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~ Abstract—A new actuator fault tolerant control strategy  represented by a simple linear sub-model. An interpolatfon
is proposed in this paper for nonlinear Takagi-Sugeno (T-S) all these sub-models with nonlinear functions satisfying t
systems. The control law aims to compensate the actuator sum convex property allows to obtain the global behavior
faults and allows for the system states to track a reference f th t d ibed i | fi o
states which corresponds to the output of the system in fault 0 e_ Sysiem descn _e in a _arge opera_lng range. LUne
free situation. The design of such a control law requires Can cite some works in FTC field for nonlinear systems,
the knowledge of the faults, this task is achieved with a for example, in [5], the authors give a method for actuator
proportional integral observer (PIO). The robust stability of  faults by using their estimations, for nonlinear descripto
the system with the fault tolerant control law is analyzed —gygtems with Lipschitz nonlinearities. In [18], a method
with Lyapunov theory and L. optimization. Sufficient stability hich . v the fault isolati . d for T
conditions are obtained in terms of linear matrix inequalities whic requwes_ only the Tault 1solation I1s proposed for 1-
(LMIs). The gains of the FTC are obtained by solving these S Systems. It is based on controller based observers bank.
LMlIs. A simulation example is finally proposed. A switching mechanism is then designed depending on the
obtained residuals decision logic. More recently, Witczak
proposes in [22] an FTC strategy based on a reference model

for open-loop T-S systems.

This paper is dedicated to the design of a fault tolerant
. INTRODUCTION control strategy for nonlinear systems described by Takagi

It is known that the classical control strategies cannoeugeno models. This approach is an extension, the work pro-
take into account faults affecting a system. Then, if a fauR0sed in [22], to T-S systems where the weighting functions
occurs in any component of the system, the stability an@f the T-S system are affected by faults. Thus, the premise
the performances of the system cannot be ensured wiygriables of the reference model are not the same as those
such control laws. These last years, the problem of fau@f the faulty system. The main idea is to re-use the nominal
tolerant control design is treated and many significantitesu control input developed in fault-free case for which two
have been proposed in [14], [2], [16], [17]. These workderms, related to the occurred fault and the tracking error
follow two different ideas. The first one, called passivdrajectory between the system and a reference model, are
FTC, considers a possible fault situations and take theen in@dded. The reference trajectory is provided from a referenc
account in the step of control design which is similar to théhodel representing the system without faults. In addition,
robust control design. It is pointed out in many works thathe control law requires the knowledge of the state of the
this strategy is usually restrictive. The second approathe System and faults affecting it. For that, a Pl observer isluse
active FTC, which requires a fault diagnosis block proviin t0 estimate simultaneously these quantities.
informations on fault detection, isolation and estimation
The reconfigurable control block uses these informations in . )
order to deal with even unforeseen faults and to maintaf: '2kagi-Sugeno structure for modeling
th? system Stab'“ty. anc_;l to provide an acceptable system Let us consider a nonlinear system described by a T-S
trajectory in faulty situations. structure

The active fault tolerant control has been developed essen-
tially for linear systems [6], [19], [17], [14] and descript

Index Terms— Takagi-Sugeno fuzzy systems, state and fault
estimation, Pl observer, Lyapunov stability analysis, linear
matrix inequality.

linear systems [12]. Clearly, linear models does not often a(t) = > pi(€(1))(Aix(t) + Biu(t))
represent accurately physical systems due to the presence it 1)
of nonlinear behavior. A new representation that combines y(t) = Z 1 (§(1)) Ci(t)

simplicity and accuracy of nonlinear behaviors is introgtiic
initially, in [20] and known under the namBakagi-Sugeno herex " is th " is the |
(T-S) models The idea is the consideration of a set ofV erex(t) € R™ is the state vecton(t) € R™ is the input

nxn
operatin oints. At each operatin oint, the system i\éector,y(t) < R” represents the output vectof; ¢ R™*",
P gp P gp y B; € R*™™ (C; € RP*"™ and D; € RP*™ are known

All the authors are with the Centre de Recherche ermatrices. The functiong;(¢(t)) are the weighting functions
Automatique de  Nancy (CRAN), ~Nancy-Univessit 2, av- depending on the variablegt) which can be measurable
enue de la fdt de Haye 54516 Vandoeuvre-les-Nancy .

{dalil.ichalal, benoit.marx, jose.ragot, (as the input or the output of the system) or non measurable

di di er. maqui n}@nsem i npl - nancy. fr variables (as the state of the system). These functiongyveri



the following properties [1. FAULT TOLERANT CONTROL OF T-SFUZZY SYSTEMS
A. FTC strategy
Sui(E) =1 Let us consider the T-S reference model without faults
=1

)

0< m(E) <1 Vie{l,2..r} described by (1). The faulty system is given by
- _ dp(t) = >0 (&) (Aiwp(t) + Biug(t) + f(¢)))
Obtaining a T-S model (1) can be performed from dif- i=1
ferent methods such us linearization of a nonlinear model | y¢(t) = Y wi(&(t))Cizs(2)
around some operating points and using adequate weightin i=1

: . (7)
functions. It can be also obtained by black-box approach I . .
which allow to identify the parameters of the model from?\?ote that, the weighting functions depend on a faulty premis

- : : : - variable {;(¢). Indeed, if these last are the input of the
input-output data. Finally, an interesting approach tcawbt system, which can be depend on the stagé) in closed-

a model in the form (1) is the well-known nonlinear sectoqOO or the outpuy(¢), necessarily the fault affects these
transformations [21], [15]. Indeed, this transformatidiovas var!aaibles Uy (1), y

in an exact T-S representation of neral nonlinear . :
{o obtain an exact T-S representation of a general nonlinea The goal is to design the control law;(¢) such that the

model with no information loss, in a compact state space.
P b system state ¢ (t) converges toward the reference state)

Thanks to the convex sum property of the weighingyien by the reference model (1). The control strategy is
functions (2), it is possible to generalize some tools dqﬂustrated in the figure 1.

veloped in the linear domain to the nonlinear systems.
This representation is very interesting in the sense that it
simplifies the stability studies of nonlinear systems arel th
design of control laws and observers. In [3], [7], [10], the
stability and stabilization tools are inspired from thedstu

of linear systems. In [1], [13], the authors worked on the
problem of state estimation and diagnosis of T-S fuzzy
systems. The proposed approaches in these last papers rely
on the generalization of the classical observers (Luemverg
Observer [11] and Unknown Input Observer (UIO) [4]) to
the nonlinear domain.

B. Notations and preliminaries

Fig. 1. Fault tolerant control scheme

Let us consider the matriX;; with appropriate dimension,
and p;(.) nonlinear functions satisfying the convex sum

property. The following notation is defined We propose the following structure of the control law

up(t) = —f(t) + K(z(t) — z4(t) + u(t) (8)

Yee = Z Z wi (€)1 (€(8)) Y554 (3) The matricesK is determined in order to ensure the stability
i=1j=1 of the system even if faults occur and to minimize the state
error betweenz;(t) and x(t). By analyzing the structure
Lemma 1:(Tuan et al 2001) The inequality of us(t) given in equation (8), the estimation of the states

&r(t) and faultsf(t) are required. This task is performed via
a Proportional-Integral observer which estimates simelta

DD milE)ny (E(#)Yi; <0 (4) ously the state and the faults of the system.
i=1 j=1 Let us consider the Pl observer
holds if Br(t) = Y palEr () (A g (t) + Biug (1) + f(1))
=1
Yy < 0,i=1,..r (5) + Hli(yf(t) *Qf(t))) ()]
2 ; - A
ViYY< 0 ij=1.r i# ] (6) ft) = ;Ni(ff(t))(H%(yf(t)_yf(t)))
_ Lemma 2:(C_Zo_ngruenc_e) I__et two matrice and @), if P grt) = Zui(ﬁf(t))éiﬁff(t)
is positive definite and it is a full column rank matrix, i=1

than the matrixQ PQ7 is positive definite. (10)



In fact that&,(¢) is assumed to be known, the observewhere

weighting functions depend on the same premise variable

as the system (7). (
The output error between the system (7) and the observer

St ) =%

) (24)

(9) is written by

j{jpu & (t))Ciealt) (12)
where
G = [C 0] (12)
s (t)
Ta(t) |: £t :| (13)
ea(t) = x4(t) — T4(t) (14)
The dynamic of the trajectory tracking error

e(t) = z(t) — x4 (¢), obeys to the differential equation

ét) = Zuz t) + Biu(t))

- Ih(ff( N(Aizp(t) + Bi(us(t) — f(2))  (15)
ét) = Z pa(€5 (1) (Ase(t) — Bi(f (1) — f(2))

- B K(xf( ) —&¢(t))) +6(¢) (16)

= Zm §r@))((Ai — BiK)e(t)
- Llea( )+ 6(t) 17

where

Li=( BiK Bi), ea=a(t) —ia(t) (18)
8(t) =Y (mal€(1)) — pa(€5 (1)) (Asm(t) + Biu(t))  (19)

i=1

Assume thap"(t) = 0, the system (7) becomes in augmenteoll3

form

Falt) = 32 Er (1) (Airalt) + Brug (1))

i (20)
yp(t) = :Zlu i(&5 (1) Ciwalt)
where
7 A; B 5 B;

The pairs (4;,C;), 4,j = 1,..,r are assumed to be

~ A; — BiK ~L;
%—< 0 &_m@) (25)
Remark 1:One can note that in the previous section, the
weighting functions depend on premise variab{e). It can
be external known variable which is not affected by faults.
Indeed, in [22], the authors proposed a method for this
case with application to the three tank system in open-loop
control. In this case{(t) = £;(t) and the equation (23)
becomes

(t)Aizé(t) (26)

ZZM

=1 j=1

In Takagi-Sugeno modeling, it is often considered that the
premise variablet(t) is the input, the output or the state
of the system, which are necessarily affected by faults.
Consequentlyg (t) # &¢(t). In addition if{¢(¢) is accessible

to measure the state estimation error and the state tracking
error is expressed by (23). Now, in this considerations,nvhe
&(t) u(t) and £;(t) = wuy(t), the termd(t) do not
converges to zero if;(t) converges to the reference state
x(t) butif £(t) = y(t) andy(t) = y¢(¢), the tolerant control
allows the convergence af(t) to x(t) andys(t) to y(t),
then the termj(¢) converges also to zero which gives better
results compared to the case whéfe) = u(¢). The same
problem can appear if the output is also affected by fauits. |
these cases, the fault tolerant control design aims to nEzeim
the difference between;(t) andx(t) and to minimize the
L- gain of the transfer frona(¢) to the state tracking error.

. Fault tolerant control design

The gainsK, H,; and Hs; are determined by solving the
optimization problem under LMI constraints in theorem 1.

Theorem 1:Let 1 a positive scalar. The system (23) that
generates the state tracking errgft) and the state and
fault estimation errorg,(t) is stable and theC,—gain of
the transfer fromé(t) to e,(t) is bounded if there exists
symmetric and positive definite matricés, X,, P, and P
and matrices?; and K and positive scalars solution to the
following optimization problem

observable (detectable). The state and faults estimatiorse min 7 s.t. (5)—(6) @7)
eq(t) = ma(t) — #4(t) between the system (20) and the X1, X2, P, K Hi
observer (9)-(10) evolves following the equation where
. . U, -BM 0 X
= e ) )i €5 () (Ai = HiCyea(r)) e 23X aX 0
=1 5=1 Yvij = A <0 (28)
(22) o i 0
The concatenation of the state tracking trajectory erradr an * * T
the state and faults estimation errors allows to write, from o
(16) and (22), a new augmented system is written by U, Ai X, + X, AT - BiK — KTBF +1 (29)
L ~ Aij = P214z —|— AlTPQ — Hiéj — C‘V;I‘]'_{;I‘ (30)
ZZM (&7 () ; (5 (1)) Aizé(t) +To(t)  (23) _
i=1j=1 M = ( K X ) (31)



X = ( X 0 ) (32)  Wwith the congruence lemma, we obtain

0 X
T
The controller gains and those of the observer are computed Nee <0< WhegW™ <0 (46)
from where
Hy; 17 Pt 0 0 _
H, = =P, "H,; 33 1 1
(HQi) 2 (33) W = 0 X 0 ,X:<P1 0> (47)
A I 0 X
K = KX; (34) 0 0
and the attenuation level of the transfer frdift) to e(¢) is X2 is symetric and positive definite matrix. The following is
obtained by then obtained
v =7 (35) v, —-L;X X
Proof: The gainsH; and K are obtained by stability ZZM Srmi &) | x XAyX 021 <0
analysis of the system described by the differential equati ==t * * - (48)
(23) by using Lyapunov theory with a quadratic function. here
Let us chose the following quadratic Lyapunov function
U, = AXi+X AT —-B,KX, - X, K"B (4
V(E®) = ét)TPet), P=PT>0  (36) Y A B L (49)
Ajj = PRA+A P,— PHC; —C;H P, (30)
where P is chosen as follows . i o )
2 0 The negativity of (48) impose the negativity df;; which
P= ( 01 P ) (37) allows to use the following property
2

(X + ;") Ay (X +pA;t) <0
& XAGX <—p(X+XT)—pPALt (B1)

The time derivative of the functiof’ (é(t)) is given by

ZZM Er()ms (€5 (0)e()" Muzé(t) +2PT6 (38)

== (48) can then be bounded in the following way

where
_ Yee = ZZM &) (& 1)V <0 (52)
M:S(( A, ~7P1L7; ~ )) (39) =1 j=1
I 0 PQAl - PQHiCj where
where v, —-L;X 0 X
Ai=PiA; — PLB;K (40) x  —2uX pX 0

ands is a function that acts on any matrik as follows
S(R)=RT+R (41)

* * * =20

After the use of the lemma 1, in order to express the
In addition, the termd(t) depends on(t), u(t) which inequalities in linear form with respect ®, !, P, K, and

are bounded, then it is also bounded. So, the objective is 18;, the following change of variables are used

minimize the£,-gain of the transfer frond(¢) to the state

tracking errore(t), this is formulated by

()], 150 In addition

, 0@y #0 (42) - _
151l ? LiX=Bi (K I)X=B;(K X,) (55)
Then, we are seeking to ensure asymptotic convergen
toward zero ifé(t) = 0 and to guarantee a bounded
if 6(t) # 0. This problem can be formulated as follows

X, =P', K=KX,, H,=PH;, 7=+> (54)

‘I;ﬂen, the relaxed stability conditions satisfying the ratte
tion level of the£, gain of the transfer froni(¢) to the state
tracking errore(t), given in theorem 1, are obtained. m
V() +et)Te(t) —~26(t)To(t) <0 (43) Remark 2:The assumption that the fault signal is constant
) . . ) ) . over the time is restrictive, but in many practical situato
After some calculation, the time inequality (43) is negativ \yhere the faults are slowly time-varying signals, the eatim
if the following conditions hold tion of the faults is correct, and the proposed FTC scheme
can be applied. In the case where the faults are not slowly
Nee = Z Zuz Er()pi(€r(H)Ni; <0 (44)  time-varying or constant, the Proportional Integral Obser
i=1j=1 (P10) can be replaced by a Proportional Multiple Integral
where Observer (PMIO) (see [8]). Such is able to estimate a large
A, _P,L; P class of _time-varying signals which satisfies the following
Nij =S (( 0 PA —PHC; 0 )) (45) ~assumption

P 0 —2I flath) — g (56)



The principle of this observer is based on the estimation of i
all the ¢'" derivatives of the signaf(t). This observer can L
also be extended to the case whéfét!) is bounded. T

— 1
- _estimated f

Ill. SIMULATION EXAMPLE

To illustrate the proposed actuator fault tolerant control K5 5 10 5 20 2 o
strategy for T-S systems with measurable premise variables
affected by the faults, we proposed two simulations on
academic examples.

A. First case :£(t) = u(t)
Consider a T-S system with described by

" -3f ) ) ., )
{ Er(0) = 2 pwilu(®) (s (1) + Buug () + Bif (1) gy oo oy o m
yr(t) = Cas (1) Fig. 2. Fault and its estimates (top) Nominal control and FTGt¢m)
where
-2 1 1 -3 2 =2
- { 2o } L { B2 } | —
2 1 -8 5 2 -4 08
0.6
O 1 0.4
31:[11,32:[1],0: 111 02
L] Lo] Lo .
The weighting functions depend on the inpuft) which is the 0 : i0 s 2 = %0
nominal control of the system in fault-free case ; they are defined sate vacking eors
by pir (u(t)) = (1 — u(t))/2 and pa(u(t)) = 1 — pur (u(t)). To os ‘
apply the proposed FTC strategy, the following reference model is
considered
r of- — S
#() = 3 (u®) (A(t) + Bau(t)), y(t) = C(t)  (68) !
i=1
The fault f(¢) is time varying and occurs dt= 10. To % : © {5 2 = %
increase the observer performances, a pole assignment is
performed in the left of the line with abscissal4 and the Fig. 3. State estimation errors (top) State tracking errbogt¢m)

circle with center(0,0) and radius20, in order to make
enhance the speed of the convergence of the state estimation

errors toward zero and to reduce the oscillatory phenomenon | | — Seormece o
Solving the optimization problem under LMI constraints osh State ofthe system with FTC ]
in theorem 1 withy = 20, results on the following matrices o \\/ ]
—25.62  61.12 —9.88  45.15 1
Hyp=| 3065 —30.60 |, Hi2=| 32.05 —34.18 |, o ‘ ]
32.75  —45.20 17.78 —27.45 “A_——— “
of e ’,ﬁw\;
Hoyi = [ 340.99 —364.21 |, Hy = [ 339.43 —363.15 | ‘ ‘ \\/ ‘ ‘
K=[ 840 583 885 ], v=0.4269 ‘
The proportional-integral observer provides the staté est L S -
mation vyh|cr_1 errors are |IIustrat<_ad in the figures 3 (top) and 0 e
fault estimation in 2 (top). The figure 3 (bottom) shows the 0% 5 10 " 20 2 %0

state trajectory tracking errors between the state of thiegy _ _ _

and those of the reference model with the FTC control Ia\ggittndcﬁmﬁg'ggnafgf':ﬁg ::2::: %t}:"?aaffn"& ";"1!20“"’ fetaftes with
us(t) depicted in the figure 2 (bottom). Finally, the figure 4

compares, in one hand, the nominal control input (in fault-

free case) and the new control input when fault occurs, and

the other hand the states of the system controlled by the FTite reference model which represent the trajectory of the
control law, those of the reference model and those of tteystem in fault-free situation. Thus, the FTC control law
system with faults but without FTC control law. Even if compensates the fault and allows a normal functioning of
fault occurs, the system trajectory follows the trajectofy the system in the presence of faults.



B. Second case&(t) = y(t)

In this subsection, the previous system is considered, biak
with weighting functions depending on the first compone
of the system output vector. The figure 5 illustrates theestat
estimation errors (top) and the state tracking errors @bkt
It is clear that the use of weighting functions depending
of the output of the system provides better results than the
case where they are depending on the control input. This i
due to the fact that the system is only affected by actuator
faults and the perturbation terdift) converges to zero when [3]
y¢(t) converges to the referenggt). but in the previous
simulation, the termy(t) do not converge to zero, in the [
presence of fault, because(t) # us(t) which leads to
pi(u(t)) # peug(t)). As a conclusion, in the problem of

(1]

(5]

State estimation errors
1 T

[6

(7]

(8]

State tracking errors
05 T

9

(20]

-05 L L L L L
0 5 10 15 20 25 30

Fig. 5. State estimation errors (top) State tracking errbogt¢m) [11]
fault tolerant control of T-S systems with actuator faults[12]
it is more interesting to use the output of the system as a

premise variable. However, in the simultaneously occgrrin[i3
actuator and sensor faults, better results are obtainedibg u

the state of the system as a premise variable, this is more
difficult and general case but the obtained state erroritngck [14
is less than ones obtained above, first results on this point

are submitted in [9]. [15]

IV. CONCLUSION [16]

This paper is dedicated to the design of an active fault tol-
erant control law for nonlinear Takagi-Sugeno fuzzy system[17]
A reference model is used and the proposed control law is
then designed for guaranteeing the convergence of thesstajg)
of the system to the states of the reference model even if
fault occurs. This control law uses the nominal control inpu
developed for the system in fault-free case and two addition
terms related to the estimated fault and the trajectorkingc [20]
error. The stability is studied with the Lyapunov theory and
L, optimization. The LMI formalism is used in order expressyy;
stability conditions in term of linear matrix inequalitieBhe
future works may be oriented to the study of the case WheL%]
the weighting functions are unmeasurable like the state
the system. Indeed, the interest of this case is the pasgibil
to deal with simultaneous actuator and sensor faults.

[19]

In

addition, it is interesting to develop the FTC control law by
ing into account modeling uncertainties and some eatern
pperturbations.
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