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Abstract— This paper deals with Fault Tolerant Control  overall nonlinear system dynamics is obtained by blending
design for continuous nonlinear Takagi-Sugeno faulty systems. together all the LTI models with nonlinear functions. Since
The goal is to ensure both state and fault estimation and the introducing Takagi-Sugeno models, many works dealing with

state reference tracking even if faults occur. In this study, the . S . .
faults affecting the system behavior are considered as time stability, stabilization and estimation have been devetbp

varying functions modeled by exponential functions or first [13][14][15][16]. Nevertheless, the FTC design problens ha
order polynomials. Based on descriptor redundancy property, been few treated. For example, the trajectory tracking FTC

solutions are proposed for both cases, exponential and polyno- design for Takagi-Sugeno model subject to actuator cohstan
mial faults, in terms of Linear Matrix Inequalities (LMI). In fault has been developed by [17], when the premise variables
order to illustrate the applicability and the effectiveness of the bl d by 1181119 ’h th bl
proposed approaches, numerical examples are considered. are measura .e and by [ ,][ 1W en they are unmeasura .e.
In these studies, the estimation of the constant faults is
I. INTRODUCTION obtained by using proportional integral observers. Many
8_apers reported that, on a practical point of view, evendf th

The modern control of physical systems uses new alg : . .

. . ; c%nS|dered faults are not constant but only slow varyingh(wi
rithm approaches in order to increase the performances and - rds the dvnamics of the s stem), the proposed observers
the safety requirements. The classical control methodedog 9 y Y ' prop

for nonlinear com . Iprovide good results.
plex systems can lead to unsatisfactory S )
performances, or even in some cases, to the instabilityyif an However, in this paper, our goal is to study the problem
malfunction occurs in the process components (as sens@fsFTC design for Takagi-Sugeno models subject to time
or actuators). To overcome these drawbacks, new conti6ying faults. The idea is to take into account an a pri-
system techniques have been developed in order to guarar@ée knowledge about the faults acting on the system and
the overall system stability and acceptable performancdgvestigate how the fault estimation can take advantage of
despite the failure situation. This new strategy of systerfflat- Two particular fault models are considered: expaaent
control is called Fault Tolerant Control (FTC). The mainfunction and first order polynomial. Thus, two approaches
idea of this strategy relies on the adaptation of the contr&® Proposed to ensure the state tracking between the yealth
law on the basis of the estimation of the faults affecting théYyStem and the faulty ones.
system. Many works dealing with FTC design have been The following notations are considered to improve the
developed. For example, in the linear framework, the FT@aper readabilityX, = Si_, 1 (£ (t))X;. In a block matrix, a
problem is widely treated [1][2][3][4][5][6][7][8]. Howeer star,=, denotes the transposed element in the symmetric po-
in practice, most of physical systems are nonlinear, hehce,sition and diag®;,...,0) is a block diagonal matrix which
is primary to consider the FTC design for nonlinear systemsliagonal entries are defined b®,,...,©,. The following
Some approaches dealing with this problem are proposed ®mmas are needed to provide LMI conditions.

[9][10][11]. Nevertheless, these approaches are appliéyl 0 | emma 1 [20]: Consider two real matriced and Z with ap-

when the operating points change or the fault occurs. Thussopriate dimensions, for any positive scatathe following
the approaches taking into account the changes causediR¥quality holds:

both operating point variations and fault are not yet atéla

(for more details, the reader can refer to [7]). Indeed, a

way to overcome the existing FTC approach drawbacks is to n'z+zm<rnn+t1z'z (1)
consider the nonlinear Takagi-Sugeno models [12]. Thisscla

of models allows representing exactly the overall nonline ) . N T

systems on its operating region in the state space. Takaé}qjﬁm:cn"l’lI 2[.24]' Con5|dgr the matncgs.lETi 1€{0,...k}.
Sugeno models are described by a set of Linear Time Invari- e following expressions are equivalent:
ant (LTI) models, each LTI model represents the nonlinear

system behavior in a particular region in the state space. Th vZ, {"To >0and "Ti{ >0Vie{l,. ..k (2
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[I. PROBLEM FORMULATION where Ki €¢ R™" and Kif € R™4 are the state feedback

Let us consider the following reference model: gain matrices to be determined. In this study, an observer is
; needed to estimate simultaneously the faults and the faulty
X(t) =3 (&) (AX(t)+Bju(t)) system states. The observer structure is given by:
i1
(4)

r Ri (t) = ilui (£(1)) (AR (1) +Biug () +Gif (1) + i (1))
y(t) = iglui(f(t))(cix(t)+DiU(t)) i=

r
where x(t) € R", y(t) € RP and u(t) € R™ are respectively | Y' )= _Z“i (& (1)) (G (1) +Diug (1) + W F (1)
the state, the output and the nominal control vectors. Theg 'r:
r submodels are defined by the matric$ € R™", Bj € ft)= Ziui (E(1) (H2 (s (1) =95 (1)) —H3T (1))
R™M C; e RP*M and D; € RP*™. (& (t)) are the nonlinear i=
functions depending on the variabl€ (t) which can be 1 . , . (8).
measurable(u(t) or y(t)) or unmeasurablex(t)). These with @i (t) = H* (y (t) — 91 (t)). The observers gain matri-

) ; ; 1 nxp H2 gxp 3 gxq i
nonlinear functions satisfy the convex sum propevty: Ce.SH' E.R , Hi” € RTP andH;* € R™™4 are to be designed.
With this FT controller structure, one can remark that fault

0<pwi(§(t) <1, i=1..r detection and isolation are performed since an estimate of
(5) the fault affecting the system is available.

i Hi(g(t) =1 1l
i=1

. FAULT TOLERANT CONTROLLER DESIGN

Let us consider the following faulty system: Along of this study, we assume that:
_ r 1) The faults and the system states are observable from the
Xi (t) = ,Zlui(f(t))(Ain (t) +Biur (t) + Gif(t)) output.
=

(6) 2) The nonlinear functions depend only on the measurable
r variablesy(t) or u(t).
ye(t) = i;“i(f(t))(cixf (t) +Diur (t) + W (1)) 3) The considered fault functions are differentiable.

where x¢(t) € R", yf(t) € RP, f(t) e RY and uf(t) e R™ A. FTC for exponential faults
are respectively the faulty state, the faulty output, thdtfa

affecting the system and the fault tolerant control vector% : . _ _ait+B .
. exponential function f (t) = e+, with a;,5 € R,
Gi € R™9 and W € RP*{ are the transfer matrices of the )i 1 P g In the next v{/(e( zzonsider that — Ollo BLF A
y ey Y- ) i = Ho,i i

faults on the_system. The fault tol_erant controller deSng/Eich allows defining a set of exponential functiors;
methodology is based on the following scheme. and Aqa; representing respectively the nominal and the
uncertain parts ofoj. Let us definea = diag(ay,..., dq),
oo = diag(ao 1, ..., o q), andAa = diaglAdy,...,Adq). The
f(t)¢

Assume that the faults affecting the system are modeled

uncertain part can be bounded as:

() o ur() System ys(t) > (ha) Aa < v 9)

wherev € R9% is a known diagonal positive definite matrix.
Let us respectively define the state and fault estimation

errors ases(t) = x¢ (t) —X; (t) andey (t) = f (t)— f (). Let

us also define the state tracking ergr(t) = x(t) — s (t),

the output erroly (t) = ys (t) — ¥¢ (t) and the error between

the nominal and FTC control signaég (t) = u(t) — us (t).
According to the above notations, the dynamicsepft)

andes(t) are given by:

Observer <

¢

Controller

> f
R(reng:jeer;ce x(t) €p(t) =Auep(t) +Bpey(t) -Gy f (1) (10)

o 1
Fig. 1. Tracking fault tolerant controller design scheme eS(t) = A“es(t) + Gued (t) - Huey(t) (11)

) Since f(t) = a f(t), the dynamics of the fault estimation
In order to ensure the tracking between the healthy systeror is given by
states and the faulty system ones, we consider the following '

FTC law given by: & (t)=af(t)—Hie (1) +HIf () (12)
ur (t) = u(t) + il”i (£ (1)) (Ki (X(t) — X¢ (1)) — K, f‘(t)) By adding and subtracting? f (t) in (12), one can obtain:
. (7) & (t) = —H2e (t) —H3eg () + (a +H3) F (1) (13)



The substitution of the expression ef(t) in (11) and where

(13) and the expression € (t) in (10), leads to introducing Yl =pA +ATPL+1,
multiplications between the system matrices and the onﬁ-zz P/A +AT P, +PLC +CTPi7+1,
of the observer and the controller. This coupling leads tg32 — PlTsCi +G/ P+ WPy,
conservative results. A way to overcome this problem i i=3: —MT = M; + PJW +WT Pig+1,
to introduce a "virtual dynamics” in they (t) and ey(t) 42 _ PLC —Pi7—S,
equations [21][22][23]. This craftiness allows decouglin Yhs = P/\W — Pig— RT
the system, observer and FTC controller matrices in th$l‘,4:7lg _pr Y5*1,:—F+B-TP

. . 19— Mg Tj i (R
expressions of the error dynamics. Heneg(t) and ey (t) Y55 — _Pye— Pl and
can be rewritten as: 57725

Y?'s = 0oP3+ M.
08y (t) = —ey (t) +Cyes(t) +Wyeq (t 14
5O (O +Cues(t hea (t) (14) Proof. : To study the stability of (16), we consider the

where 0c RP*P is a zero matrix. following quadratic Lyapunov function candidate:

Adding and subtracting(,x; (t) and Kﬁf (t) in ey (t), one - ~
can obtain: Vi(ep(t),es(t),eq(t)) =€ (1) EPE(t) (18)
08y (t) = —K\ f (t) +K/rea (t) + Kuep (t) + Kyes(t) +ey(t)  with

(15) EP=P'E>0 (19)

where 0c R™™ is a zero matrix. The concatenation of (10), _ _ _
(11), (13), (14) and (15) leads to the following descriptorf he choice of the Lyapunov function (18) will ensure

representation: the stability of the tracking error and of the state and
. . . fault estimations. To attenuate the fault effect on thererro
E&(t) = Aué(t) +Byf (1) (16)  dynamics, one considers th# constraint [24] given by:
whereE = diag(In In I 0pOm), t t¢
T ~ T
) etEetg/ftft 20
& 1) = (h0) &l 1) &) & () &l (V). [Fososr[Toto e
A 0O 0 01 By where t; and y represent respectively the final time and
. 0 Au Gu3 _Hg 0 the attenuation level. The tracking erreg(t), statees(t)
A= 0 0 -H; —-Hi O and faultegy (t) estimation errors must therefore satisfy the
0 C Wy -1 0 following inequality:

K, —K, —-K; 0 -l . . R ;
_ . T AT & (1) EP8&(t)+8& (t)EP&(t)+ & (t)E&(t)—y?fT (1) f(t) <0
and8] = (¢} o (a+H)T o (ki)' ). (21)
From the structure of the matricé&sand A, we remark Considering (19) and substituting (16) in (21), one can
that the descriptor (16) is impulse-free. The main interesgibtain:

of the descriptor approach is to avoid products of system, - T, o~r . .
observer and controller gains in the LMI, and thus obtain< & (t) ) ( APP+P AR« > < &(t) ) <0

more tractable and less restrictive conditions. (1) BLP -y F(t)
The main provided results are summarized in the followinq_h . , i i . (22)
theorem 1. e inequality (22) is fulfilled if:
Theorem 1 The system (16) that describes the different ALPJF PTA,+E
estimation errors is stable and tl¥6-gain from the faults to ( EZP Y ) <0 (23)

the state tracking error, the state and fault estimatioorgrr
is bounded by,/y, if there exists matrice®; = PlT >0, The structure of the Lyapunov matrixis chosen as follows:
Pr=P >0, P3=P5>0, P, P17, Pig, Pro, Pos, F, R, P 0 0 0 0

S, Qi and M; and positive scalary and T such that the 01 P 0 0 0

following LMI are verified, fori =1,...,r: p_ 0O 0 Ps 0 O (24)

YR x x x * 0 Pie Pz Pig Pig 0O
CPi6 Y’,22 x % % 0 0 0 0 0 0 Ps
WP Y|32 Y|33 KooK * * Clearly, this structure is not the general one but it limite t
—Pis Y? Y vt 0 0 0 <0 coupling between the unknown submatrices to be determined
Yi‘r"'1 -F -Q 0 Y% * 0 and allows the convergence conditions to be expressed using
_GiT PL O Y?’3 0 QiT (t—y)l 0 LMI. According to (19), this latter imposes thBt = PlT >0,
0 0 Ps 0 O 0 —tvl P,=P] >0, P3=PJ; >0 andPis, Pi7, Pig, Pig P>s are

(17) free slack matrices with appropriate dimensions. Consider



(24) and the matrices defined in (16), the mathematicalhere the matrices E and A“ are defined in

development of (23) leads to: equaton (16) and NT = (0 0 AT 0 0),
_ T T
= 4+r"Q+Q'r<o (25) BL:( -G, 0 (H}) o (KZ) )
wherel =(0 0 0 0 0 Aa ), As well as for the case of exponential faults, the obtained
=(0 0 Pz 0 0 0)and desciptor (30) is impulse-free.
11 The main provided results are summarized in the following
Wy * * x ok * h >
T w2 . . .0 theorem 2. . _
CT 16 4, a3 Theorem 2 The system (30) that describes the different
= | WuPe Wi Wy £ %k estimation errors is stable and t#-gain from the faults to
H —PlG \P“ lP43 w4 0 0 the state tracking error, the state and fault estimatioargrr
Wil —PIKy — P2T5K“ 0 W « is bounded by,/y, if there exists matrice® = P > 0,
_GLP1 0 LIJ23 0 L|J275_y2| Pr=P >0, Pi3=P5 >0, P, P17, Pig, Pio, Pos, F, R,
) S, Qi andM; and positive scalarg, p and o such that the
with following LMI are verified: fori=1,....r
Wy = PuA AP ot s« o« o« x 0 0
= PyAL+ AP+ PLC, +ClP7 41, q>21 ®*? %« « % 0 0 0
LIinz—PSC,1+GTF’7+WTP17, cb31 cb32 )
W23 — _PILH3 — (H3)" Pig+ PIW, + W] Pig+ 1, —Pug CD|42 cbf‘3 »4 0 0 0 0
W2 = PIC, — iy — (Hﬁ)TPy, ot R -Q 0 0% . 0 0 |<0@)
T 1 ) T a
Wi = PlW, —Pig— (H2) Pia, W= —Pig— P, o 0 '\4'3 0 Q -« 37 0
Wf{l _ _PQ-SKIJ + BL P, Ws5 — —Pys— P;S' 0 0 CDi ’ 0 0 0 & *
- o s /T 0O 0 0 0 0 0 Pg—ol
Wi® = aoPis+ (H) Pis, W = (Ky) Pos.

Applying lemma 1 on (25), then considering (9), (25) cafyhere
be bounded as:

1,1 1,1 21 _ T 22 2
=+ TATA+T1QTQ <0 e) O =Yiltel o7 =ClPe 07" =YP*ipl,

@31 WTP]_G! m 2 Y&' CD33 Y33 (o‘v+p)
with A=(0 0 0 0 0 v ). To provide LMI condi- Y42 Y43 Y44+p|
gglness we consider the following bijective changes of vari- q)j; Y51 q’jj Y55+p| q)Gl _ oTh,
(H3 ) Pis=My, PEK,=F;, PLHI=Ry, @ A0P13, o) —epl.
(H ) Pr=S, PEKi=Qu V=V Proof. Considering (18), (19), (30) and following the same

then applying Schur complement [24] on the termfQTQ,  Path as for the proof of theorem 1 ((18)-(22)), one can obtain
thhoulz, the sufficient LMI conditions proposed in theorEe]m 1 &\ T A{,P+_PTA,,+E N N &
' fr BZfP —¥l 0 f |<o0
B. FTC for first order polynomial faults I N'P 0O ©O I
Let us now consider that the fault affecting the system are
modeled by the first order plynomial given by:

fi(t) = At+ 27)

(32)
To ensure the asymptotic convergence to a ball of raglius
of the error dynamics, we consider the following constraint

_ 1&]3 > el (33)
whereA; e Randg € Ri=1,...,9. As well as for exponen-
tial function, A = Ag+AA, with AA verifying: with € is a known small positive scalar. The inequality (33)

T is equivalent to:
(DA) AA < (28) ;
. . " - : &' I 0 O é
wherev E.quq is a known dlagongl po.smve definite mqtnx.. fT 00 o M (34)
According to (13), the fault estimation error dynamics is | 0 0 —sl | =

given by:
&g (t) = —Hﬁey(t) _ ngd )+ (HS) F(£)+A (29) Caﬁpoptl)i/;rilg S-procedure lemma 2 [24] on (33) and (34), one

The combination of (10), (11), (29), (14) and (15) leads to TN T .
. . . é W * * é
the following descriptor representation: ( T ) ( H ) ( ) <0 (35

- BIP -y 0 f
E&(t) = Au&(t) +Byf (t) +N (30) | NP0 —epl |



whereW, = AlP+PTA, +E+pl.

Considering the matrisN defined in (30) and?, (35)
fulfilled if:
Xu+ZTo+@'E<0 (¢

wherez=(0 0 0 0 0 0 A ),
(pZ(O 0O 3 O O O O)and

Yy * *
Xu = B,,P —yA 0

0 0 )\0P13 0 0 0 ‘ —£pl
Applying lemma 1 on the inequality (36), this latte
be written as:

~
&l
<.y

Xut+oZ'Z+otpTp<0

Following the same steps of the proof of theorem 1 from (23)

to the end, then applying the Schur complement [24] on
term a~1¢" @, thus, the sufficient LMI conditions propose
in theorem 2 hold

IV. SIMULATION EXAMPLE

In this section, the effectiveness and the applicabilitthef
proposed approach are illustrated. An academic exampl
considered since the main purpose of this paper is theatet
Let us consider the following Takagi-Sugeno model:

(0= 5 4 (€ (U0) (Axi )+ Bur (0 +G:T (1)
V0= 5 B (£ () (G () + Dy () + W (1)
5 1 -3 3 1 1
withA;=| 1 -3 2 |, A= 05 f3 2 |,
1 1 -4 -5
5 5 5 5
Bi=| 3 |,B=| 4], 6= 5], 5 |,
2 5 0 5
05 05 05 0
W= 05>W2_<05 Co= 05 0 )
c ( 1 05 o> B 08> ( 0.8
2=\os5 1 o) 7t™ 0 05 )
pa (u(t)) = 2MGS0) and i, (u(t)) = 1 py (u(t)). The
nominal input signal isu(t) = sm(cos( ) ). The LMI

conditions given in theorems 1 and 2 have
using Matlab LMI Toolbox.

A. Case of exponential fault

been solved bY

T TN N = -
= / N AY B
or \\ / S a \J/ \ TN /
N < \_/
_2 o 1 I ~
0 5 10 15
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Fig. 2. Reference model states vs. faulty system ones with FTC
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Fig. 3. State estimation errors, fault and its estimation, naiménd FTC
control inputs

B. Case of first order polynomial fault
The fault affecting the system occurs ae8<t < 12.5sec
and is given by the following first order polynomial:
f(t)= (39)

Note that the FTC controller and observer gains are com-
puted fore = 103, A\g = 0.11 andAX = 0.25. Thus, the
simulation results are illustrated by the following figures

02t—-1

t can be seen that the synthesized FTC controller com-
pensates the fault and ensures the tracking between the
reference and the faulty system states, even if the paramete

Let us consider the following exponential fault affectingof the occuring fault is not perfectly known for observer and

the system behavior occurs ae®<t < 1lsec
f(t) = el 1514 (38)
The controller and the observer are synthesizedafpe= 1

controller designs.

V. CONCLUSION
In this paper, fault tolerant tracking controller design

andAa = 0.2. Thus, the simulation results are illustrated byapproaches for continuous Takagi-Sugeno models are pro-

the figures 2 and 3.

posed. They concern the case when the fault affecting
the system behavior are time varying. In this study, the

From these latter, one can see that the synthesized observensidered faults are modeled by exponential function or
and FTC controller showed their effectiveness, since thk fa first order polynomial. The provided conditions are easily
and the system states are estimated and the tracking betwéamulated in term of LMI using the well known descriptor
the faulty system states and the reference model onesredundancy property. This latter allows introducing frizek

ensured.

variables in the Lyapunov function candidate leading to
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