A. NAGY KISS G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

estimation method

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Vastewater

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

Conclusions

State estimation for wastewater treatment plant with slow and fast dynamics using multiple models

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Purposes and problematics

CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Multiple Model What is the Multiple Model ?

stimation nethod

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observer

Process and the reduced ASM1 mode

Slow and fast dynamics Estimation results

Objectives

- 1. Propose a state estimation method for two-time scale systems using Multiple Models (MM)
- 2. Apply it to an activated sludge model reactor

Interests

1. Ability to use the convexity properties of the MM in order to design observers and control laws for system diagnosis purpose

Motivation

- 1. Difficulty to deal with the **modeling complexity** of nonlinear systems
- 2. Difficulty to model a process under the singularly perturbed systems
- 3. Existence of multiple **time scale dynamics** : identification and separation

Outline

CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introductio

Multiple Model What is the Multiple Model ?

stimation nethod

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observer

Process and the reduced ASM1 model

Slow and fash dynamics Estimation results

Introduction

Interests to use the Multiple Model What is the Multiple Model?

State estimation method

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observer

Wastewater treatment

Process and the reduced ASM1 model Slow and fast dynamics Estimation results

Conclusions and Future prospects

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

estimation method

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Nastewate

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

Introduction

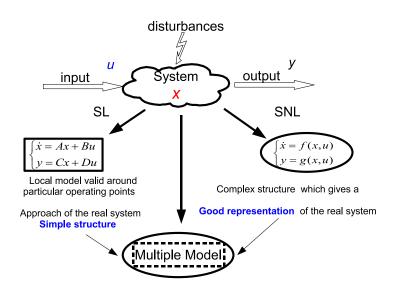
The interest to use the Multiple Models

CRAN

What is th Multiple Model?

stimation nethod

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe


Vastewater reatment

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

A. NAGY KISS. G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

What is the Multiple Model?

Dynamical system described by a Multiple Model

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_i(x(t), u(t)) \left[A_i x(t) + B_i u(t)\right] \\ y(t) = \sum_{i=1}^{r} \mu_i(x(t), u(t)) \left[C_i x(t) + D_i u(t)\right] \end{cases}$$

$$\sum\limits_{i=1}^r \mu_i(x,u) = 1$$
 and $\mu_i(x,u) \geq 0$

Interest : this form is particularly attractive for

- stability
- stabilization
- observability
- state estimation
- diagnosis

studies

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

State estimation method

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Wastewate

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

Conclusions.

State estimation method

18th Mediterranean Conference on Control and Automation, June 23-25, 2010, Marrakech 7/25

Identification of slow and fast dynamics

CRAN A. NAGY KISS G. MOUROT.

B. MARX, J. RAGOT, G. SCHUTZ

Homotopy method

Linearization : $\dot{x}(t) = f(x(t), u(t)) \implies \dot{x}(t) = A_0 x(t) + B_0 u(t)$

$$A_0 = \frac{\partial f(x,u)}{\partial x} \Big|_{(x_0,u_0)}, \qquad B_0 = \frac{\partial f(x,u)}{\partial u} \Big|_{(x_0,u_0)}$$

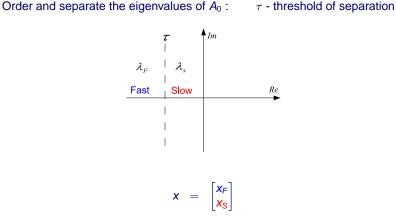
Interests to

use the Multiple Model What is the Multiple Model ?

istimation nethod Identification

of slow and fast dynamics Singularly

perturbed systems Unknown input observe


Vastewater

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

Conclusions

Singularly perturbed systems

CRAN

Standard form

A. NAGY KISS G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

$\begin{aligned} \epsilon \dot{x}_{F}(t) &= f_{F}(x_{S}(t), x_{F}(t), u(t), \epsilon) \end{aligned} \tag{1a} \\ \dot{x}_{S}(t) &= f_{S}(x_{S}(t), x_{F}(t), u(t), \epsilon) \end{aligned} \tag{1b}$

where ϵ - singular perturbed parameter

Reduced form : $\epsilon \longrightarrow 0$

$$0 = f_F(x_S(t), x_F(t), u(t), 0)$$
(2a)
$$\dot{x}_S(t) = f_S(x_S(t), x_F(t), u(t), 0)$$
(2b)

Difficulties :

- transform a NL system into the singularly perturbed form
- obtain ϵ

If possible (for particular cases of SNL), then :

▶ resolution of the algebraic system (2a) extract x_F and replace it in (2b)

Singularly perturbed systems

Unknown input observe

Process and the reduced ASM1 mode Slow and fa

Estimation results

Singularly perturbed systems

CRAN

A. NAGY KISS.

G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Singularly perturbed systems

Two-time scales

$$\begin{bmatrix} \dot{x}_{F}(t) \\ \dot{x}_{S}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{\epsilon} f_{F}(x_{S}(t), x_{F}(t), u(t), \epsilon) \\ f_{S}(x_{S}(t), x_{F}(t), u(t), \epsilon) \end{bmatrix}$$
$$y(t) = C \begin{bmatrix} x_{F}(t) \\ x_{S}(t) \end{bmatrix}$$

equivalent transformation ↕ sector nonlinearity approach Multiple model

$$\begin{bmatrix} \dot{x}_{F}(t) \\ \dot{x}_{S}(t) \end{bmatrix} = \sum_{i=1}^{r} \mu_{i}(x_{S}, x_{F}, u) \left\{ \begin{bmatrix} A_{FF}^{i} & A_{FS}^{i} \\ A_{SF}^{i} & A_{SS}^{i} \end{bmatrix} \cdot \begin{bmatrix} x_{F}(t) \\ x_{S}(t) \end{bmatrix} + \begin{bmatrix} B_{F}^{i} \\ B_{S}^{i} \end{bmatrix} u \right\}$$
$$y(t) = C \begin{bmatrix} x_{F}(t) \\ x_{S}(t) \end{bmatrix}$$

Singularly perturbed systems

CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

stimation nethod

Identification of slow and fast dynamic

Singularly perturbed systems

Unknown input observe

Process and the reduced ASM1 mode

dynamics Estimation results Consider x_F as unknown input : $d(t) = x_F(t)$ $x(t) = \begin{bmatrix} d(t) \\ x_S(t) \end{bmatrix}$

Design the matrices :

$$\begin{split} \bar{A}_{i} &= \begin{bmatrix} A_{FF}^{i} & A_{FS}^{i} \\ 0 & A_{SS}^{i} \end{bmatrix} \quad E_{i} &= \begin{bmatrix} 0 \\ A_{SF}^{i} \end{bmatrix} \quad \bar{C}_{S} &= \begin{bmatrix} 0 & C_{S} \end{bmatrix} \\ \begin{cases} \dot{x}(t) &= \sum_{i=1}^{r} \mu_{i}(\mathbf{x}, u) \cdot \begin{bmatrix} \bar{A}_{i} x(t) + B_{i} u(t) + E_{i} d(t) \end{bmatrix} \\ y(t) &= \bar{C}_{S} x(t) + C_{F} d(t) \end{split}$$

- Decoupled time scales
- The estimation of x_S is made independently of x_F
- Classic structure of MM affected by unknown inputs
- Unmeasurable decision variables

(3)

State estimation method

CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

mirouucuo

Multiple Model What is the Multiple Model ?

stimation nethod

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observer

Process and the reduced ASM1 mode

dynamics Estimation results

MM with measurable decision variables :

$$\begin{cases} \dot{\mathbf{x}}(t) = \sum_{i=1}^{r} \mu_i(\hat{\mathbf{x}}, u) \cdot \left[\bar{\mathbf{A}}_i \mathbf{x}(t) + \mathbf{B}_i u(t) + \mathbf{E}_i \mathbf{d}(t) + \omega(t)\right] \\ \mathbf{y}(t) = \bar{\mathbf{C}}_{\mathbf{S}} \mathbf{x}(t) + \mathbf{C}_{\mathbf{F}} \mathbf{d}(t) \end{cases}$$

Unknown input observer :

<

$$\begin{cases} \dot{z}(t) = \sum_{i=1}^{r} \mu_i(\hat{x}(t), u(t)) [N_i z(t) + G_i u(t) + L_i y(t)] \\ \hat{x}(t) = z(t) - H y(t) \end{cases}$$
(4)

Dynamic of the state estimation error : $\dot{e}(t) = \dot{x}(t) - \dot{\hat{x}}(t)$ Under matrix conditions $\dot{e}(t)$ reduces to :

$$\dot{\boldsymbol{e}}(t) = \sum_{i=1}^{r} \mu_i(\hat{\boldsymbol{x}}(t)) \left(N_i \boldsymbol{e}(t) + \boldsymbol{P}\omega(t) \right)$$
(5)

*L*₂ approach

Unknown input observer

CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

What is the Multiple Model What is the Multiple Model ?

sstimation method

Identification of slow and fast dynamic Singularly perturbed systems

Unknown input observer

Process and the reduced ASM1 mode

Slow and fas dynamics

Estimation results

Theorem : $e(t) \rightarrow 0$ if $\exists X, M_i$ and S and a positive scalar λ s.t. the following conditions are respected $\forall i = 1, ..., r$:

$$\begin{array}{c} \bar{A}_{i}^{T}(X+S\bar{C}_{S})^{T}+(X+S\bar{C}_{S})\bar{A}_{i}-\bar{C}_{S}^{T}M_{i}^{T}-M_{i}\bar{C}_{S}+I \qquad X+S\bar{C}_{S} \\ (X+S\bar{C}_{S})^{T} \qquad -\lambda I \end{array} \right] < 0$$

 $\begin{array}{rcl} & SC_F & = & 0 \\ (X+S\bar{C}_S)E_i & = & M_iC_F \end{array}$

The observer matrices

$$H = X^{-1}S$$

$$N_i = (I + H\bar{C}_S)\bar{A}_i - X^{-1}M_i\bar{C}_S$$

$$L_i = X^{-1}M_i - N_iH$$

$$G_i = (I + H\bar{C}_S)B_i$$
(6)

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

stimation nethod

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Wastewater treatment

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

Conclusions

Wastewater treatment

18th Mediterranean Conference on Control and Automation, June 23-25, 2010, Marrakech 14/25

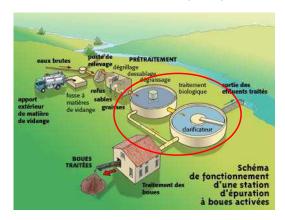
CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

estimation method


Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

The diagram of the wastewater treatment plant process

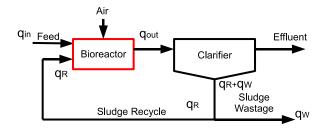
CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

stimation nethod


Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

The diagram of the set biological reactor + clarifier

1. The operating mode : constant volume

 $q_{out} = q_{in} + q_R$

2. Model : a part of ASM1 \longrightarrow carbonated pollution

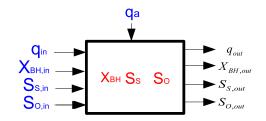
CRAN

A. NAGY KISS G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

introduction

Multiple Model What is the Multiple Model ?

stimation nethod


Identification of slow and fast dynamics Singularly perturbed systems Unknown input observer

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

The reduced ASM1 model : biological reactor

Simplification hypothesis :

 $\begin{cases} X_{BH,out}(t) = X_{BH}(t) \\ S_{S,out}(t) = S_{S}(t) \\ S_{O,out}(t) = S_{O}(t) \\ S_{O,in}(t) = 0 \end{cases}$

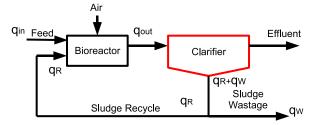
18th Mediterranean Conference on Control and Automation, June 23-25, 2010, Marrakech 17/25

CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Interests to use the Multiple Model What is the Multiple Model ?

estimation and the state of the


Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

The diagram of the set biological reactor + clarifier

1. Clarifier

$$\begin{aligned} (q_{\textit{in}}+q_{\textit{R}})X_{\textit{BH}} &= (q_{\textit{W}}+q_{\textit{R}})X_{\textit{BH},\textit{R}} \\ S_{\textit{S},\textit{R}} &= S_{\textit{S}} \end{aligned}$$

CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Process and

the reduced ASM1 model

The reduced ASM1 model

$$\begin{split} \dot{S}_{S} &= \frac{q_{in}}{V} \left(S_{S,in} - S_{S} \right) + (1 - f) b_{H} X_{BH} - \frac{\mu_{H}}{Y_{H}} \frac{S_{S}}{K_{S} + S_{S}} \frac{S_{O}}{K_{OH} + S_{O}} X_{BH} \\ \dot{S}_{O} &= -\frac{q_{in}}{V} S_{O} + K q_{a} \left(S_{O,sat} - S_{O} \right) - \frac{1 - Y_{H}}{Y_{H}} \mu_{H} \frac{S_{S}}{K_{S} + S_{S}} \frac{S_{O}}{K_{OH} + S_{O}} X_{BH} \\ \dot{X}_{BH} &= \frac{q_{in}}{V} X_{BH,in} - \frac{q_{W}}{V} \frac{q_{in} + q_{R}}{q_{W} + q_{R}} X_{BH} + \mu_{H} \frac{S_{S}}{K_{S} + S_{S}} \frac{S_{O}}{K_{OH} + S_{O}} X_{BH} - b_{H} X_{BH} \\ x &= \begin{bmatrix} S_{S} \\ S_{O} \\ X_{BH} \end{bmatrix} \qquad u = \begin{bmatrix} S_{S,in} \\ q_{a} \\ X_{BH,in} \end{bmatrix} \end{split}$$

Constants parameters : $\theta = (\mu_H, b_H, f, Y_H, S_{O,sat}, K_S, K_{OH}, K)$

18th Mediterranean Conference on Control and Automation, June 23-25, 2010, Marrakech 19/25

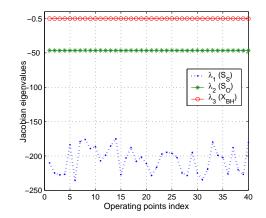
Slow and fast dynamics

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

stimation nethod


Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Nastewate

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

State estimation results

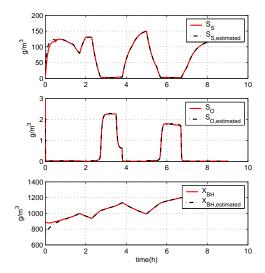
CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

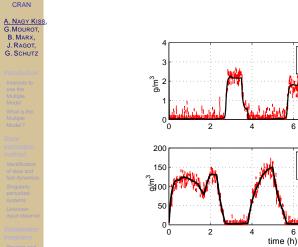
Introduction

Interests to use the Multiple Model What is the Multiple Model ?

stimation nethod


Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Nastewate


Process and the reduced ASM1 mode

Slow and fast dynamics

Estimation results

Output estimation results

Estimation results

8

У₁

6

6

y ₁ estimated

8

 y_{2}^{y} estimated

10

10

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

estimation method

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Nastewate

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

Conclusions

Conclusions and Future prospects

Conclusions and Future prospects

CRAN

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Interests to use the Multiple

Model What is the Multiple Model ?

nate stimation nethod Identification

fast dynamic: Singularly perturbed systems Unknown input observe

Process and the reduced ASM1 model

dynamics Estimation

Conclusions

Conclusions

- 1. Identification of slow and fast dynamics
- 2. Usage of MM with two time scales
- 3. State estimation using an unknown input observer and MM
- 4. Application to a part of the ASM1 model of a wastewater treatment plant

Future prospects

Using the Multiple Model form

- 1. System Diagnosis :
 - detect
 - isolate

faults

- identify
- 2. Apply to wastewater treatment plant model

A. NAGY KISS, G.MOUROT, B. MARX, J. RAGOT, G. SCHUTZ

Introduction

Interests to use the Multiple Model What is the Multiple Model ?

stimation nethod

Identification of slow and fast dynamics Singularly perturbed systems Unknown input observe

Nastewate

Process and the reduced ASM1 model

Slow and fast dynamics

Estimation results

Conclusions

Thank you for your attention