On the Unknown Input Observer Design : a Decoupling Class Approach
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Abstract— This paper deals with state estimation for linear proposed by [23], [13] and [14]. However, this observer
discrete-time systems subject to unknown input. Although many  concerns the case of constant unknown inputs. In [18], a
papers have dealt with the problem of Unknown Input Observer model-based oserver design in the presence of polynomial
design, state decoupling and reconstruction; the goal is to . . .
present a new method allowing to characterize a class of unknown inputs for TS fuzzy systems has been |nyest!gated.
unknown inputs to which the estimation error is decoupled. [N [20], the authors present a method for state-estimaton f
This contribution considers two problems : exact decoupling Takagi-Sugeno descriptor systems affected by Ul. Sufficien
and %»-attenuation of the unknown input to the state estimation exijstence conditions of the unknown inputs decoup"ng
error. observers are given and strict linear matrix inequalities a

I. INTRODUCTION solved to determine the gain of the observers so that the

. ~estimated state asymptotically tends to the real one.
The Unknown Input Observer (UIO) design has received

considerable interest due to its importance and connectionsymmarizing, the UIO design is based either on the

with fault detection problem, since in many cases a part @fecoupling such that the estimation error must not depend
the system’s input is inaccessible (e.g. plant disturbaice on the the UI, or on the synthesis of an Integral Observer
actuator failure). Under such circumstances, a convealtiongor the detection (estimation) of disturbances. But, ashnuc

observer that requires knowledge of all inputs cannot bgs the authors know, all the proposed strategies impose
used directly, then the UIO was developed to estimatgyctural and rank constraints.

the state of an uncertain system despite the existance of

unknown inputs or uncertain disturbances [4], [2], [7]..[9] This work advantage is to propose an exact decoupling
[11], [12]. instead of an attenuation or a decoupling for a constant Ul.
Moreover, it is proposed to decompose any Ul into two
Several researches were achieved concerning the stgd@ms. The first one is a sum of exponential functions from
estimation in the presence of unknown inputs. They caghich the state estimates can be exactly decoupled. For a
be gathered into two categories. The first one supposgfen system, the class of the Ul satisfying that property
an a priori knowledge on these nonmeasurable inputs; |§ clearly satisfied. The effect of the remaining part of
particular, Johnson [16] proposes a polynomial approagfle Ul on the state estimates is then attenuated inZan
and Hostetter and Meditch [11] suggest approximatingamework. Two cases will be treated, the exact decoupling
the unknown inputs by the response of a known dynamigase and the almost-exact case which consists in decoupling
system [1]. the estimation to a subset of the Ul, while attenuing e
The second category proceeds either by estimation of t@%m from the other Ul to the estimation.
unknown inputs [17] or by their complete elimination from ' This paper is organised as follows : Section Il presents
the system equation. However, some of these methogssecond order system in order to introduce the decoupling
require differentiation of the measured outputs which CaBtrategy and thdéJknown Input Class for exact decoupling
amplify the effect of the measurement’s noise. notion and how to generate this class. Section Il is a genera
lization of the second section. In section IV, we introdue t
One of the most successful robust observer desigibtion of partial decoupling and the linear matrix ineqtiedi
methods ressorts to the disturbance decoupling principi@nditions to ensure the attenuation of the Ul effect on
[25] [12] [7]. The problem of UIO has been initialised by the system. In order to impove the obtained results, a pole
Basile and Marro [2], Guidorzi and Marro [9]. Since thenpjacement will also be applied.
several contributions for UIOs have been proposed [4],.[10However, the usual linearization approaches are not daitab
For these methods, a rank condition relating the outpy the present problem since BMIs (Bilinear Matrix Inequali
distribution matrix and the input distribution matrices shu ties) are to be dealt with. A gain adjustment technique is the
be satisfied which is sometimes difficult and might be quitgpplied. This synthesis linearize the inequalities by ime
restrictive. of the unknown variable [19]. This kind of procedure can be
An approach to simultaneously estimate the unknowfhynd in the centrage-XY procedure [15], the D-K iteration
input and the system state using the Pl observer has beg@ntionned in [22] or Yamada’s approach [24]. However,

) ) there is no guarantee that the proposed structure asseres th
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the efficiency of the proposed approach. N1(q) = (q—A1)(q—A2) (52112012 - lezzcil +qdy)
N2(Q) = (04— A1)(d— A2)(8210h — 81202 + qdz)

I. ILLUSTRATIVE EXAMPLE D(a) = ((9—A1)(g—A2) + ve) (4 — &11) (04— &z2) — 10801)
To begin with, the procedure is introduced with the help of| +ycy (81202 — 822d1 +qd1) + Yo (821d1 — 81102 + qd2)
a simple example being a second order system. The different (6)
steps leading to theknown Input Clas$or exact decoupling Wwith : .
are detailed. Consider a second order system described by : 811 = a11— ki

d1p=app— ki

X1 = AxX+Bu+Dny_1 1) 81 = ap1—koCy 7
Y« = Cxt+eMe 82 = a2 — kaC2
2 dp=d; —ke
Vectorsx € R4, uk € R, Nk € R andy, € R are the system & — do— koo
2 =02 — K2

state, input, unknown input and the output vector respecti-
vely. The system matrices are real valued, constant and Bfom (5), conditions for the estimation errors to be inde-

appropriate dimensions : pendent from the Ul can easily be derived. Then, the Ul
familly satisfying an exact decoupling is solution of :
T B R g_( b '\E')l((qq)) k=0
Xok a1 a2 07) 8)
No(@) y
C=la @) b= < . ) ) 5@ k=0

] In order to find the solutionn, assuring the precedent
The proposed Proportional Integral Observer (PIO) of gaigongition, it is imposed thaNi(q) and Nx(g) have the

K and the UIO depending on an auxiliary variatdlec R game roots. It should also be checked if some solutions are

are respectivelly given by the following equations : common toD(q) and Ny(q) (or N(q)). For the first point,
Rp1 = AR+ Buc+ DAg 1+ K we have the following condition :
ooZ gk’(f;ke”“ ) audp =8t _ )
. axnd; —andy  d
{ Al = Vlyk_t Algk (4)  which imposes a constraint on the observer coefficiénts
Nyr = Yodc+ A0k andk,. That leads to :
with : K ao1dy — 8140
K[k Qo = 21 = (10)
ko dz

It can be noted that the UIO has a filter structure with as a8 a common root betweeN; (q),N2(q) and D(q).

input the output reconstruction errgy. This filter parameters Then (8) is written as :

Y1, V2, A1 andA; allow to modify the gain and time constant

of the UIO. (—21)(q—A2)n=0 (11)
In (4), only one integrator is used but this structure cal
be generalized to multiple integrator observer. However, t
choicez. 1 = Y1¥kr1+ A1 with 4 =1 andA; =0 leads to
Z.+1 = Yk which is equivalent to a first order filter for the Ul Nk = Al)\{‘+A2A§ (12)
estimation. The system observer is described by equations

(3) and (4). The gainK, yi, y», A1 and A, are choosen Where coefficients\; and A, are arbitrarily set. Finally, the
according to the state and Ul reconstruction specificationschoice of the observer valueg and A, gives the Ul class

In the following, the state and Ul estimation errors ar@ssuring the exact decoupling of the state error toward the
expressed as function of the Ul. Since the system and &O for any values of the coefficients; and A;.

observer are linear, the time operatpis adequate to express

the solution is given by an Ul being the sum of two
exponential functions :

Ill. RECONSTRUCTION ERRORS DISTURBANCES

the errors :
DECOUPLING
foo= XX Let us define the following system equations :
Nk = Nk—1Nk B 5
From equations (1), (3) and (4), the state reconstructimr er { Xt B kaieuwr M1 (13)
function of the Ul is given by : Yoo = Xt
Ni(Q) Vectors x € R", ux € R™, ng € R and yx € RP are the

X1k = Dg) 1k system state, input, unknown input and the output vectors

M) ®) respectively. The system matricAss R™", Be R™™M D ¢
Kok = %rlk R™1 C e RP*" et e e RP*! are real valued and known.



The proposed system observer of g&inand the UIO are In order to decouple the state from the Ul and assure an exact

respectivelly given by the following equations : estimation of it, the following condition has to be verified :
ivelly gi by the followi i imati f it, the followi dition h b ified
K1 = AR+ Buc+Dik-1+ Kk 1—(q-M)"YZ Al nc=0 25
{ J = Cltes (14) 1-@-H27An )
Yoo = Yk Equation (25) may be extended 3£, = 0. From solving
{ Za1 = Wk*’\zk (15) this last equation, we have the r_oots that de_fine_the ul
il = YzZu+Afk class that ensure an exact decoupling of the estimation erro

toward the Ul. This class is written asy; AiA; where the

with eippropnate dimensionsz € RY, K e R™P, F e RP, correspond to the roots of (25) amy are totally free
ye R4, AeR¥™%andA e R. parameters.

Depending on the value of the UIO parameters, we can
have either a proportional observer, an integral or a maltip IV. PARTIAL DECOUPLING OBSERVER

integral observer. In this particular case, the chaige=10r | the previous section, was detailed how to find the class
A2 =1 introduces the two integrators in this filter structureqf () ensuring an exact decoupling of the Ul in respect to
By following the same steps as in the previous section, thfie state estimation error. In the following section, a gahe

state and Ul reconstruction errors are eXpressed , we gﬂt fr(base with an Ul that does not respond to the decoupling

equation (15) with the time operata: condition is considered. In this case, the problem is solved
A= (q—A )_1VZ|< (16) by attenuating the ef_fect (transf_er)_ of the _U_I to the estlo'n_at
. error and propose linear matrix inequalities to deterneinat
(alg—N)zic = i (17)  the observer gain so that the estimated state asymptgticall
From (16), (17), (13) and (14), we have : tends to the real one. _
. ~ In addition to the two previous cases (exact and partial de-
(Qlg—A\)z« =TCX+Te(Nk-1— Nk-1) coupling), we also have a third one, which is a mixt between

the two solutions. In fact, any Ul may be decomposed into a
sum of two termsj, = n,? +ng. The first term corresponds to
[(alg—A)+Te(a—A)'q 'yjzc=TC%+Teqd 'nk (18) the decoupling term and the second one is the approximaion
term onto.% attenuation is applied. In subsectiéy we

only present the attenuation approach ; but, in the sinarati

which leads to :

The state errok, dynamic is obtained from (13) and (14) :

K1 = AR+ Dijk-1 section the combined approach will be illustrated.
A = A-KC (19)
D — D-—Ke A. % Attenuation
From (19) and (17), we have System and observer equations are given by :
(q| —K))?k = Bflkfl )Ek-&-l = AXkJFBF]k—l .
’ B - B - 2) -y fic = M-Amci-Vaci+Afics  (26)
k Zo1 = TCR+Tefk 1+

That gives the state estimation error :
% = (Al —A) "D Nk — (aln —A) D (g - A) " tyz

The corresponding matrix form is given by :

(20) &1 = A1 +Bing @7)
By replacing this expression in (18), we have : with :
h A= 0 A 00—y B, — 1-A
with : _ L = PL= )
A = rc(gh—A)D+re 22 N o0
Z = q(@lq—N)+AQ-A)"Yy

Finally, replacing (21) in (16) and (20) to have : N
. 1 _ | Mk a__ Nk
%= (aln—A)Dq "t [1-(a-2)HZ "A| e 2
In particular, (27) gives the Ul influence on the estimation

. L o1 errors. To focus on the impact of the Ul on the state
Nk = {1— (a—=A)"yZ /\} Nk estimation, a new observer output is considered :

the Ul estimation error becomes :

From (23) we have the state estimation error decoupling gk = Cr& (29)
condition toward the Ul : .
e 1 [P with:C;=(1 0 0 0.
(alh—A)""Dq {1— (Q—A)"yZ /\} nk=0  (24) cConsidering the Real Bounded Lemma [3], the system (27),



it is stable and the#’, gain is bounded b \fm‘é < U if there
exists a positive symmetric matride and a positive scalar
u such that the following condition holds :

AJPA,—P  AIPB; cl
BIPA, BIPB,—p2 0 |<O (30)
C 0 —p2l

According to [8] and [21], the previous problem can be re
formulated by searching a positive symetric definite matric
P, gainsK and G such that :

—P AlPB; cl AlGT
BIPAL B[PB—p2l 0 0 <0
2
Ci 0 2 0
GA 0 0 -G-G'+P
(31)

whereA; defined in(28) with the help of(19), depends on

Applying Schur's complement, we get :

[ —p  AlPB, (] AGT BIKT 0
BIP BIPB,-ml 0 0 0 BJPR
C 0 - 0 0 0 <0
GA1 0 0 -G-G'+P 0 GR
KB1 0 0 0 -z1 0
0 RTPB; 0 RTGT 0o -z |
(37)
-At last, (37) becomes :
[ —p  AlPB, (] AGT  BIFT 0 ]
BIP BIPB,-ml 0 0 0 BJPR
C 0 - 0 0 0 <0
GA1 0 0 -G-G'+P 0 GR
FB; 0 0 0 T 0
0 RTPB; 0 R'GT 0 -z |
(38)

with F = 2K. The LMI must be solved i, G, F and the gairK
is obtained byK = =~1F.

K. Let us remark that inequality (31) is not linear. For that

reason some transformations are needed to obtain LMIs.
Let us write the matrixA; such that :

A1 = A; — RKB; (32)
with :
A DO O |
M| reren o |R=| o |B=Ce00
0 01 O 0

(33)
ReplacingA; by (32) in (31), we have :

P  APB CI AGT

ToR, BT -
BIPALBIPBL—HI O 0 1 \yTNENTM<0
C o -m o0
GAL 0 0 P-G-GT
. (34)
—BiKT T0 T
with M = 0 ,N= B PR and i = p?
0 0
0 GR

Let us recall the following lemma [26]. Consider two real
matrices M and A with appropriate dimensions, for any
positive matrixZ the following inequality holds :

NMTA+ATA<NTZN+ATZ A (35)

Applying this lemma, (34) becomes :

P APB C AGT

B]PA; B[PB,—7il 0 0 n
C 0 —ml 0
GA, 0 0 P-G-GT

MTESM+NTEIN<O (36)

B. Pole Assignment

The minimization of the attenuation factgrmay result in slow
dynamics of the state estimation error. This problem can be solved
by pole assignment of the closed loop system in a specified region.
The considered region is a disk centred@0) with radiusa. Thus,
the condition to answer this constraint is given by the following :
find P=PT >0 andQ = Q" > 0 such that the following LMI [6]
occurs :

—-aQ —gQ+QA-GC
(—qQ+QA—GC)T _aP <0 (39
with G = QK. We have to solve this LMI regarding @ andG then
we deduceK. Thus, to ensure the stabilty and pole assignment, the
conditions (38) and (39) must be fulfilled simultaneously.

C. Gain Ajustement

From matricesF and G definitions, there is a dependence
between the two LMIS (38) and (39). Then we have to solve
simultaneously these two conditions. It can be nadtddl 1(P,K)
and LMI12(Q,K). The proposed method is based on an ajustment
technique allowing to set some variables and calculate others in
an iterative way. More precisely, if the galf is fixed, we solve
LMI1(P,K) regarding toP. Then we solveLMI12(Q,K) regarding
to Q andK and we use the obtained resKltfor another cycle (see
table 1). This procedure was choosen in reason of its simplicity, but
one should be aware that no optimality or convergence guarantee
is given. However, since our study goal is to find a solution to the
given conditions, an optimal solution is not a necessity.

Iterative optimisation for gaifK :
1) Seti=0. Chose a stabilisable valug. PutK () = Kq.

2) % attenuation : Find P(*D > 0 solution of
LMIL(P,K®).

3) Pole assignment : Fin@(*™Y and K(+Y solution of
LMI2(Q,K) .

4) Stopping condition :
— If ||KiTD) —K0)|| < £ stop the algorithm Kina =
K (i+1)
— Else, sei =i+ 1 and go back to step 2.

Tablel : Adjustment algorithm



V. SIMULATIONS

Consider the following system described by :

06 -02 -01 01 -0.3 -04
A -01 07 -01 01 B_ 05 -04
- 04 0 09 -01 ~—| -01 06
0 02 0 o8 -02 07

0.2

-0.3

C: (1 1 l) D = 01 E = —45 o 5 10 15 20
0.1

with the observer parameters :
AN=L1LA=07etlr =02;y=-04

At the first step, let us determine the observer giirwith the
proposed iterative algorithm. The obtained gKirand attenuation

u for a pole assignment in a disk centred at (0.3,0) with radius 0.2
are :

0.1467
4.6498
—7.7861
4.4794

K= u=478 (40)

The second step consists of finding the Ul class for an exact
decoupling. Let us recall that the state decoupling condition towards
the Ul with an exact estimation of the Ul is given by (25). In this
example, it corresponds to an Ul composed of a linear combination
of six exponential functions : two roots correspondt@ndA, the

Fig. 1.

System inputs

Ty e |

I
15

15

20

others are two complex conjugate and two real values given by Fig- 2. Ul and its estimate :exact decoupling (tdfj-attenuation (bottom)

A]_:/\Zl; /\2:)\ :0.7;/\3:0.36;)\4:0.29
As g = 0.43+0.02

Then, the class of Ul for an exact decoupling is given by :

Nk = AAL +A2AS + AgAS + AdAf + Asalco gk + ) (41) o 5 10 15 20 o 10 15 20
10 10

with : Re(s)? 0 OW

_ 2 2 _ Rk

a=+/RgAs5)?+1m(A5)? and co$p) = 2 /R 2 Lm0 -10 -10

The Ul is defined by : 2 10 13 20 % 10 15 20
K K 20 20
Nk =0.1—0.2(0.7) +0.4(0.36)"+ 10 10
0.2(0.29)% — 0.5(0.93)%cog2.05)  (42) L o

0 5 10 15 20 0 10 15 20

Finally, the considered Uhy can be written as), = n,?+nka

with n,‘j corresponds to the Ul for exact decoupling ang
the approximation error. The following figures are obtainec

for the initial conditions xo = (0.5 01 02 -01)" and
%= (-05 05 -04 O.Z)T. Fig.1 shows the system inputs.
Fig.2 represents the Uls (for the exagik = nl‘(j and partial

1
0

10
0
-10

decoupling caseg) = ng+n|§") and their estimates and Fig 3. Fig. 3. ‘
represents the state system and their estimate for both situationsaignuation (right)

AN

%

[
o O

0 5 10 15 2

0

o

System states and their estimates : exact decoupgfty &>-

exact and partial decoupling. In both situations, the state estimate
is satisfactory.

) By replacing this equation in the observer equations, we get :
In the case where a noige affects the output measurment, we R R R .
considere the new output defined as : { X1 A%+ Bu + D1+ KVt k

41 = T¥rkt+Az

Yie= CHet M1 + Wik (43) The different output and Ul estimate (with and without filter)
Our goal is to attenuate the influence of the Ul and the measurmedftained for a weightning matrix of 10% and a coefficient filter
noise on the state estimation error. To minimize their effect, w@ = 0.25 are presented in the figures 4 and 5 :
filter the output reconstruction errgrwith a Low Pass Filter with  The simulation results of the Ul estimation obtained by the proposed
a constant time of1—a) : observer are displayed on the previous figures. Solving the LMIs
(38) may cause slow dynamics of the observer, so an eigenvalue
assignment in @-region allows to increase the performances of

(45)

Yk = oY+ (1—a)¥s k-1 (44)



(9]

[20]

[11]

[12]

13
Ul estimate and system output without filter [13]

[14]

[15]

[16]

[17]

Fig. 5.

Ul estimate and system output with filter

the observer. Also, in case of measurment noise, a filter is add@d]
at the output to improve the performances.

VI. CONCLUSION AND PERSPECTIVES [19]

This paper addresses new method to design observers with
unknown inputs. The proposed approach is based on a decoupli
and estimation procedure such that we decouple the state system
towards exponential Ul without any rank constraints on the system’s
matrix. The main result is about the way to find the Ul class
ensuring an exact decoupling. The proposed work can be extended]
to the nonlinear case, in particular, systems with Takagi-Sugeno
representation.

[22]
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