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Abstract— This paper deals with state estimation for linear
discrete-time systems subject to unknown input. Although many
papers have dealt with the problem of Unknown Input Observer
design, state decoupling and reconstruction ; the goal is to
present a new method allowing to characterize a class of
unknown inputs to which the estimation error is decoupled.
This contribution considers two problems : exact decoupling
and L2-attenuation of the unknown input to the state estimation
error.

I. INTRODUCTION

The Unknown Input Observer (UIO) design has received
considerable interest due to its importance and connection
with fault detection problem, since in many cases a part of
the system’s input is inaccessible (e.g. plant disturbanceor
actuator failure). Under such circumstances, a conventional
observer that requires knowledge of all inputs cannot be
used directly, then the UIO was developed to estimate
the state of an uncertain system despite the existance of
unknown inputs or uncertain disturbances [4], [2], [7], [9],
[11], [12].

Several researches were achieved concerning the state
estimation in the presence of unknown inputs. They can
be gathered into two categories. The first one supposes
an a priori knowledge on these nonmeasurable inputs ; in
particular, Johnson [16] proposes a polynomial approach
and Hostetter and Meditch [11] suggest approximating
the unknown inputs by the response of a known dynamic
system [1].
The second category proceeds either by estimation of the
unknown inputs [17] or by their complete elimination from
the system equation. However, some of these methods
require differentiation of the measured outputs which can
amplify the effect of the measurement’s noise.

One of the most successful robust observer design
methods ressorts to the disturbance decoupling principle
[25] [12] [7]. The problem of UIO has been initialised by
Basile and Marro [2], Guidorzi and Marro [9]. Since then,
several contributions for UIOs have been proposed [4], [10].
For these methods, a rank condition relating the output
distribution matrix and the input distribution matrices must
be satisfied which is sometimes difficult and might be quite
restrictive.
An approach to simultaneously estimate the unknown
input and the system state using the PI observer has been
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proposed by [23], [13] and [14]. However, this observer
concerns the case of constant unknown inputs. In [18], a
model-based oserver design in the presence of polynomial
unknown inputs for TS fuzzy systems has been investigated.
In [20], the authors present a method for state-estimation for
Takagi-Sugeno descriptor systems affected by UI. Sufficient
existence conditions of the unknown inputs decoupling
observers are given and strict linear matrix inequalities are
solved to determine the gain of the observers so that the
estimated state asymptotically tends to the real one.

Summarizing, the UIO design is based either on the
decoupling such that the estimation error must not depend
on the the UI, or on the synthesis of an Integral Observer
for the detection (estimation) of disturbances. But, as much
as the authors know, all the proposed strategies impose
structural and rank constraints.

This work advantage is to propose an exact decoupling
instead of an attenuation or a decoupling for a constant UI.
Moreover, it is proposed to decompose any UI into two
terms. The first one is a sum of exponential functions from
which the state estimates can be exactly decoupled. For a
given system, the class of the UI satisfying that property
is clearly satisfied. The effect of the remaining part of
the UI on the state estimates is then attenuated in anL2

framework. Two cases will be treated, the exact decoupling
case and the almost-exact case which consists in decoupling
the estimation to a subset of the UI, while attenuing theL2

gain from the other UI to the estimation.
This paper is organised as follows : Section II presents

a second order system in order to introduce the decoupling
strategy and theUknown Input Class for exact decoupling
notion and how to generate this class. Section III is a genera-
lization of the second section. In section IV, we introduce the
notion of partial decoupling and the linear matrix inequalities
conditions to ensure theL2 attenuation of the UI effect on
the system. In order to impove the obtained results, a pole
placement will also be applied.
However, the usual linearization approaches are not suitable
to the present problem since BMIs (Bilinear Matrix Inequali-
ties) are to be dealt with. A gain adjustment technique is then
applied. This synthesis linearize the inequalities by fixing one
of the unknown variable [19]. This kind of procedure can be
found in the centrage-XY procedure [15], the D-K iteration
mentionned in [22] or Yamada’s approach [24]. However,
there is no guarantee that the proposed structure assures the
algorithm convergence.
Finally, in the last section, simulations are presented to show



the efficiency of the proposed approach.

II. I LLUSTRATIVE EXAMPLE

To begin with, the procedure is introduced with the help of
a simple example being a second order system. The different
steps leading to theUknown Input Classfor exact decoupling
are detailed. Consider a second order system described by :

{

xk+1 = Axk+Buk+Dηk−1

yk = Cxk+eηk−1
(1)

Vectorsxk ∈ R
2, uk ∈ R, ηk ∈ R and yk ∈ R are the system

state, input, unknown input and the output vector respecti-
vely. The system matrices are real valued, constant and of
appropriate dimensions :

xk =

(

x1k

x2k

)

A=

(

a11 a12

a21 a22

)

B=

(

b1

b2

)

C=
(

c1 c2
)

D =

(

d1

d2

)

(2)

The proposed Proportional Integral Observer (PIO) of gain
K and the UIO depending on an auxiliary variablezk ∈ R

are respectivelly given by the following equations :






x̂k+1 = Ax̂k+Buk+Dη̂k−1+Kỹk

ŷk = Cx̂k+eη̂k−1

ỹk = yk− ŷk

(3)

{

zk+1 = γ1ỹk+λ1zk

η̂k+1 = γ2zk+λ2η̂k
(4)

with :

K =

(

k1

k2

)

It can be noted that the UIO has a filter structure with as an
input the output reconstruction error ˜yk. This filter parameters
γ1, γ2, λ1 andλ2 allow to modify the gain and time constant
of the UIO.
In (4), only one integrator is used but this structure can
be generalized to multiple integrator observer. However, the
choicezk+1 = γ1ỹk+1+λ1zk with γ1 = 1 andλ1 = 0 leads to
zk+1 = ỹk which is equivalent to a first order filter for the UI
estimation. The system observer is described by equations
(3) and (4). The gainsK, γ1, γ2, λ1 and λ2 are choosen
according to the state and UI reconstruction specifications.
In the following, the state and UI estimation errors are
expressed as function of the UI. Since the system and its
observer are linear, the time operatorq, is adequate to express
the errors :

x̃k = xk− x̂k

η̃k = ηk− η̂k

From equations (1), (3) and (4), the state reconstruction error
function of the UI is given by :











x̃1k =
N1(q)
D(q) ηk

x̃2k =
N2(q)
D(q) ηk

(5)















N1(q) = (q−λ1)(q−λ2)(ã12d̃2− ã22d̃1+qd̃1)
N2(q) = (q−λ1)(q−λ2)(ã21d̃1− ã11d̃2+qd̃2)
D(q) = ((q−λ1)(q−λ2)+ γe)((q− ã11)(q− ã22)− ã12ã21)
+γc1(ã12d̃2− ã22d̃1+qd̃1)+ γc2(ã21d̃1− ã11d̃2+qd̃2)

(6)
with :































ã11 = a11−k1c1

ã12 = a12−k1c2

ã21 = a21−k2c1

ã22 = a22−k2c2

d̃1 = d1−k1e
d̃2 = d2−k2e

(7)

From (5), conditions for the estimation errors to be inde-
pendent from the UI can easily be derived. Then, the UI
familly satisfying an exact decoupling is solution of :











N1(q)
D(q) ηk = 0

N2(q)
D(q) ηk = 0

(8)

In order to find the solutionηk assuring the precedent
condition, it is imposed thatN1(q) and N2(q) have the
same roots. It should also be checked if some solutions are
common toD(q) and N1(q) (or N2(q)). For the first point,
we have the following condition :

ã11d̃2− ã22d̃1

ã21d̃1− ã11d̃2
=

d̃1

d̃2
(9)

which imposes a constraint on the observer coefficientsk1

andk2. That leads to :

q0 =
ã21d̃1− ã11d̃2

d̃2
(10)

is a common root betweenN1(q),N2(q) andD(q).
Then (8) is written as :

(q−λ1)(q−λ2)ηk = 0 (11)

The solution is given by an UI being the sum of two
exponential functions :

ηk = A1λ k
1 +A2λ k

2 (12)

where coefficientsA1 andA2 are arbitrarily set. Finally, the
choice of the observer valuesλ1 and λ2 gives the UI class
assuring the exact decoupling of the state error toward the
UIO for any values of the coefficientsA1 andA2.

III. R ECONSTRUCTION ERRORS: DISTURBANCES

DECOUPLING

Let us define the following system equations :
{

xk+1 = Axk+Buk+Dηk−1

yk = Cxk+eηk−1
(13)

Vectors xk ∈ R
n, uk ∈ R

m, ηk ∈ R and yk ∈ R
p are the

system state, input, unknown input and the output vectors
respectively. The system matricesA∈R

n×n, B∈R
n×m, D ∈

R
n×1, C ∈ R

p×n et e∈ R
p×1 are real valued and known.



The proposed system observer of gainK and the UIO are
respectivelly given by the following equations :







x̂k+1 = Ax̂k+Buk+Dη̂k−1+Kỹk

ŷk = Cx̂k+eη̂k−1

ỹk = yk− ŷk

(14)

{

zk+1 = Γỹk+Λzk

η̂k+1 = γzk+λη̂k
(15)

with appropriate dimensions :zk ∈R
q, K ∈R

n×p, Γ ∈R
q×p,

γ ∈ R
1×q, Λ ∈ R

q×q andλ ∈ R.
Depending on the value of the UIO parameters, we can
have either a proportional observer, an integral or a multiple
integral observer. In this particular case, the choiceλ1 = 1 or
λ2 = 1 introduces the two integrators in this filter structure.
By following the same steps as in the previous section, the
state and UI reconstruction errors are expressed ; we get from
equation (15) with the time operatorq :

η̂k = (q−λ )−1γzk (16)

(qIq−Λ)zk = Γỹk (17)

From (16), (17), (13) and (14), we have :

(qIq−Λ)zk = ΓCx̃k+Γe(ηk−1− η̂k−1)

which leads to :

[(qIq−Λ)+Γe(q−λ )−1q−1γ ]zk = ΓCx̃k+Γeq−1ηk (18)

The state error ˜xk dynamic is obtained from (13) and (14) :

x̃k+1 = Ax̃k+Dη̃k−1

A = A−KC
D = D−Ke

(19)

From (19) and (17), we have :

(qIn−A)x̃k = Dη̃k−1

= Dq−1ηk−Dq−1(q−λ )−1γzk

That gives the state estimation error :

x̃k = (qIn−A)−1Dq−1ηk− (qIn−A)−1Dq−1(q−λ )−1γzk

(20)
By replacing this expression in (18), we have :

zk = Z
−1Ληk (21)

with :
Λ = ΓC(qIn−A)−1D+Γe
Z = q(qIq−Λ)+Λ(q−λ )−1γ (22)

Finally, replacing (21) in (16) and (20) to have :
{

η̂k = (q−λ )−1γZ
−1Ληk

x̃k = (qIn−A)−1Dq−1
[

1− (q−λ )−1γZ
−1Λ

]

ηk
(23)

the UI estimation error becomes :

η̃k =
[

1− (q−λ )−1γZ
−1Λ

]

ηk

From (23) we have the state estimation error decoupling
condition toward the UI :

(qIn−A)−1Dq−1
[

1− (q−λ )−1γZ
−1Λ

]

ηk = 0 (24)

In order to decouple the state from the UI and assure an exact
estimation of it, the following condition has to be verified :

[

1− (q−λ )−1γZ
−1Λ

]

ηk = 0 (25)

Equation (25) may be extended asN(q)
D(q)ηk = 0. From solving

this last equation, we have the roots that define the UI
class that ensure an exact decoupling of the estimation error
toward the UI. This class is written as :∑i Aiλi where the
λi correspond to the roots of (25) andAi are totally free
parameters.

IV. PARTIAL DECOUPLINGOBSERVER

In the previous section, was detailed how to find the class
of UI ensuring an exact decoupling of the UI in respect to
the state estimation error. In the following section, a general
case with an UI that does not respond to the decoupling
condition is considered. In this case, the problem is solved
by attenuating the effect (transfer) of the UI to the estimation
error and propose linear matrix inequalities to determinate
the observer gain so that the estimated state asymptotically
tends to the real one.
In addition to the two previous cases (exact and partial de-
coupling), we also have a third one, which is a mixt between
the two solutions. In fact, any UI may be decomposed into a
sum of two termsηk =ηd

k +ηa
k . The first term corresponds to

the decoupling term and the second one is the approximaion
term ontoL2 attenuation is applied. In subsectionA, we
only present the attenuation approach ; but, in the simulation
section the combined approach will be illustrated.

A. L2 Attenuation

System and observer equations are given by :






x̃k+1 = Ax̃k+Dη̃k−1

η̃k = ηk−ληk−1− γzk−1+λη̃k−1

zk+1 = ΓCx̃k+Γeη̃k−1+Λzk

(26)

The corresponding matrix form is given by :

ek+1 = A1ek+B1ηa
k (27)

with :

A1 =









A D 0 0
0 λ 0 −γ

ΓC Γe Λ 0
0 0 1 0









,B1 =









0 0
1−λ
0 0
0 0









,

ek =









x̃k

η̃k−1

zk

zk−1









,ηa
k =

(

ηk

ηk−1

)

(28)

In particular, (27) gives the UI influence on the estimation
errors. To focus on the impact of the UI on the state
estimation, a new observer output is considered :

gk =C1ek (29)

with : C1 =
(

I 0 0 0
)

.
Considering the Real Bounded Lemma [3], the system (27),



it is stable and theL2 gain is bounded by‖gk‖2
‖ηk‖2

< µ if there
exists a positive symmetric matriceP and a positive scalar
µ such that the following condition holds :





AT
1 PA1−P AT

1 PB1 CT
1

BT
1 PA1 BT

1 PB1−µ2I 0
C1 0 −µ2I



< 0 (30)

According to [8] and [21], the previous problem can be re-
formulated by searching a positive symetric definite matrice
P, gainsK andG such that :









−P AT
1 PB1 CT

1 AT
1 GT

BT
1 PA1 BT

1 PB1−µ2I 0 0
C1 0 −µ2I 0

GA1 0 0 −G−GT +P









< 0

(31)
whereA1 defined in(28) with the help of(19), depends on
K. Let us remark that inequality (31) is not linear. For that
reason some transformations are needed to obtain LMIs.
Let us write the matrixA1 such that :

A1 = A1−RKB1 (32)

with :

A1 =









A D 0 0
0 λ 0 −γ

ΓC Γe Λ 0
0 0 1 0









R=









I
0
0
0









B1 =
(

C e 0 0
)

(33)
ReplacingA1 by (32) in (31), we have :









−P A
T
1 PB1 CT

1 A
T
1 GT

BT
1 PA1 BT

1 PB1−µI 0 0
C1 0 −µI 0

GA1 0 0 P−G−GT









+MTN+NTM < 0

(34)

with M =









−B
T
1 KT

0
0
0









T

, N =









0
BT

1 PR
0

GR









T

and µ = µ2

Let us recall the following lemma [26]. Consider two real
matrices Π and Λ with appropriate dimensions, for any
positive matrixΣ the following inequality holds :

ΠTΛ+ΛTΠ ≤ ΠTΣΠ+ΛTΣ−1Λ (35)

Applying this lemma, (34) becomes :









−P A
T
1 PB1 CT

1 A
T
1 GT

BT
1 PA1 BT

1 PB1−µI 0 0
C1 0 −µI 0

GA1 0 0 P−G−GT









+

MTΣM+NTΣ−1N < 0 (36)

Applying Schur’s complement, we get :

















−P A
T
1 PB1 CT

1 A
T
1 GT BT

1 KT 0
BT

1 P BT
1 PB1−µI 0 0 0 BT

1 PR
C1 0 −µ 0 0 0

GA1 0 0 −G−GT +P 0 GR
KB1 0 0 0 −Σ−1 0

0 RTPB1 0 RTGT 0 −Σ

















<0

(37)
At last, (37) becomes :

















−P A
T
1 PB1 CT

1 A
T
1 GT BT

1 FT 0
BT

1 P BT
1 PB1−µI 0 0 0 BT

1 PR
C1 0 −µ 0 0 0

GA1 0 0 −G−GT +P 0 GR
FB1 0 0 0 −ΣT 0

0 RTPB1 0 RTGT 0 −Σ

















<0

(38)
with F = ΣK. The LMI must be solved inP, G, F and the gainK

is obtained byK = Σ−1F .

B. Pole Assignment

The minimization of the attenuation factorµ may result in slow
dynamics of the state estimation error. This problem can be solved
by pole assignment of the closed loop system in a specified region.
The considered region is a disk centred at(q,0) with radiusα . Thus,
the condition to answer this constraint is given by the following :
find P= PT > 0 andQ= QT > 0 such that the following LMI [6]
occurs :

[

−αQ −qQ+QA−GC
(−qQ+QA−GC)T −αP

]

< 0 (39)

with G=QK. We have to solve this LMI regarding toQ andG then
we deduceK. Thus, to ensure the stabilty and pole assignment, the
conditions (38) and (39) must be fulfilled simultaneously.

C. Gain Ajustement

From matricesF and G definitions, there is a dependence
between the two LMIS (38) and (39). Then we have to solve
simultaneously these two conditions. It can be notedLMI1(P,K)
and LMI2(Q,K). The proposed method is based on an ajustment
technique allowing to set some variables and calculate others in
an iterative way. More precisely, if the gainK is fixed, we solve
LMI1(P,K) regarding toP. Then we solveLMI2(Q,K) regarding
to Q andK and we use the obtained resultK for another cycle (see
table 1). This procedure was choosen in reason of its simplicity, but
one should be aware that no optimality or convergence guarantee
is given. However, since our study goal is to find a solution to the
given conditions, an optimal solution is not a necessity.

Iterative optimisation for gainK :
1) Set i = 0. Chose a stabilisable valueK0. Put K(i) = K0.
2) L2 attenuation : Find P(i+1) > 0 solution of

LMI1(P,K(i)).
3) Pole assignment : FindQ(i+1) and K(i+1) solution of

LMI2(Q,K) .
4) Stopping condition :

– If ||K(i+1) −K(i)|| < ε stop the algorithm :K f inal =

K(i+1).
– Else, seti = i+1 and go back to step 2.

Table1 : Adjustment algorithm



V. SIMULATIONS

Consider the following system described by :

A=







0.6 −0.2 −0.1 0.1
−0.1 0.7 −0.1 0.1
0.4 0 0.9 −0.1
0 0.2 0 0.8






B=







−0.3 −0.4
0.5 −0.4
−0.1 0.6
−0.2 0.7







C=
(

1 1 1
)

D =







0.2
−0.3
0.1
0.1






E =−4.5

with the observer parameters :

Λ = 1;λ = 0.7 et Γ = 0.2;γ =−0.4

At the first step, let us determine the observer gainK with the
proposed iterative algorithm. The obtained gainK and attenuation
µ for a pole assignment in a disk centred at (0.3,0) with radius 0.2
are :

K =







0.1467
4.6498
−7.7861
4.4794






µ = 4.78 (40)

The second step consists of finding the UI class for an exact
decoupling. Let us recall that the state decoupling condition towards
the UI with an exact estimation of the UI is given by (25). In this
example, it corresponds to an UI composed of a linear combination
of six exponential functions : two roots correspond toΛ andλ , the
others are two complex conjugate and two real values given by :

λ1 = Λ = 1 ; λ2 = λ = 0.7 ; λ3 = 0.36 ; λ4 = 0.29
λ5,6 = 0.43±0.02i

Then, the class of UI for an exact decoupling is given by :

ηk = A1λ k
1 +A2λ k

2 +A3λ k
3 +A4λ k

4 +A5ak cos(φk+ψ) (41)

with :
a=

√

Re(λ5)2+ Im(λ5)2 and cos(φ) = Re(λ5)
2

2
√

Re(λ5)2+Im(λ5)2

The UI is defined by :

ηk = 0.1−0.2(0.7)k+0.4(0.36)k+

0.2(0.29)k−0.5(0.93)kcos(2.05k) (42)

Finally, the considered UIηk can be written asηk = ηd
k + ηa

k
with ηd

k corresponds to the UI for exact decoupling andηa
k

the approximation error. The following figures are obtained
for the initial conditions x0 =

(

0.5 0.1 0.2 −0.1
)T and

x̂0 =
(

−0.5 0.5 −0.4 0.2
)T . Fig.1 shows the system inputs.

Fig.2 represents the UIs (for the exactηk = ηd
k and partial

decoupling casesηk = ηd
k + ηa

k ) and their estimates and Fig 3.
represents the state system and their estimate for both situations of
exact and partial decoupling. In both situations, the state estimate
is satisfactory.

In the case where a noiser affects the output measurment, we
considere the new output defined as :

yk =Cxk+eηk−1+Wrk (43)

Our goal is to attenuate the influence of the UI and the measurment
noise on the state estimation error. To minimize their effect, we
filter the output reconstruction error ˜y with a Low Pass Filter with
a constant time of(1−α) :

ỹf ,k = α ỹk+(1−α)ỹf ,k−1 (44)

0 5 10 15 20

−2

0

2

u1k

u2k

Fig. 1. System inputs
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Fig. 2. UI and its estimate :exact decoupling (top)L2-attenuation (bottom)
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Fig. 3. System states and their estimates : exact decoupling (left) L2-
attenuation (right)

By replacing this equation in the observer equations, we get :
{

x̂k+1 = Ax̂k+Buk+Dη̂k−1+Kỹf ,k
zk+1 = Γỹf ,k+λzk

(45)

The different output and UI estimate (with and without filter)
obtained for a weightning matrix of 10% and a coefficient filter
α = 0.25 are presented in the figures 4 and 5 :
The simulation results of the UI estimation obtained by the proposed
observer are displayed on the previous figures. Solving the LMIs
(38) may cause slow dynamics of the observer, so an eigenvalue
assignment in aD-region allows to increase the performances of
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Fig. 4. UI estimate and system output without filter
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Fig. 5. UI estimate and system output with filter

the observer. Also, in case of measurment noise, a filter is added
at the output to improve the performances.

VI. CONCLUSION AND PERSPECTIVES

This paper addresses new method to design observers with
unknown inputs. The proposed approach is based on a decoupling
and estimation procedure such that we decouple the state system
towards exponential UI without any rank constraints on the system’s
matrix. The main result is about the way to find the UI class
ensuring an exact decoupling. The proposed work can be extended
to the nonlinear case, in particular, systems with Takagi-Sugeno
representation.
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l’A éronautique et de l’Espace, Mars 2006.

[20] B. Marx, D. Koenig and J. Ragot, Design of observers for Takagi-
Sugeno descriptor systems with unknown inputs and application to
fault diagnosis,IET Control Theory and Applications, vol. 1 (5), 2005,
pp 1487- 1495.

[21] D. Peaucelle, D. Arzelier, O. Bachelier and J. Bernussou, A new robust
D-stability condition for real convex polytopic uncertainty, Systems
and Control Letters, vol. 40, 2000, pp 21-30.

[22] M.A. Rotea and T. Iwasaki, ”An alternative to the D-K iteration”, Pro-
ceedings of the American Control Conference, Baltimore, Maryland,
USA, June 1994, pp. 53-57.

[23] A. Shumsky, ”Algebraic Approach to the Problem of Fault Accommo-
dation in Nonlinear Systems”,Proceedings of the17th World Congress
The International Federation of Automatic Control, Seoul, Korea, July
6-11 2008.

[24] Y. Yamada and S. Hara, An LMI approach to local optimization
for constantly scaledH∞ control problems,International Journal of
Control, vol. 67 (2), 1987, pp 233-250.

[25] F. Yang and R. Wilde, Observers for linear systems with unknown
inputs, IEEE Transactions on Automatic Control, vol. 31 (7), 1988,
pp 677-681.

[26] K. Zhou and P.P. Khargonekar, Robust stabilization of linear systems
with norm-bounded time-varying uncertainty,Systems and Control
Letters, vol. 10 (1), 1988, pp 17-20.


