. Many works dealing with FTC design have been
developed. For example, in the linear framework, the FTC
problem is widely treated [1][2][3][4][5][6][7][8]. However
in practice, most of physical systems are nonlinear, hence,it
is primary to consider the FTC design for nonlinear systems.
Some approaches dealing with this problem are proposed by
[9][10][11]. Nevertheless, these approaches are applied only
when the operating points change or the fault occurs. Thus,
the approaches taking into account the changes caused by
both operating point variations and fault are not yet available
(for more details, the reader can refer to [7]). Indeed, a
way to overcome the existing FTC approach drawbacks is to
consider the nonlinear Takagi-Sugeno models [12]. This class
of models allows representing exactly the overall nonlinear
systems on its operating region in the state space. Takagi-
Sugeno models are described by a set of Linear Time Invari-
ant (LTI) models, each LTI model represents the nonlinear
system behavior in a particular region in the state space. The
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overall nonlinear system dynamics is obtained by blending
together all the LTI models with nonlinear functions. Since
introducing Takagi-Sugeno models, many works dealing with
stability, stabilization and estimation have been developed
[13][14][15][16]. Nevertheless, the FTC design problem has
been few treated. For example, the trajectory tracking FTC
design for Takagi-Sugeno model subject to actuator constant
fault has been developed by [17], when the premise variables
are measurable and by [18][19] when they are unmeasurable.
In these studies, the estimation of the constant faults is
obtained by using proportional integral observers. Many
papers reported that, on a practical point of view, even if the
considered faults are not constant but only slow varying (with
regards the dynamics of the system), the proposed observers
provide good results.

However, in this paper, our goal is to study the problem
of FTC design for Takagi-Sugeno models subject to time
varying faults. The idea is to take into account an a pri-
ori knowledge about the faults acting on the system and
investigate how the fault estimation can take advantage of
that. Two particular fault models are considered: exponential
function and first order polynomial. Thus, two approaches
are proposed to ensure the state tracking between the healthy
system and the faulty ones.

The following notations are considered to improve the
paper readability:Xµ = ∑r

i=1 µ (ξ (t))Xi . In a block matrix, a
star,∗, denotes the transposed element in the symmetric po-
sition and diag(Θ1, ...,Θr) is a block diagonal matrix which
diagonal entries are defined byΘ1, ...,Θr . The following
lemmas are needed to provide LMI conditions.

Lemma 1 [20]: Consider two real matricesΠ and Z with ap-
propriate dimensions, for any positive scalarτ the following
inequality holds:

ΠTZ+ZTΠ ≤ τ ΠTΠ+ τ−1ZTZ (1)

Lemma 2 [24]: Consider the matrices Ti = TT
i , i ∈ {0, ...,k}.

The following expressions are equivalent:

∀ζ , ζ TT0ζ ≥ 0 and ζ TTiζ ≥ 0,∀i ∈ {1, ...,k} (2)

∃ρ1 ≥ 0, ...,ρk ≥ 0 such that∀ζ ,T0−
k

∑
i=1

ρiTi ≥ 0 (3)



II. PROBLEM FORMULATION

Let us consider the following reference model:


















ẋ(t) =
r
∑

i=1
µi(ξ (t))(Aix(t)+Biu(t))

y(t) =
r
∑

i=1
µi(ξ (t))(Cix(t)+Diu(t))

(4)

where x(t) ∈ R
n, y(t) ∈ R

p and u(t) ∈ R
m are respectively

the state, the output and the nominal control vectors. The
r submodels are defined by the matricesAi ∈ R

n×n, Bi ∈
R

n×m, Ci ∈R
p×n and Di ∈R

p×m. µi(ξ (t)) are the nonlinear
functions depending on the variableξ (t) which can be
measurable(u(t) or y(t)) or unmeasurable (x(t)). These
nonlinear functions satisfy the convex sum property:∀ t











0≤ µi(ξ (t)) ≤ 1, i = 1, ..., r

r
∑

i=1
µi(ξ (t)) = 1

(5)

Let us consider the following faulty system:


















ẋf (t) =
r
∑

i=1
µi(ξ (t))(Aixf (t)+Biuf (t)+Gi f (t))

yf (t) =
r
∑

i=1
µi(ξ (t))(Cixf (t)+Diuf (t)+Wi f (t))

(6)

where xf (t) ∈ R
n, yf (t) ∈ R

p, f (t) ∈ R
q and uf (t) ∈ R

m

are respectively the faulty state, the faulty output, the fault
affecting the system and the fault tolerant control vectors.
Gi ∈ R

n×q and Wi ∈ R
p×q are the transfer matrices of the

faults on the system. The fault tolerant controller design
methodology is based on the following scheme.

yf (t)
System

f (t)

uf (t)u(t) +

+

f̂ (t)

x(t)

+

−

x̂f (t)

Observer

Controller

Reference
model

Fig. 1. Tracking fault tolerant controller design scheme

In order to ensure the tracking between the healthy system
states and the faulty system ones, we consider the following
FTC law given by:

uf (t) = u(t)+
r

∑
i=1

µi (ξ (t))
(

Ki
(

x(t)− x̂f (t)
)

−K f
i f̂ (t)

)

(7)

where Ki ∈ R
m×n and K f

i ∈ R
m×q are the state feedback

gain matrices to be determined. In this study, an observer is
needed to estimate simultaneously the faults and the faulty
system states. The observer structure is given by:






































˙̂xf (t) =
r

∑
i=1

µi (ξ (t))
(

Ai x̂f (t)+Biuf (t)+Gi f̂ (t)+ϕi (t)
)

ŷf (t) =
r

∑
i=1

µi (ξ (t))
(

Ci x̂f (t)+Diuf (t)+Wi f̂ (t)
)

˙̂f (t) =
r

∑
i=1

µi (ξ (t))
(

H2
i

(

yf (t)− ŷf (t)
)

−H3
i f̂ (t)

)

(8)
with ϕi (t) = H1

i

(

yf (t)− ŷf (t)
)

. The observer’s gain matri-
cesH1

i ∈R
n×p, H2

i ∈R
q×p andH3

i ∈R
q×q are to be designed.

With this FT controller structure, one can remark that fault
detection and isolation are performed since an estimate of
the fault affecting the system is available.

III. FAULT TOLERANT CONTROLLER DESIGN

Along of this study, we assume that:
1) The faults and the system states are observable from the
output.
2) The nonlinear functions depend only on the measurable
variablesy(t) or u(t).
3) The considered fault functions are differentiable.

A. FTC for exponential faults

Assume that the faults affecting the system are modeled
by exponential function (fi (t) ≡ eαi t+βi , with αi ,βi ∈ R,
i = 1, ...,q. In the next, we consider thatαi = α0,i + ∆αi ,
which allows defining a set of exponential functions,α0,i

and ∆αi representing respectively the nominal and the
uncertain parts ofαi . Let us defineα = diag(α1, ...,αq),
α0 = diag(α0,1, ...,α0,q), and ∆α = diag(∆α1, ...,∆αq). The
uncertain part can be bounded as:

(∆α)T ∆α ≤ ν (9)

whereν ∈R
q×q is a known diagonal positive definite matrix.

Let us respectively define the state and fault estimation
errors as:es(t) = xf (t)− x̂f (t) anded (t) = f (t)− f̂ (t). Let
us also define the state tracking errorep (t) = x(t)− xf (t),
the output errorey (t) = yf (t)− ŷf (t) and the error between
the nominal and FTC control signalseu (t) = u(t)−uf (t).

According to the above notations, the dynamics ofep (t)
andes(t) are given by:

ėp (t) = Aµep (t)+Bµeu (t)−Gµ f (t) (10)

ės(t) = Aµes(t)+Gµed (t)−H1
µey (t) (11)

Since ḟ (t) = α f (t), the dynamics of the fault estimation
error is given by:

ėd (t) = α f (t)−H2
µey (t)+H3

µ f̂ (t) (12)

By adding and subtractingH3
µ f (t) in (12), one can obtain:

ėd (t) = −H2
µey (t)−H3

µed (t)+
(

α +H3
µ
)

f (t) (13)



The substitution of the expression ofey (t) in (11) and
(13) and the expression ofeu (t) in (10), leads to introducing
multiplications between the system matrices and the ones
of the observer and the controller. This coupling leads to
conservative results. A way to overcome this problem is
to introduce a ”virtual dynamics” in theey (t) and eu (t)
equations [21][22][23]. This craftiness allows decoupling
the system, observer and FTC controller matrices in the
expressions of the error dynamics. Hence,ey (t) and eu (t)
can be rewritten as:

0ėy (t) = −ey (t)+Cµes(t)+Wµed (t) (14)

where 0∈ R
p×p is a zero matrix.

Adding and subtractingKµxf (t) andK f
µ f (t) in eu (t), one

can obtain:

0ėu (t) = −K f
µ f (t)+K f

µed (t)+Kµep (t)+Kµes(t) +eu (t)
(15)

where 0∈R
m×m is a zero matrix. The concatenation of (10),

(11), (13), (14) and (15) leads to the following descriptor
representation:

E ˙̃e(t) = Ãµ ẽ(t)+ B̃µ f (t) (16)

whereE = diag(In In Iq 0p0m),

ẽT (t) =
(

eT
p (t) eT

s (t) eT
d (t) eT

y (t) eT
u (t)

)

,

Ãµ =













Aµ 0 0 0 Bµ
0 Aµ Gµ −H1

µ 0
0 0 −H3

µ −H2
µ 0

0 Cµ Wµ −I 0
−Kµ −Kµ −K f

µ 0 −I













and B̃T
µ =

(

−GT
µ 0

(

α +H3
µ
)T

0
(

K f
µ

)T )

.

From the structure of the matricesE and Ãµ , we remark
that the descriptor (16) is impulse-free. The main interest
of the descriptor approach is to avoid products of system,
observer and controller gains in the LMI, and thus obtain
more tractable and less restrictive conditions.

The main provided results are summarized in the following
theorem 1.
Theorem 1: The system (16) that describes the different
estimation errors is stable and theL2-gain from the faults to
the state tracking error, the state and fault estimation errors
is bounded by

√
γ̄, if there exists matricesP1 = PT

1 > 0,
P7 = PT

7 > 0, P13 = PT
13 > 0, P16, P17, P18, P19, P25, Fi , Ri ,

Si , Qi and Mi and positive scalars̄γ and τ such that the
following LMI are verified, for i = 1, ..., r:























ϒ1,1
i ∗ ∗ ∗ ∗ ∗ 0

CT
i P16 ϒ2,2

i ∗ ∗ ∗ 0 0
WT

i P16 ϒ3,2
i ϒ3,3

i ∗ ∗ ∗ ∗
−P16 ϒ4,2

i ϒ4,3
i ϒ4,4 0 0 0

ϒ5,1
i −Fi −Qi 0 ϒ5,5 ∗ 0

−GT
i P1 0 ϒ6,3

i 0 QT
i (τ − γ̄)I 0

0 0 P13 0 0 0 −τν I























< 0

(17)

where
ϒ1,1

i = P1Ai +AT
i P1 + I ,

ϒ2,2
i = P7Ai +AT

i P7 +PT
17Ci +CT

i P17+ I ,
ϒ3,2

i = PT
18Ci +GT

i P7 +WT
i P17,

ϒ3,3
i = −MT

i −Mi +PT
18Wi +WT

i P18+ I ,
ϒ4,2

i = PT
19Ci −P17−Si ,

ϒ4,3
i = PT

19Wi −P18−RT
i ,

ϒ4,4 = −P19−PT
19, ϒ5,1

i = −Fi +BT
i P1,

ϒ5,5 = −P25−PT
25 and

ϒ6,3
i = α0P13+Mi .

Proof. : To study the stability of (16), we consider the
following quadratic Lyapunov function candidate:

V (ep (t) ,es(t) ,ed (t)) = ẽT (t)EPẽ(t) (18)

with

EP= PTE > 0 (19)

The choice of the Lyapunov function (18) will ensure
the stability of the tracking error and of the state and
fault estimations. To attenuate the fault effect on the error
dynamics, one considers theL2 constraint [24] given by:

t f
∫

0

ẽT (t)Eẽ(t) 6 γ2

t f
∫

0

f T (t) f (t) (20)

where t f and γ represent respectively the final time and
the attenuation level. The tracking errorep (t), statees(t)
and faulted (t) estimation errors must therefore satisfy the
following inequality:

˙̃eT (t)EPẽ(t)+ẽT (t)EP˙̃e(t)+ẽT (t)Eẽ(t)−γ2 f T (t) f (t)< 0
(21)

Considering (19) and substituting (16) in (21), one can
obtain:
(

ẽT (t)
f T (t)

)T (

ÃT
µP+PT Ãµ +E ∗

B̃T
µP −γ2

)(

ẽ(t)
f (t)

)

< 0

(22)
The inequality (22) is fulfilled if:

(

ÃT
µP+PT Ãµ +E ∗

B̃T
µP −γ2

)

< 0 (23)

The structure of the Lyapunov matrixP is chosen as follows:

P =













P1 0 0 0 0
0 P7 0 0 0
0 0 P13 0 0

P16 P17 P18 P19 0
0 0 0 0 P25













(24)

Clearly, this structure is not the general one but it limits the
coupling between the unknown submatrices to be determined
and allows the convergence conditions to be expressed using
LMI. According to (19), this latter imposes thatP1 = PT

1 > 0,
P7 = PT

7 > 0, P13 = PT
13 > 0 and P16, P17, P18, P19 P25 are

free slack matrices with appropriate dimensions. Considering



(24) and the matrices defined in (16), the mathematical
development of (23) leads to:

Ξµ +ΓTΩ+ΩTΓ < 0 (25)

whereΓ =
(

0 0 0 0 0 ∆α
)

,
Ω =

(

0 0 P13 0 0 0
)

and

Ξµ =



















Ψ1,1
µ ∗ ∗ ∗ ∗ ∗

CT
µ P16 Ψ2,2

µ ∗ ∗ ∗ 0

WT
µ P16 Ψ3,2

µ Ψ3,3
µ ∗ ∗ ∗

−P16 Ψ4,2
µ Ψ4,3

µ Ψ4,4 0 0
Ψ5,1

µ −PT
25Kµ −PT

25K
f
µ 0 Ψ5,5 ∗

−GT
µP1 0 Ψ6,3

µ 0 Ψ6,5
µ −γ2I



















with

Ψ1,1
µ = P1Aµ +AT

µP1 + I ,

Ψ2,2
µ = P7Aµ +AT

µP7 +PT
17Cµ +CT

µ P17+ I ,

Ψ3,2
µ = PT

18Cµ +GT
µP7 +WT

µ P17,

Ψ3,3
µ = −PT

13H
3
µ −

(

H3
µ
)T

P13+PT
18Wµ +WT

µ P18+ I ,

Ψ4,2
µ = PT

19Cµ −P17−
(

H1
µ
)T

P7,

Ψ4,3
µ = PT

19Wµ −P18−
(

H2
µ
)T

P13, Ψ4,4 = −P19−PT
19,

Ψ5,1
µ = −PT

25Kµ +BT
µP1, Ψ5,5 = −P25−PT

25,

Ψ6,3
µ = α0P13+

(

H3
µ
)T

P13, Ψ6,5
µ =

(

K f
µ

)T
P25.

Applying lemma 1 on (25), then considering (9), (25) can
be bounded as:

Ξµ + τΛTΛ+ τ−1ΩTΩ < 0 (26)

with Λ =
(

0 0 0 0 0 ν
)

. To provide LMI condi-
tions, we consider the following bijective changes of vari-
ables:
(

H3
µ
)T

P13 = Mµ , PT
25Kµ = Fµ , PT

13H
2
µ = Rµ ,

(

H1
µ
)T

P7 = Sµ , PT
25K

f
µ = Qµ , γ̄ = γ2,

then applying Schur complement [24] on the termτ−1ΩTΩ,
thus, the sufficient LMI conditions proposed in theorem 1
hold.

B. FTC for first order polynomial faults

Let us now consider that the fault affecting the system are
modeled by the first order plynomial given by:

fi (t) = λit +δi (27)

whereλi ∈R andδi ∈R, i = 1, ...,q. As well as for exponen-
tial function, λ = λ0 +∆λ , with ∆λ verifying:

(∆λ )T ∆λ ≤ ν (28)

whereν ∈R
q×q is a known diagonal positive definite matrix.

According to (13), the fault estimation error dynamics is
given by:

ėd (t) = −H2
µey (t)−H3

µed (t)+
(

H3
µ
)

f (t)+λ (29)

The combination of (10), (11), (29), (14) and (15) leads to
the following descriptor representation:

E ˙̃e(t) = Ãµ ẽ(t)+ B̄µ f (t)+N (30)

where the matrices E and Ãµ are defined in
equation (16) and NT =

(

0 0 λ T 0 0
)

,

B̄T
µ =

(

−GT
µ 0

(

H3
µ
)T

0
(

K f
µ

)T )

.

As well as for the case of exponential faults, the obtained
desciptor (30) is impulse-free.

The main provided results are summarized in the following
theorem 2.
Theorem 2: The system (30) that describes the different
estimation errors is stable and theL2-gain from the faults to
the state tracking error, the state and fault estimation errors
is bounded by

√
γ̄, if there exists matricesP1 = PT

1 > 0,
P7 = PT

7 > 0, P13 = PT
13 > 0, P16, P17, P18, P19, P25, Fi , Ri ,

Si , Qi andMi and positive scalars̄γ, ρ and σ such that the
following LMI are verified: for i = 1, ..., r






























Φ1,1
i ∗ ∗ ∗ ∗ ∗ 0 0

Φ2,1
i Φ2,2

i ∗ ∗ ∗ 0 0 0
Φ3,1

i Φ3,2
i Φ3,3

i ∗ ∗ ∗ ∗ 0
−P16 Φ4,2

i Φ4,3
i Φ4,4 0 0 0 0

Φ5,1
i −Fi −Qi 0 Φ5,5 ∗ 0 0

Φ6,1
i 0 Mi 0 QT

i −γ̄I 0 0
0 0 Φ7,3

i 0 0 0 Φ7,7 ∗
0 0 0 0 0 0 P13 −σ I































< 0 (31)

where

Φ1,1
i = ϒ1,1

i +ρ I , Φ2,1
i = CT

i P16, Φ2,2
i = ϒ2,2

i +ρ I ,
Φ3,1

i = WT
i P16, Φ3,2

i = ϒ3,2
i , Φ3,3

i = ϒ3,3
i +(σν +ρ)I ,

Φ4,2
i = ϒ4,2

i , Φ4,3
i = ϒ4,3

i , Φ4,4
i = ϒ4,4

i +ρ I ,
Φ5,1

i = ϒ5,1
i , Φ5,5

i = ϒ5,5
i +ρ I , Φ6,1

i = −GT
i P1,

Φ7,3 = λ0P13, Φ7,7 = −ερ I .

Proof. Considering (18), (19), (30) and following the same
path as for the proof of theorem 1 ((18)-(22)), one can obtain:




ẽT

f T

I





T 



ÃT
µP+PT Ãµ +E ∗ ∗

B̄T
µP −γ2I 0

NTP 0 0









ẽ
f
I



 < 0

(32)
To ensure the asymptotic convergence to a ball of radiusε

of the error dynamics, we consider the following constraint:

‖ẽ‖2
2 ≥ εI (33)

with ε is a known small positive scalar. The inequality (33)
is equivalent to:





ẽT

f T

I





T 



I 0 0
0 0 0
0 0 −εI









ẽ
f
I



 ≥ 0 (34)

Applying S-procedure lemma 2 [24] on (33) and (34), one
can obtain:





ẽT

f T

I





T 



Ψµ ∗ ∗
B̄T

µP −γ2I 0
NTP 0 −ερ I









ẽ
f
I



 < 0 (35)



whereΨµ = ÃT
µP+PT Ãµ +E +ρ I .

Considering the matrixN defined in (30) andP, (35) is
fulfilled if:

χµ +ΣTφ +φTΣ < 0 (36)

whereΣ =
(

0 0 0 0 0 0 ∆λ
)

,
φ =

(

0 0 P13 0 0 0 0
)

and

χµ =





Ψµ ∗ ∗
B̄T

µP −γ2I 0
0 0 λ0P13 0 0 0 −ερ I



.

Applying lemma 1 on the inequality (36), this latter can
be written as:

χµ +σΣTΣ+σ−1φTφ < 0 (37)

Following the same steps of the proof of theorem 1 from (23)
to the end, then applying the Schur complement [24] on the
term σ−1φTφ , thus, the sufficient LMI conditions proposed
in theorem 2 hold

IV. SIMULATION EXAMPLE

In this section, the effectiveness and the applicability ofthe
proposed approach are illustrated. An academic example is
considered since the main purpose of this paper is theoretical.
Let us consider the following Takagi-Sugeno model:















ẋ(t) =
2
∑

i=1
µi (ξ (u(t)))

(

Aixf (t)+Biuf (t)+Gi f (t)
)

y(t) =
2
∑

i=1
µi (ξ (u(t)))

(

Cixf (t)+Diuf (t)+Wi f (t)
)

with A1 =





−5 1 −3
1 −3 2
1 1 −4



, A2 =





−3 1 1
0.5 −3 2
0.5 1 −5



,

B1 =





5
3
2



, B2 =





5
4
5



, G1 =





5
5
0



, G2 =





5
5
5



,

W1 =

(

−0.5
0.5

)

, W2 =

(

−1
0.5

)

, C1 =

(

0.5 0.5 0
0 0.5 0

)

,

C2 =

(

1 0.5 0
0.5 1 0

)

, D1 =

(

−0.8
0

)

, D2 =

(

−0.8
−0.5

)

,

µ1 (u(t)) = 1−tanh(0.5−u(t))
2 andµ2 (u(t)) = 1−µ1 (u(t)). The

nominal input signal isu(t) = sin(cos(0.5t) t). The LMI
conditions given in theorems 1 and 2 have been solved by
using Matlab LMI Toolbox.

A. Case of exponential fault

Let us consider the following exponential fault affecting
the system behavior occurs at 8sec≤ t ≤ 11sec:

f (t) = e1.15t−14 (38)

The controller and the observer are synthesized forα0 = 1
and∆α = 0.2. Thus, the simulation results are illustrated by
the figures 2 and 3.

From these latter, one can see that the synthesized observer
and FTC controller showed their effectiveness, since the fault
and the system states are estimated and the tracking between
the faulty system states and the reference model ones is
ensured.
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Fig. 2. Reference model states vs. faulty system ones with FTC
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Fig. 3. State estimation errors, fault and its estimation, nominal and FTC
control inputs

B. Case of first order polynomial fault

The fault affecting the system occurs at 9sec≤ t ≤ 12.5sec
and is given by the following first order polynomial:

f (t) = 0.2t −1 (39)

Note that the FTC controller and observer gains are com-
puted for ε = 10−3, λ0 = 0.11 and ∆λ = 0.25. Thus, the
simulation results are illustrated by the following figures.
It can be seen that the synthesized FTC controller com-

pensates the fault and ensures the tracking between the
reference and the faulty system states, even if the parameter
of the occuring fault is not perfectly known for observer and
controller designs.

V. CONCLUSION

In this paper, fault tolerant tracking controller design
approaches for continuous Takagi-Sugeno models are pro-
posed. They concern the case when the fault affecting
the system behavior are time varying. In this study, the
considered faults are modeled by exponential function or
first order polynomial. The provided conditions are easily
formulated in term of LMI using the well known descriptor
redundancy property. This latter allows introducing free slack
variables in the Lyapunov function candidate leading to
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Fig. 4. Reference model states vs. faulty system ones with FTC
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Fig. 5. State estimation errors, fault and its estimation, nominal and FTC
control inputs

less conservative LMI conditions. The effectiveness of the
proposed approaches are illustrated with an example. Only
an academic example was considered, since the present paper
provides preliminary theoretical results, more efforts will be
made to improve applicability to real processes.
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