
Fault Tolerant Control for Takagi-Sugeno systems with unmeasurable
premise variables by trajectory tracking

Dalil Ichalal, Benoit Marx, Jośe Ragot, Didier Maquin

Abstract— This paper presents a new method for fault
tolerant control of nonlinear systems described by Takagi-
Sugeno fuzzy systems with unmeasurable premise variables.
The idea is to use a reference model and design a new
control law to minimize the state deviation between a healthy
reference model and the eventually faulty actual model. This
scheme requires the knowledge of the system states and of
the occurring faults. These signals are estimated from a
Proportional-Integral Observer (PIO) or Proportional-Multi-
Integral Observer (PMIO). The fault tolerant control law is
designed by using the Lyapunov method to obtain conditions
which are given in Linear Matrix Inequality formulation
(LMI). Finally, an example is included.

Index Terms— Takagi-Sugeno fuzzy systems, state and fault
estimation, PI and PMI observers, Lyapunov stability analysis,
linear matrix inequality.

I. INTRODUCTION

Fault tolerant control (FTC) has been recently introduced
in the fault diagnosis framework. It consists to compute a
new control law by taking into account the faults affecting
the system in order to maintain acceptable performances and
preserve stability of the system in the faulty situations.

The existing strategies are classified into two classes.
The first class is called passive fault tolerant control or
robust control. In this approach, the faults are treated as
uncertainties. Therefore, the control is designed to be robust
only to the specified faults. Contrarily to the passive FTC,
active FTC requires a FDI block to detect, isolate and
estimate the faults. The informations issued from the FDI
block are used by the FTC module to reconfigure the control
law in order to compensate the fault and ensure an acceptable
system performances.

The active fault tolerant control has been developed essen-
tially for linear systems [4], [15], [13], [11] and descriptor
linear systems [9]. Clearly, linear models do not often repre-
sent accurately physical systems due to nonlinear behaviors.
It is then interesting to work directly with nonlinear models.
Nevertheless, from the mathematical point of view, working
with nonlinear models is much harder than with linear ones.
A new representation that combines simplicity of linear
models and accuracy of nonlinear behaviors is introduced,
initially, in [16] and known asTakagi-Sugeno (T-S) models.
The idea is to consider a set of system operating points. At
each operating point, the system is represented by a simple
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linear sub-model. An interpolation of all these sub-models
with nonlinear functions satisfying the sum convex property
allows to obtain the global behavior of the system. One
can cite some works in FTC field for nonlinear systems,
for example, in [5], the authors give a method for actuator
faults by using their estimations, for nonlinear descriptor
systems with Lipschitz nonlinearities. In [14], a method
requiring only the fault isolation is proposed for T-S systems.
It is based on controller based observers bank. A switching
system is then designed, to switch from one controller to an
other, from the residual decision logic.

This paper is dedicated to the design of a fault tolerant
control strategy for nonlinear systems described by Takagi-
Sugeno models with unmeasurable premise variables. The
main idea is to re-use the nominal control input developed
in fault-free case to which two terms, related to the occurred
fault and the tracking error trajectory between the system
and a reference model, are added to be able to compensate
the fault. The reference trajectory is provided by a reference
model representing the system without faults. In addition,
the control law requires the knowledge of the state of the
system and faults affecting it. For that purpose, a PI (or PMI)
observer is used to estimate simultaneously these signals.

The second section is dedicated to a brief presentation
of Takagi-Sugeno models. The third section deals with the
problem of fault tolerant control design with PI and PMI
observers. Finally, an academic example is proposed in order
to illustrate the FTC strategy.

II. TAKAGI -SUGENO STRUCTURE FOR MODELING

Consider a nonlinear system described by
{

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

(1)

The T-S fuzzy modeling allows to represent the behavior
of a nonlinear system (1) by the interpolation of a set
of linear sub-models. Each sub-model contributes to the
global behavior of the nonlinear system through a weighting
function µi(ξ(t)). The T-S structure is given by















ẋ(t) =
r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) =
r
∑

i=1

µi(ξ(t))(Cix(t) + Diu(t))
(2)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

m is the input
vector,y(t) ∈ R

p represents the output vector.Ai ∈ R
n×n,

Bi ∈ R
n×m, Ci ∈ R

p×n and Di ∈ R
p×m are known

matrices. The functionsµi(ξ(t)) are the weighting functions



depending on the variablesξ(t) which can be measurable
(as the input or the output of the system) or non measurable
variables (as the state of the system). These functions verify
the following properties







r
∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀i ∈ {1, 2, ..., r}
(3)

Obtaining a T-S model (2) from (1) can be performed from
different methods such us linearizing the system (1) around
some operating points and using adequate weighting func-
tions. It can also be obtained by black-box approaches which
allow to identify the parameters of the model from input-
output data. Finally, the most interesting and important way
to obtain a model in the form (2) is the well-known nonlinear
sector transformations [17], [12]. Indeed, this transformation
allows to obtain an exact T-S representation of (1) with no
information loss on a compact of state space.

Thanks to the convex sum property of the weighing
functions (3), it is possible to generalize some tools devel-
oped in the linear domain to the nonlinear systems. This
representation (2) is very interesting in the sense that it
simplifies the stability studies of nonlinear systems and the
design of control laws and observers. In [2], [6], [7], the
stability and stabilization tools are inspired from the study
of linear systems. In [1], [10], the authors worked on the
problem of state estimation and diagnosis of T-S fuzzy
systems. The proposed approaches in these last papers rely
on the generalization of the classical observers (Luenberger
Observer [8] and Unknown Input Observer (UIO) [3]) to the
nonlinear domain.

In the remaining of the paper, we use the following
lemmas.

Lemma 1:Consider two matricesX andY with appropri-
ate dimensions andΩ a positive definite matrix. the following
property is verified

XT Y + Y T X ≤ XT ΩX + Y T Ω−1Y Ω > 0 (4)
Lemma 2: (Congruence) Let two matricesP andQ, if P

is positive definite and ifQ is a full column rank matrix,
than the matrixQPQT is positive definite.

III. FAULT TOLERANT CONTROL OFT-S FUZZY SYSTEMS

Let us consider the T-S reference model without faults
described by (2). The system with faultsf is described by
the following T-S model with unmeasurable premise variable






ẋf (t) =
r
∑

i=1

µi(xf (t)) (Aixf (t) + Bi(uf (t) + f(t)))

yf (t) = Cxf (t) + Rf(t)
(5)

For sake of simplicity, the time variable is omitted.
The goal is to design the control lawuf (t) such that the

system statexf (t) converges toward the reference statex(t)
given by the reference model (2). The control strategy is
illustrated in the figure 1. The following structure is proposed

model
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Fig. 1. Fault tolerant control scheme

for the control law

uf =

r
∑

i=1

µi(x̂f )
(

−f̂ + K1i(x − x̂f ) + u
)

(6)

The matricesK1i are determined in order to ensure the
stability of the system even if faults occur and to minimize
the difference betweenxf (t) and x(t). By analyzing the
structure ofuf (t) given in equation (6), the estimation of
the statexf (t) and thef(t) faults is required. This task is
performed via a Proportional-Integral observer which esti-
mates simultaneously the state and the faults of the system.

Let us consider the PI observer

˙̂xf =

r
∑

i=1

µi(x̂f )(Aix̂f + Bi(uf + f̂)

+ H1i(yf − ŷf )) (7)

˙̂
f =

r
∑

i=1

µi(x̂f ) (H2i(yf − ŷf )) (8)

ŷf = Cx̂f + Rif̂ (9)

which depends on the gainsH1i andH2i.
The output error between the system (5) and the observer

(7)-(8) is written by

yf − ŷf = C̃ea (10)

where

C̃ =
[

C R
]

(11)

xa =

[

xf

f

]

(12)

ea = xa − x̂a (13)

The dynamic of the trajectory tracking errore = x − xf ,
obeys to the differential equation

ė =

r
∑

i=1

µi(x)(Aix + Biu) − µi(xf )(Aixf + Bi(uf − f))

(14)



Taking into account the definitions (6) and (14) leads to

ė =

r
∑

i=1

r
∑

j=1

µi(xf )µj(x̂f )(Aie − Bi(f − f̂)

− BiK1j(xf − x̂f )) + ∆1 (15)

=

r
∑

i=1

r
∑

j=1

µi(xf )µj(x̂f )((Ai − BiK1j)e − L̃ijea) + ∆1

(16)

where
L̃ij =

(

BiK1j Bi

)

, ea = xa − x̂a (17)

∆1 =

r
∑

i=1

(µi(x) − µi(xf ))(Aix + Biu) (18)

In order to analyze the evolution of the errors, two cases
are considered : in the first one the faults are supposed to be
constant ; in the second one they are assumed to be under a
polynomial form with respect to the time variable.

A. Constant faults

In this first approach, we havėf(t) = 0 and, with
definition (12), the system (5) becomes in augmented form







ẋa =
r
∑

i=1

µi(xf )
(

Ãixa + B̃iuf

)

yf = C̃xa

(19)

where

Ãi =

(

Ai Bi

0 0

)

, B̃i =

(

Bi

0

)

, (20)

C̃ =
(

C R
)

(21)

The state and fault estimation errorea(t) = xa(t) − x̂a(t)
between the system (19) and the observer (7)-(8) evolves
according to the following equation

ėa =
r
∑

i=1

µi(x̂f )
(

(Ãi − HiC̃)ea + Γ∆2

)

(22)

where

Γ =

[

In

0

]

(23)

∆2 =

r
∑

i=1

(µi(xf ) − µi(x̂f ))(Aixf + Bi(uf + f)) (24)

The concatenation of the state tracking trajectory error and
the state and faults estimation errors allows to write, from
(15) and (22), the new augmented system is

˙̃e =
r
∑

i=1

r
∑

j=1

µi(x)µj(x̂f (t))Ãij ẽ + Γ̃∆ (25)

where

ẽ =





x − xf

xf − x̂f

f − f̂



 , ∆ =

(

∆1

∆2

)

, (26)

Γ̃ =





In 0
0 In

0 0



 (27)

Ãij =





Ai − BiK1j −BiK1j −Bi

0 Ai − H1iC Bi − H1iR

0 −H2iC −H2iR



 (28)

The gainsK1i, H1i and H2i are determined by solving a
minimization problem under LMI constraints, given by the
following theorem 1.

Theorem 1:The state tracking errore(t) and the state
and fault estimation errorsea(t) converge asymptotically
toward zero if there exists symmetric and positive definite
matricesX1, P2 and matricesH̄1i, H2i andK1i such that̄γ
is minimized under the LMI constraints (29).


















Ψi −B1K1j −Bi −B1K1j X1 X1 0
∗ Θij Ξij 0 0 0 P2
∗ ∗ Φij 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −γ̄I 0
∗ ∗ ∗ ∗ ∗ ∗ −γ̄I



















< 0

(29)

Ψi = AiX1 + X1A
T
i (30)

Θij = P2Ai + A
T
i P2 − H̄1iCj − C

T
j H̄

T
1i (31)

Ξij = P2Bi − H̄1iRj − C
T
j H̄

T
2i (32)

Φij = −H̄2iRj − R
T
j H̄

T
2i (33)

i, j = 1, ..., r

The gains are given byK1j andH2i are obtained directly
from the above optimization problem andH1i are then
computed from

H1i = P−1
2 H̄1i (34)

theL2 gain from∆ to ẽ is given by

γ =
√

γ̄ (35)

Proof: The gainsH1i, H2i andK1i are obtained by a
stability analysis of the system described by the differential
equation (25), using the Lyapunov theory with a quadratic
function.

Let us chose the following quadratic Lyapunov function

V (ẽ) = ẽT P ẽ, P = PT > 0 (36)

whereP is chosen as follows

P =





P1 0 0
0 P2 0
0 0 P3



 (37)

The time derivative of the functionV (ẽ) is given by

V̇ (ẽ) =
r
∑

i=1

r
∑

j=1

µi(xf )µj(x̂f )ẽT
(

ÃT
ijP + PÃij

)

ẽ

+ 2P Γ̃∆

=
r
∑

i=1

r
∑

j=1

µi(xf )µj(x̂f )ẽTMij ẽ + 2P Γ̃∆ (38)



where

Mij = S









Λi −P1BiK1j −P1Bi

0 Θi Σi

0 −P3H2iC −P3H2iR







 (39)

Λi = P1Ai − P1BiK1j (40)

Θi = P2Ai − P2H1iC (41)

Σi = P2Bi − P2H1iR (42)

andS is a function that acts on any matrixX as follows

S(X) = XT + X (43)

Assume that the input and the faults are bounded and that
the system is stable. As a consequence,∆ ((26), (18), (24))
is bounded. So, the objective is to minimize theL2-gain of
∆ on the error̃e(t), this is formulated by

‖ẽ‖2

‖∆‖2

< γ, ‖∆‖2 6= 0 (44)

Then, we are seeking to ensure asymptotic convergence of
ẽ(t) toward zero if∆(t) = 0 and to guarantee a boundedL2

if ∆(t) 6= 0. This problem can be formulated as follows

V̇ (ẽ) + ẽT ẽ − γ2∆T ∆ < 0 (45)

After some calculation and by using the convex sum property
of the weighting functions, the time varying inequality (45)
is satisfied if the following conditions hold

Nij < 0, i, j = 1, . . . , r (46)

where

Nij = S





















Λi −P1BiK1j −P1Bi P1 0
0 Θi Σi 0 P2

0 −P3H2iC −P3H2iR 0 0
P1 0 0 −γ2I 0
P1 0 0 0 −γ2I





















(47)
by congruence (lemma 2), for every invertible matrixW , we have

Nij < 0 ⇔ WNijW < 0 (48)

definingW by

W =









P−1
1 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I









(49)

the inequality (46) is equivalent to












Ψij −BiK1j −Bi P1 0
∗ Zi Υi 0 P2

∗ ∗ Ti 0 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −γ2I













< 0 (50)

where

Ψij = AiX1 + X1A
T
i − BiK1jX1 − X1K

T
1jB

T
i (51)

Zi = P2Ai + AT
i P2 − P2H1iC − CT HT

1iP2 (52)

Υi = P2Bi − P2H1iR − CT HT
2iP3 (53)

Ti = −P3H2iR − RT HT
2iP3 (54)

X1 = P−1
1 (55)

Let us remark that the bloc matrix




Ψij −BiK1j −Bi

∗ Zi Υi

∗ ∗ Ti



 (56)

of (50) can be written as follows




Ψi −B1K1j −Bi

∗ Zi Υi

∗ ∗ Ti





+

(

−BiK1j

0
0

)(

X1

0
0

)T

+

(

X1

0
0

)(

−BiK1j

0
0

)T

< 0

(57)

where

Ψi = AiX1 + X1A
T
i (58)

The lemma 1 gives
(

Ψi −B1K1j −Bi

∗ ∆ij Υi

∗ ∗ Ti

)

+

(−BiK1j
0
0

)

Ω−1

(−BiK1j
0
0

)T

+

(

X1
0
0

)

Ω

(

X1
0
0

)T

< 0 (59)

whereΩ is a symmetric and positive matrix. After bounding
the inequality (50) with (59), and, assuming that

H̄1i = P2H1i (60)

γ̄ = γ2 (61)

Ω = I, P3 = I (62)

the LMIs in theorem 1 are obtained.

B. Time varying faults

The assumption that the fault signal is constant over the
time is restrictive, but in many practical situations where
the faults are slowly time-varying signals, the estimationof
the faults is correct, and the proposed FTC scheme can be
applied. In the case where the faults are not slowly time-
varying or constant, the Proportional Integral Observer (PIO)
can be replaced by a Proportional Multiple Integral Observer
(PMIO). Such an observer is able to estimate a large class
of time-varying signals satisfying the following assumption

f (q+1) = 0 (63)

The principle of this observer is based on the estimation of
all the firstqth derivatives of the signalf(t). This observer
can also be extended to the case wheref (q+1) is bounded.

Let consider the system (5) with a fault in the general
polynomial form

f(t) = a0 + a1t + a2t
2 + ... + aqt

q (64)



Let considerd0(t) = ḟ(t), d1(t) = f̈(t), ..., dq−1(t) =
f (q)(t), the system can be transformed into an augmented
form 





˙̃xf =
r
∑

i=1

µi(xf )
(

Ãix̃f + B̃iuf

)

y = C̃x̃f

(65)

where

x̃f =















xf

d0

...
dq

d(q−1)















, Ãi =















Ai Bi 0 0 0
0 0 I 0 0
...

...
...

. . .
...

0 0 0 0 I

0 0 0 0 0















,

B̃i =















Bi

0
...
0
0















, C̃ =
(

C R 0 0 0
)

x̃f (t) represents the augmented state vector composed of the
statexf (t) and theqth first successive derivatives of the fault
f(t). The observer simultaneously estimating the statexf (t)
and the faultsf(t) with the successive derivatives is given
in the following form






˙̂
x̃f =

r
∑

i=1

µi(x̂f )
(

Ãi
ˆ̃xf + B̃iuf + H̃i(y − ŷ)

)

ŷ = C̃ ˆ̃xf

(66)

The augmented state estimation errore(t) = x̃f (t) − ˆ̃xf (t)
and the error betweenxf andx are given by
(

ė

ėa

)

=

r
∑

i=1

r
∑

j=1

µi(x)µj(x̂f ) ˜̄Aij

(

e

ea

)

+ Γ̃∆ (67)

where
˜̄Aij =

(

Ai − BiK1j B̃i

0 Ãi − H̃iC̃

)

Thus, the structure of the state equations is the same as those
expressed in the case of constant faults. The synthesis of the
gains of the controller and those of the observer are obtained
by solving the LMIs given in the theorem 1.

IV. SIMULATION EXAMPLE

In order to illustrate the proposed fault tolerant control
strategy, we proposed an academic example of T-S system
described by







ẋf =
r
∑

i=1

µi(xf ) (Aixf + Bi(uf + f))

yf = Cxf + Rf
(68)

where

A1 =





−2 1 1
1 −3 0
2 1 −8



 , A2 =





−3 2 2
0 −3 0
5 2 −4



 ,

B1 =





0
1

0.25



 , B2 =





1
1
0



 ,

C =

[

1 1 1
1 0 1

]

, R =

[

1
0

]

The weighting functions depend on the first component of
the state vectorxf ; they are defined by

{

µ1(xf ) =
1−tanh(x1

f)
2

µ2(xf ) = 1 − µ1(xf )
(69)

The input variationu(t) over the time is depicted in the figure
2 (bottom, continuous blue line). To apply the proposed FTC
strategy, the following reference model is considered







ẋ =
r
∑

i=1

µi(x) (Aix + Biu)

y = Cx
(70)

The faultf(t) is a time varying signal att = 5. Solving the
LMIs in theorem 1 results in the following matrices

X1 =





0.91 0.11 0.04
0.11 0.93 −0.04
0.04 −0.04 0.44



 ,

P2 =





1.53 −0.31 0.50
−0.31 3.04 −0.39
0.50 −0.39 0.95



 ,

H11 =





−1.93 4.58
−3.19 6.27
−5.35 1.22



 , H12 =





−3.39 5.12
−3.27 6.67
−4.47 2.74



 ,

H21 =
[

4.885 0.000
]

, H22 =
[

3.771 1.114
]

,

K11 =
[

0.004 0.024 −0.004
]

,

K12 =
[

0.003 0.019 −0.004
]

The proportional-integral observer provides estimated state
and faults. In the figure 2 (top) the real fault and its estimate
are depicted. The state estimation errors (resp. the state
tracking errors) are displayed on the top (resp. bottom) of
figure 3. The figures 4 compares the state variables of the
reference model, of the faulty system without FTC and the
faulty system with FTC. One can see that the state variables
of the system affected by fault with FTC is closed to the
reference whereas the faulty system with nominal control
deviates.

V. CONCLUSION

This paper is dedicated to the design of a nonlinear fault
tolerant control law. The considered systems are modeled
in the Takagi-Sugeno fuzzy structure with unmeasurable
premise variables. The strategy is based on the use of a
reference model which is the model of the system in the
fault-free case. The proposed control law is then designed to
minimize the deviation of the system state compared to the
reference state, even in the presence of fault(s). This control
law uses the nominal control input developed for the system
in fault-free case and two additional terms. The first term is
related to the estimated fault and the second one corresponds
to the trajectory tracking error. The stability is studied with
the Lyapunov theory and a quadratic function that allows to
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Fig. 4. Comparison between the states of the reference model (no fault),
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derive conditions ensuring the convergence of the state and
fault estimation errors and trajectory tracking error toward
zero. The existence conditions are expressed in terms of
LMI that can be solved with classical dedicated softwares.
The future works may be oriented, on the one hand, to
the relaxation of these conditions by using polyquadratic
or non-quadratic Lyapunov functions. On the other hand,
the assumption of open-loop stability (needed for solving
the LMI problem given in theorem 1) should be relaxed.
In addition, it is interesting to develop the FTC control law
by taking into account modeling uncertainties, multiplica-
tive faults and some external perturbations, and considering
nonlinear outputs of the system. Real applications will be
developed in future works.
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