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Abstract—The objective of this study is the detection of
oscillatory failure (unknown and bounded) that may affect the
control system of a flight control surface (FCS) of an civil aircraft.
Beside the fact that the failure may result in additional charges
on the aircraft structure, it can excite a resonance phenomenon.
Early detection of this type of failure is therefore a need for
security as well as the controllability of the aircraft. From an
analytical model of the flight control surface system, we can
establish a so-called failure-free model translating the behavior
of the system in the absence of failure, as well as failure models
corresponding to system behaviors in the occurrence of different
types of failure. This can then generate residual signals allowing
the detection of failure.

Index Terms—Soft sensor, Fault Detection and Isolation, Os-
cillatory Failure, Flight Control Surface

I. INTRODUCTION

The safe operation of a physical process can be harmed on
the occurrence of faults, these faults may affect the process
itself or its conduct bodies. This observation has naturally led
to the implementation of surveillance systems whose objective
is to be able at any moment, to provide operating status
of the various organs constituting the system. When a fault
occurs, it must be detected as soon as possible, even where all
observed signals remain in their allowable limits. It must then
be located and its cause identified. Thus, the conventional steps
of observation and monitoring must be assisted by a “smarter”
step.

This step, often called supervision, uses all available infor-
mation through an implicit or explicit model. In this study, the
objective is the determination of oscillatory failures that may
affect a flight control surface (FCS) of an aircraft, specifically
an aileron. More generally, for this type of oscillatory failures,
aviation regulations applied worldwide by all manufacturers
require precaution designed to detect and to accommode these
failure (see [3]). Software embedded on the Airbus A380, for
example, is entirely complying with the current regulations.
However, the improvement ([1], [2]) could be used for the next
generation of aircrafts from European manufacturer to accom-

pany the future technological innovations and meet changing
regulations. That is the purpose of this study. Examples of
oscillatory failures detection in other areas can be found in
[4], [5]. Note also that these oscillatory failures are different
from Pilot-Induced Oscillations (PIO) intentionally caused by
the pilot (see [7], [8]). In following, we propose some elements
that led a methodology to detect such failures, which bases on
existing sensors and on soft sensors (or virtual sensors) capable
of reconstructing some informations through a model.

The principle of supervision is presented in the section
II and the design of a soft sensor for the oscillatory failure
case detection in the section III. The section IV tackled the
problem of fault detection and isolation by the test of standard
deviation. This problem is treated in the section V by the
test of correlation. Some conclusion and perspectives end the
paper.

II. MODELING OF STUDIED SYSTEM

The chosen principle is based on testing the adequacy of
available measures of a FCS system towards its model. Thus,
it is necessary to establish the model of the system, generating
through this model and the available measures an indicator of
failure. This indicator of failure must be analyzed to detect
the presence of this failure as soon as possible. Regarding the
model, we can establish a model called failure-free resulting
system behavior in the absence of failure and failure models
here corresponding to system behaviors in occurrence of two
types of failure called “liquid failure” and “solid failure” as a
disturbing signal is superimposed on or replace the control
signal [1]. The probable sources of oscillatory failure are
presented in figure 1.

In this application, the characteristic variables of FCS are
given in the table I.

The failure-free model Mb is described structurally as
follows:



Fig. 1. The probable sources of oscillatory failure

x position of the rod of FCS actuator (aileron)
u position’s order of FCS actuator
Fa aerodynamic forces applied on the FCS
∆P difference of hydraulic pressure at the terminals of the FCS

actuator
Ka damping coefficient of adjacent actuator (in the case of 2

actuators for FCS)
∆Pref pressure of reference
τ transmission delay of the sensor
S surface area of the actuator’s piston
K control gain
V0 speed computed by flight control computer
xd position (in degrees) of the FCS

TABLE I
CHARACTERISTIC VARIABLES OF SYSTEM

Mb =


ẋb(t) = V0(t)

√
S∆Pi(t) + sign(V0(t))Fa(t)

S∆Pref +Ka(t)V 2
0 (t)

V0(t) = K(u(t)− x(t− τ))
∆P (t) = f1(xd(t)), Ka(t) = f2(xd(t))
Fa(t) = f3(Ma(t), xd(t), Vav,x(t)),
xd(t) = f4(x(t), τ)

(1)

the structure of functions fi(.) are not detailed here.
The quantities ∆P (t), Ka(t) and Fa(t) play the role of

disturbance of which one can know the domain of variation.
Failure models of solid and liquid types take the following
forms respectively:

Ms =

 ẋs(t) = V0,s(t)

√
S∆Pi(t) + sign(V0,s(t))Fa(t)

S∆Pref +Ka(t)V 2
0,s(t)

V0,s(t) = Sdef,s(t)

(2)

M` =

 ẋ`(t) = V0,l(t)

√
S∆Pi(t) + sign(V0,`(t))Fa(t)

S∆Pref +Ka(t)V 2
0,`(t)

V0,`(t) = K(u(t)− x`(t− τ)) + Sdef,`(t)

(3)

where the magnitudes of ∆P (t), Ka(t) and Fa(t) depend
on flight scenario; Sdef (t) represents the oscillatory failure
signal of unknown frequency, but characterized by a range of
frequencies known.

The principle of supervision, which is therefore to determine
at every moment, which mode of the system Mb, Ms or M`

is active, be the subject of Section III.

III. DESIGN OF A SOFT SENSOR FOR THE OSCILLATORY
FAILURE DETECTION

By integrating the equations related to the three modes of
operation of FCS, we obtain the evolution of outputs noted

respectively xb, xs and x`. One speaks in this case soft sensor,
because the simulation provides information comparable to
what given a physical sensor, under condition that the model
is well representative of the system. This allows us to propose
a diagnostic strategy summarized in the table (II).

E1 At time t, acquire the available measures
E2 Evaluate the outputs (xb(t), xs(t), x`(t)) of three soft sensors
E3 Calculate the residues rλ(t) = x(t)− xλ(t), λ = b, s, `
E4 Test of comparison residues to a threshold
E5 Test of persistence over time the result of statistic tests
E6 Take the decision of the occurrence of a failure

TABLE II
STRATEGY FOR FAULT DETECTION

The comparison of outcomes from these soft sensors with
magnitudes measured by physical sensors results three residual
signals allowing to determine the model the most representa-
tive of the behavior of the FCS and thus determine the type
of failure which is potentially occurred. Note that one of the
major difficulties in the implementation of this technics is due
to the fact that the physical system is subjected to hardly
measurable disturbances (∆P (t), Ka(t) and Fa(t)). In [2],
the authors have shown that ∆P (t) and Fa(t) can not be
identified simultaneously and they’ve choose to set ∆P (t) to
its most likely value then identify Ka(t) and Fa(t). In our
approach, taking account the complexity of the estimation of
Ka(t) and Fa(t) as well as the limited power of the flight
control computer, the model was simplified by fixing the three
perturbations ∆P (t), Ka(t) and Fa(t) with fixed nominal
values. For example, with a representative flight scenario, we
chose ∆P (t) = 187, Ka(t) = 0.22 and Fa(t) = −12000.
From equation (1), we establish the evolution of the output
xb(t) as follows:

Mb =


ẋb(t) = V0(t)

√
S∆Pb + sign(V0(t))Fab
S∆Pref +KabV 2

0 (t)
V0(t) = K(u(t)− xb(t− τ))
∆Pb = 187;Kab = 0.22;Fab = −12000

(4)

Figure 2 shows the output of the nonlinear model and that
of its simplified model; the low amplitude of the difference
between the two outputs justifies the use of simplified model.

Fig. 2. Validation of simplified model



For the failure models of type solid and liquid (2 and 3),
we also use fixed values:

Ms : ∆Ps = 193 Ks = 0.22 Fs = 0
M` : ∆P` = 165 K` = 0.22 F` = −6000

(5)

In following the isolation of an oscillation of 0.5 degree
amplitude and 1.5 Hz frequency will be considered. This case
corresponds to an oscillatory failure signal Sdef (t) described
by:

For the solid failure: Sdef,s(t) = 0.448 sin (3πt)
For the liquid failure: Sdef,`(t) = 1.07 sin (3πt)

(6)

With the values (5) and the model of oscillatory failure
signal (6) applied on the failure models (2 and 3), we can
get the outputs to execute the proposed procedure of fault
detection (table II). Note that the sampling step is 0.01
seconds.

IV. FAULT DETECTION BY STANDARD DEVIATION TEST

A. Generation of residues

With the actual measurement of the position of the FCS
and outputs corresponding with the modes of operation of the
system, we can establish three residues as shown in figure 3.

Fig. 3. Bank of residues for the detection of failure

Figure 4, represents residues rb(t), rs(t) and r`(t) in the
case without failure. One observes without ambiguity, in the
absence of failure, the amplitude of the residue rb(t) is limited
to approximately 0.2 degree; however, residues rs(t) and r`(t)
oscillate with a significantly greater amplitude.

Fig. 4. Residues rb(t), rs(t) and r`(t) : case without failureFigure 5 (resp. figure 6) represents the residues in the case
of liquid failure (resp. solid failure). The failure is simulated
between 5.3 and 15.3 seconds. There is an increase of the

Fig. 5. Residues rb(t), rs(t) and r`(t) : case of liquid failure

Fig. 6. Residuesrb(t), rs(t) and r`(t) : case of solid failure

variation of the residue rb(t) and a reduction in the variation
of the residue r`(t) (resp. residue rs(t)) in the presence of the
liquid failure (resp. solid failure). These residues generating
systems are quite capable of serving the fault detection and
isolation procédure, the signatures of the residues being well
differentiated according to the type of failure.

The previous qualitative visual study showed the ability of
three residues to recognize the actual operational situation. In
the next section, the quantitative analysis of residues confirms
this study and shows how the recognition is processed from a
numerical point of view.

B. Generation of indication of failure

The standard deviation is a measure of dispersion of a set of
data around its mean value and its variations are indicative of
the occurrence or the disappearance of a failure. If there is a
residue r of a temporal form, this deviation may be calculated
over a sliding window of appropriate width N as follows:

σrλ(k) =

√
1

N−1

k∑
m=k−N+1

(rλ(m)− rλ(k))2

rλ(k) = 1
N

k∑
m=k−N+1

rλ(m)

(7)

This assessment is carried out on residues (rλ,λ = b, s, `)
from failure-free model Mb and failure models Ms and M`.

C. Failure detection by standard deviation test

Thanks to deviation, the detection of the operational mode
and therefore failure may be performed as summarizes the
algorithm 1. The principle of this algorithm is to evaluate
the relationship between the calculated deviations over sliding
windows of appropriate dimensions with the initial deviations
(calculated in the absence of failure).



Algorithm 1: Failure detection by standard deviation test
1) Initialization : Calculate the initial deviations σrb,0, σr`,0

and σrs,0.
2) Calculate the deviations σrλ(k) over sliding windows
3) Onset of failure: If the failure was not yet detected and

that for a period of time σrb(k) ≥ 2σrb,0,
• If σr`(k) ≤ 0.5 σr`,0, we then declare the occur-

rence of the liquid failure.
• If σrs(k) ≤ 0.5 σrs,0, we then declare the occur-

rence of the solide failure.
4) Disappearance of the failure: If a failure has already been

detected and that for a period of time:
• σrb(k) ≤ 1.5 σrb,0, σr`(k) ≥ 0.75 σr`,0 et
σrs(k) ≥ 0.75 σrs,0

we then declare the disappearance of the failure.

The result of failure detection by the algorithm 1 is illus-
trated by figures 7, 8 and 9 for the without failure, with liquid
failure then with solid failure cases respectively.

Fig. 7. Result of the detection: case without failure

Fig. 8. Result of the detection: case of liquid failure

Fig. 9. Result of the detection: case of liquid failure

The failure flag noted Ind, is 1 if the liquid failure is
detected, 2 if the solid failure is detected and 0 if no failure
is detected. The quantity rStd,b (resp. rStd, s and rStd, `) is
the ratio between the calculated deviation on rb(t) (resp. rs(t)
and r`(t)) and the initial standard deviation.

D. Discussion on failure detection by standard deviation test

The obtained outcomes of algorithm 1 show that the failure
is detected and identified at approximately 1.5 oscillation
periods after its occurrence (0.89s for the liquid failure case
and 0.93 s for the solid failure case). This result is in fact
complying with the specifications initially imposed.

If one focuses only on the failure detection (without isola-
tion), then we can make only the test of standard deviation
of the residue rb(t), without using failure models. In this
case, the failure detection condition should be reduced to
σrb(k) ≥ 1.75 σrb,0 for a period of time (algorithm 1). The
different treated examples show that we can detect any solid
and liquid failure on the frequency range [0.5 . . . 10.0] Hz even
at very low amplitude (0.16 degree).

However, if we want to detect and isolate all failures
that may appear in the control loop, we must increase the
number of failure models described by equations (2) and
(3) and therefore take into account different frequencies of
oscillations. Each failure model whose parameters are fixed
as in (5), is specific to a particular solid or liquid failure (of
type (6)) that we want to identify. With the principle used by
the algorithm 1, we can detect and isolate any solid and liquid
failure on the frequency range [0.5 . . . 10.0] Hz and amplitude
between 0.5 degree and 1.0 degree (or even lower) for many
flight scenarios.

To reduce the number of failure models, another approach
is to use a correlation test that we develop in the next section.

V. FAULT DETECTION BY CORRELATION TEST

The dysfunction models (2 and 3) allow us to study the
behavior of the system in the presence of a failure. In the
simulation of dysfunction models, by forcing the command
to zero on theses models, the impact of the failure on the
output can be directly identified and estimated. In this way,
patterns of failures can be generated offline to be compared
to the residue rb(t) or output x(t) to detect and isolate the
failure. Figure 10 shows the procedure to be implemented.
The first residue rb(t) has already been defined. Signals
fi(t) correspond to failures characterized by some specific
frequencies (6) whose effect is assessed based on the failure
models (Ms or M`) thus generating signatures xLi(t) or xSi(t)
specific to each of these frequencies. We call such frequencies
“selected” because we want to detect and isolate the failures
of these frequencies. These signatures are then compared (by
correlation over sliding windows) to the previously evaluated
residue rb(t) or output x(t). This principle applies to liquid
and solid failure, model SMF is then M` or Ms.

A. Generation of patterns

In this subsection we generate patterns for 0.5 Hz, 1.5
Hz and 7.0 Hz frequencies from models Ms and M` by
putting the command to zero. As the correlation test does not
distinguish the amplitudes of sinusoidal signals, these patterns
are generated so that they correspond with the oscillation of
0.75 degree. Each pattern is a sequence of length equal to two



Fig. 10. Generation of residues for correlation test

periods of the failure of the same frequency. Our objective is
to detect and isolate the failures of these three frequencies.

1) Patterns of liquid failures: For the liquid failures, three
following patterns are generated (table III)

TABLE III
LIQUID FAILURES

Pattern Sequence Frequency
xL1 400 points 0.5 Hz.
xL2 135 points 1.5 Hz.
xL3 28 points 7.0 Hz.

These three patterns xL1, xL2 and xL3 are presented in
figure 11. They are analyzed by correlation test with the signal
rb(t) defined previously by rb(t) = x(t)− xb(t).
The patterns xL1, xL2 and xL3 are the direct impacts of

Fig. 11. Patterns xL1, xL2 and xL3

liquid failures (without the influence of the command) on the
output of the system and they are comparable in some way
with the residue rb(t) under the presence of a failure. Indeed,
the difference x(t)−xb(t) reflects the impact of the failure on
the output since the effect of the command on x(t) and xb(t)
is canceled by difference.

2) Patterns of solid failures: For the solide failures, three
following patterns are generated (table IV).

These three patterns xS1, xS2 and xS3 are presented in
figure 12. They are analyzed by correlation test with the actual
output x(t).

TABLE IV
SOLID FAILURES

Pattern Sequence Frequency
xS1 400 points 0.5 Hz.
xS2 135 points 1.5 Hz.
xS3 28 points 7.0 Hz.

Fig. 12. Patterns xS1, xS2 and xS3

B. Generation of indication of failure

The correlation between two or more variables is the inten-
sity of the relation that may exist between these variables. A
measure of this correlation is obtained by the calculation of the
linear correlation coefficient. The linear correlation coefficient
between two variable x and y is noted by rx,y .

C. Fault detection by correlation test

With the correlation test, fault detection can be performed as
summarized in Algorithm 2. The principle of this algorithm is
to compute the linear correlation coefficients over a sliding
window, on the one hand between the residue rb(t) with
signals xL1, xL2 and xL3 which represent liquid failures;
on the other hand between the output x(t) with signals
xS1, xS2 and xS3 which represent solid failures. If one of
these coefficients calculated over a sliding window exceeds a
threshold a certain number of times within a limited time, we
declare that a failure is detected.

Algorithm 2: Fault detection by correlation test
1) Initialization :

• Read the patterns xL1, xL2, xL3, xS1, xS2 and xS3

from a file previously created.
• Define a table P = [400 135 28] and one threshold
Vs = 0.6.

2) Perform calculations of linear correlation coefficients for
each kth sampling step:
• Calculate rrb(k−P (i)+1:k),xLi for i = 1, 2, 3.
• Calculate rx(k−P (i)+1:k),xSi for i = 1, 2, 3.

3) Evaluate the linear correlation coefficients by counting
exceedances:
• If a coefficient is greater than Vs or smaller than
−Vs, we increase the number said overruns associ-
ated with this coefficient of a unit.

• If no exceedance were observed within a limited
time, we set the number of overruns to zero.

4) Onset of failure: If the failure has not yet detected and
that one of the numbers of overruns is greater than or
equal to 4:
• We then declare the onset of failure.



• The nature of the failure (liquid or solid) as well as
its frequency are indicated by the pattern xLi or xSi
whose number of exceedances was observed with
its correlation coefficient. If it is a pattern xLi, the
failure is liquid; if it is a pattern xSi, the failure is
solid. The value of i indicates the frequency of the
failure.

5) Disappearance of the failure: If a failure has already been
detected and no exceedance was observed within a limited
time
• We then declare the disappearance of the failure.

The correlation coefficients calculated during the time is
shown first in figure 13 for the case without failure. The result
of failure detection by the algorithm 2 is shown in figures 14,
15 and 16. Figure 14 (resp. 15 and 16) represents the result
obtained with the liquid failure of 0.5 Hz frequency (resp. the
liquid failure of 1.5 Hz frequency and with the solid failure
of 7.0 Hz frequency). Failures are simulated between 5.3 and
15.3 seconds.

Fig. 13. Calculated correlation coefficients : case without failure

Fig. 14. Result of detection : liquid failure of 0.5 Hz frequency

Fig. 15. Result of detection : liquid failure of 1.5 Hz frequency

The first column represents the correlation coefficient which
led to the failure detection (rrb,xL1 , rrb,xL2 and rx,xS3 respec-
tively). The indicator of nature of the failure is noted by Nat
in the second column. If Nat = 1, a liquid failure is detected,

Fig. 16. Result of detection : solide failure of 7.0 Hz frequency

if Nat = 2, a solid failure is detected. The frequency of the
failure is indicated in the third column. With this method, the
detection and isolation of failure can be performed in less than
three periods of the failure, which is in fact complying with
the imposed specifications.

D. Discussion on the failure detection by correlation test

Failure detection by correlation test has reduced signifi-
cantly the number of failure models compared to deviation
test. In fact, boarding only failure-free model in flight control
computer to generate the residue rb(t) is sufficient. All the
pattern of liquid and solid failures are generated in advance
and stored. Different treated flight scenarios show that we
can detect and isolate any solid and liquid failure of selected
frequencies belonging to the frequency interval [0.5 . . . 10.0]
Hz even at low amplitude (0.16 degree). However, this analysis
does not identify the amplitude of the failure.

It should be noted that, in its current version, the algorithm
2 uses 6 correlation tests at every step of simulation (2 types
of default, 3 selected frequencies). Although the calculations
are simple and implement basic operators, it is possible to
reduce substantially the volume of calculation taking account
three points:

• The patterns xL1, xL2, xL3, xS1, xS2 and xS3 are deter-
mined by the type of failure. Their means and standard
deviations over a window can be calculated offline and
stored.

• Means, standard deviations of the output x(t) and the
residue rb(t) calculated over a window can be performed
recursively when moving a step time of the observation
window.

• The covariance between a reference pattern and a signal
x(t) or rb(t) over a window can also be calculated in
recursive way.

Given these recurrences are easy to establish, so we can
carry out the correlation tests with a small calculating volume.

VI. CONCLUSION

In this paper, we addressed the problem of detecting the
oscillatory failure in the control system of a flight control
surface of an civil aircraft. We have proposed two methods
of fault detection based on a simplified model validated
regarding the nonlinear models usually used. In the frequency
range [0.5 . . . 10.0] Hz, we can detect any solid and liquid
failure by standard deviation test, we can also detect and
isolate any solid and liquid failure of selected frequencies by
correlation test. Both methods have been successfully tested



for a variety of flight scenarios, even with failures of low
amplitude (0.16 degree). In the following, we extend these
methods to other flight control surfaces (rudder or elevator),
we will try to reduce the complexity as well as the number of
failure models and we will try to improve the robustness of
the correlation test for the failures of frequencies neighboring
the selected ones.
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