Models and their common parts

Application on reactor coolant pumps

Conclusions and perspectives

Modeling and fleet effect for the diagnosis of a system behavior

Farah Ankoud, Gilles Mourot, Roger Chevalier, Nicolas Paul and José Ragot

The 2011 European Safety and Reliability conference (ESREL 2011), 18-22 September 2011, Troyes, France

	Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives
-				

Definition and goal

- Fleet of machines: a collection of machines a priori identical
- Estimating a generic model for a fleet of identical machines
- Deduce a generic strategy for the diagnosis of a fleet of machines

Motivations

- Reducing the cost of estimating the model of each machine
- Facility to construct the model of a new machine
- Facility to replace a machine by another one
- Reducing the cost of system maintenance

(日)

Introduction	Models and their com
00	0000000

Application on reactor coolant pumps

Conclusions and perspectives

2 Models and their common parts

Application on reactor coolant pumps

・ロト・日本・モト・モー しょうくの

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives

4/22

Introduction •O	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives
Introductior	า		

Modeling the behavior of Q machines is done:

Classical approach

Introduction ●O	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives
Introduction	1		

Modeling the behavior of Q machines is done:

Classical approach

Proposed approach

- The problem consists in determining if a generic model representing the normal behavior of each machine of the fleet can be established.
- A generic model is composed of two parts:
 - a common part made up of the variables of the machine itself,
 - a distinct part related to the environmental variables.

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives

Identification of models with their common parts

Models and their common parts •000000 Application on reactor coolant pumps

Conclusions and perspectives

Preliminary step: identify the structure of the models

For the q^{th} machine, denote:

- y^q variable to explain,
- Z^q matrix of variables possibly explaining y^q ,
- X^q matrix of variables selected for explaining y^q ,
- $\hat{\theta}^q$ estimated vector of the model parameters,
- \hat{y}^q estimate of y^q .

S^q is a selection matrix. **Example :**

$$S^{q} = \left[\begin{array}{rrrr} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]^{T}$$

enables to select variables 2 and 4 from a set of 5 variables

Models and their common parts

Application on reactor coolant pumps

Conclusions and perspectives

Preliminary step: identify the structure of the models

For the q^{th} machine, denote:

- y^q variable to explain,
- Z^q matrix of variables possibly explaining y^q ,
- X^q matrix of variables selected for explaining y^q ,
- $\hat{\theta}^q$ estimated vector of the model parameters,
- \hat{y}^q estimate of y^q .

S^q is a selection matrix. **Example :**

$$S^q = \left[egin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \end{array}
ight]^T$$

enables to select variables 2 and 4 from a set of 5 variables

Model : $X^q = Z^q S^q$

$$\hat{y}^q = X^q \hat{\theta}^q$$

Identification of models with their common parts

The method consists in minimizing:

$$\phi = \sum_{q=1}^{Q} \left(y^{q} - X^{q} \theta^{q} \right)^{T} \left(y^{q} - X^{q} \theta^{q} \right) + \gamma \sum_{q=1}^{Q-1} \sum_{\ell=q+1}^{Q} \left(\theta^{q} - \theta^{\ell} \right)^{T} W^{q,\ell} \left(\theta^{q} - \theta^{\ell} \right)$$

Introduction Models and their common parts Application on reactor coolant pumps Conclusions of Coolema coolema

Identification of models with their common parts

The method consists in minimizing:

$$\phi = \left[\sum_{q=1}^{Q} \left(y^{q} - X^{q} \theta^{q}\right)^{T} \left(y^{q} - X^{q} \theta^{q}\right)\right] + \gamma \sum_{q=1}^{Q-1} \sum_{\ell=q+1}^{Q} \left(\theta^{q} - \theta^{\ell}\right)^{T} W^{q,\ell} \left(\theta^{q} - \theta^{\ell}\right)$$

quadratic residual error

▲□▶▲□▶▲□▶▲□▶ ▲□▼ めへの

dentification of models with their common parts					
	000000	0000			
Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives		

The method consists in minimizing:

$$\phi = \left\{ \sum_{q=1}^{Q} \left(y^{q} - X^{q} \theta^{q} \right)^{T} \left(y^{q} - X^{q} \theta^{q} \right) \right\} + \left\{ \gamma \sum_{q=1}^{Q-1} \sum_{\ell=q+1}^{Q} \left(\theta^{q} - \theta^{\ell} \right)^{T} W^{q,\ell} \left(\theta^{q} - \theta^{\ell} \right) \right\}$$

quadratic residual error

proximity of the coefficients of each couple of models

◆□▶ ◆圖▶ ◆ ≧▶ ◆ ≧▶ ○ 差 ○ のへで

The method consists in minimizing:

$$\phi = \left[\sum_{q=1}^{Q} (y^{q} - X^{q} \theta^{q})^{T} (y^{q} - X^{q} \theta^{q})\right] + \left[\gamma \sum_{q=1}^{Q-1} \sum_{\ell=q+1}^{Q} (\theta^{q} - \theta^{\ell})^{T} W^{q,\ell} (\theta^{q} - \theta^{\ell})\right]$$

quadratic residual error
proximity of the coefficients of each couple of models

 $W^{q,\ell}$ is a positive diagonal matrix composed of the weights $w_i^{q,\ell}$ ($i = 1, \dots, m$) where :

$$\sum_{i=1}^m w_i^{q,\ell} - 1 = 0$$

Unknown: $\hat{\theta}^{q}$, $W^{q,\ell}$ and γ for all q and ℓ .

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives
	000000		

The Lagrange function \mathcal{L} of the problem is:

$$\begin{aligned} \mathscr{L} &= \sum_{q=1}^{Q} \left(y^{q} - X^{q} \theta^{q} \right)^{T} \left(y^{q} - X^{q} \theta^{q} \right) + \gamma \sum_{q=1}^{Q-1} \sum_{\ell=q+1}^{Q} \left(\theta^{q} - \theta^{\ell} \right)^{T} W^{q,\ell} \left(\theta^{q} - \theta^{\ell} \right) \\ &+ \sum_{q=1}^{Q-1} \sum_{\ell=q+1}^{Q} \lambda^{q,\ell} \left(\sum_{i=1}^{m} w_{i}^{q,\ell} - 1 \right) \end{aligned}$$

where $\lambda^{q,\ell}$ are the unknown Lagrange multipliers.

Supposing γ is known, the first order stationarity conditions lead to expressions enabling to estimate the coefficients of the models and the weights.

$$\underbrace{\begin{pmatrix} U^{1} & U^{1,2} & \cdots & \cdots & U^{1,Q} \\ U^{1,2} & U^{2} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & U^{Q-1,Q} \\ U^{1,Q} & \cdots & \cdots & U^{Q-1,Q} & U^{Q} \end{pmatrix} \begin{pmatrix} \theta^{1} \\ \theta^{2} \\ \vdots \\ \theta^{Q} \end{pmatrix}_{\Theta} = \underbrace{\begin{pmatrix} X^{1^{T}}y^{1} \\ X^{2^{T}}y^{2} \\ \vdots \\ \vdots \\ X^{Q^{T}}y^{Q} \end{pmatrix}_{V}$$

•
$$U^{q} = X^{q^{T}} X^{q} + \gamma \sum_{\substack{\ell=1 \\ \ell \neq q}}^{Q} W^{q,\ell} \ (q = 1, ..., Q),$$

• $W^{\ell,q} = W^{q,\ell} \ (\forall q = 1, ..., Q - 1 \text{ and } \ell = q + 1, ..., Q),$
• $U^{q,\ell} = -\gamma W^{q,\ell}.$

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives
	0000000		

The estimated weights are :

$$\hat{w}_{i}^{q,\ell} = \frac{1}{1 + \sum_{\substack{j=1\\j \neq i}}^{m} \frac{\left(\hat{\theta}_{i}^{q} - \hat{\theta}_{i}^{\ell}\right)^{2}}{\left(\hat{\theta}_{j}^{q} - \hat{\theta}_{j}^{\ell}\right)^{2}}}$$

with $\hat{\theta}_j^q \neq \hat{\theta}_j^\ell$, $\forall j \neq i$ whenever $\hat{\theta}_i^q = \hat{\theta}_i^\ell$.

For all q and ℓ :

- estimates $\hat{\theta}^q$ of the coefficients should be known to calculate $\hat{W}^{q,\ell}$,
- estimates $\hat{W}^{q,\ell}$ of the weights should be known to calculate $\hat{\theta}^{q}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives		
00	0000000	0000	00		
Resolution algorithm					

For a given γ :

Initialization: Set I = 1. $\theta^{(I),q}$, q = 1, ..., Q, are estimated using:

$$\hat{\theta}^{(I),q} = \left(X^{q^{T}}X^{q}\right)^{-1}X^{q^{T}}y^{q}$$

Output: Set in the set in the

$$\hat{w}_{i}^{(l),q,\ell} = \frac{1}{1 + \sum_{\substack{j=1 \ j \neq i}}^{m} \frac{\left(\hat{\theta}_{i}^{(l),q} - \hat{\theta}_{i}^{(l),\ell}\right)^{2}}{\left(\hat{\theta}_{j}^{(l),q} - \hat{\theta}_{j}^{(l),\ell}\right)^{2}}}$$

for all i = 1, ..., m, q = 1, ..., Q - 1 and $\ell = q + 1, ..., Q$.

New estimates of the coefficients are obtained:

$$\hat{\Theta}^{(l+1)} = U^{(l)^{-1}} V.$$

Set I = I + 1. Repeat steps 2 and 4 until the convergence of the solution.

$$\underline{\wedge} \hat{w}_{i}^{q,\ell} = \frac{1}{1 + \sum_{\substack{j=1 \\ j \neq i}}^{m} \frac{\left(\hat{\theta}_{i}^{q} - \hat{\theta}_{i}^{\ell}\right)^{2}}{\left(\hat{\theta}_{j}^{q} - \hat{\theta}_{j}^{\ell}\right)^{2}}} \Longrightarrow \hat{w}_{i}^{q,\ell} \approx 1 \text{ whenever } \left|\hat{\theta}_{i}^{q} - \hat{\theta}_{i}^{\ell}\right| \ll \left|\hat{\theta}_{j}^{q} - \hat{\theta}_{j}^{\ell}\right|:$$

 $\hat{\theta}_i^q$ and $\hat{\theta}_i^\ell$ will be considered identical even if they are not so close.

$$\hat{w}_{i}^{q,\ell} = \frac{1}{2} \Big(\tanh \big(\alpha \big(\hat{\theta}_{i}^{q} - \hat{\theta}_{i}^{\ell} \big) + \delta_{i} \big) - \tanh \big(\alpha \big(\hat{\theta}_{i}^{q} - \hat{\theta}_{i}^{\ell} \big) - \delta_{i} \big) \Big)$$

 α is the speed variation of the hyperbolic function and δ_i is the threshold below which $\hat{\theta}_i^q$ and $\hat{\theta}_i^\ell$ are considered identical.

*ŵ*_i^{q,ℓ} is close to 1 if *θ̂*_i^q and *θ̂*_i^ℓ have relatively similar values,
 *ŵ*_i^{q,ℓ} is nearly null if *θ̂*_i^q and *θ̂*_i^ℓ have different values.

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives

Application on reactor coolant pumps

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > 15/22

Models and their common parts

Application on reactor coolant pumps ••••• Conclusions and perspectives

Description of the system

RCP: Reactor Coolant Pump

SG: Steam Generator

э

troduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspective
		0000	

 $y^q = LF_1^q$, q = 1, ..., 4. The least squares method applied on the data set of each power plant gives:

q	cte	HT ^q	IT ^q	CT^q	LT_1^q	LF_4^q
1	-211.86	1.49	4.18	-1.43	1.25	0.87
2	-2823.50	2.38	2.59	7.03	-3.15	0.99
3	-1149.24	0.87	9.29	3.37	-9.60	0.95
4	17203.61	-12.02	5.73	-45.86	-3.07	0.90

The coefficients of the models taking into account the fleet effect are:

q	cte	HT ^q	ITq	CT^q	LT_1^q	LF_4^q
1	-283.25	1.51	4.17	-1.22	1.05	0.90
2	-2272.87	1.93	2.75	5.63	-3.10	0.97
3	-1535.86	1.18	9.24	4.36	-9.47	0.94
4	16983.65	-11.87	5.58	-45.29	-2.93	0.92

Conclusions and perspectives

 \hat{y}^3 estimates y^3 as good as \hat{y}^3_{LS} . The same phenomenon is observed for the models estimating y^1 , y^2 and y^4 .

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives
		0000	

Non-zero weights reflects the proximity between coefficients.

$oldsymbol{q},\ell$	cte	HT ^q	IT ^q	СТ ^q	LT_1^q	LF_4^q
1,2	0.00	0.94	0.19	0.00	0.00	0.82
1,3	0.00	0.96	0.00	0.03	0.00	0.92
1,4	0.00	0.00	0.20	0.00	0.00	0.97
2,3	0.00	0.79	0.00	0.94	0.00	0.97
2,4	0.00	0.00	0.00	0.00	0.98	0.91
3,4	0.00	0.00	0.00	0.00	0.00	0.96

- The coefficient of LF_4^q is common for the 4 power plants,
- the coefficient of *HT^q* is common for plants number 1, 2 and 3,
- the coefficient of *CT^q* is common to plants number 2 and 3,
- the coefficient of LT_1^q is common to plants number 2 and 4.

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives

Conclusions and perspectives

<ロ><部</p>

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives
			00

Conclusions

The method allows simultaneously to:

- identify the common part to each couple of the models of the machines of a fleet,
- identify the coefficients of these models considering the shared common parts.

Perspectives

- study the use of the proposed approach in constructing the model of a new machine,
- deduce a generic strategy for the diagnosis of a fleet of machines.

Introduction	Models and their common parts	Application on reactor coolant pumps	Conclusions and perspectives
			00

Thank you for your attention

< □ > < □ > < □ > < □ > < □ > .