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Abstract 

In this paper, we consider the robust Kalman filtering for uncertain discrete time-varying 
systems, to solve the problem of simultaneously state and fault estimation. The system under 
consideration is subjected to time-varying norm-bounded parameter uncertainty in both the state 
and measurement matrices. The approach suggested rests on the use of the Augmented State 
Robust Kalman Filter (ASRKF) based on the optimization of an upper bound on the variance error 
of the state estimation. A necessary and sufficient condition for the existence of the filter is 
established in terms of a pair of Riccati equations. The proposed filter is tested by an illustrative 
example.  

Index terms_ Robust Kalman filtering, uncertain discrete time-varying systems, robust state 
estimation, robust fault estimation. 

1. Introduction: 

This paper is concerned with the problem of joint fault and state estimation of linear discrete- 
time stochastic system. In spite of the presence of the parameter uncertainty the robust estimate of 
the state and the fault enables us to implement a fault tolerant control (FTC). A simple idea 
consists to use an architecture FTC resting on the compensation of the effect of the fault, see e. g. 
[1], [2]. 

Initially, we refer to the robust Kalman filtering problem largely treated in the literature by 
different approach. There are essentially two approaches to the robust estimation problem. The 
first is the H∞ filtering, which minimizes the worst case energy gain from the noise inputs to the 

estimation error. In [3] a robust H∞ filtering technique was proposed to satisfy state estimation 

error variance constraint as well as prescribed H∞  performance for all admissible perturbations. 
This method is based on the solution of two discrete Riccati difference equations (DRE). Also, a 
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new technique that ensures a more efficient evaluation of robust 2H and H∞ performance was 
developed by [4].This method is based on the use of a matrix inequality conditions which contain 
additional free parameters as compared to existing characterizations. These parameters provide 
extra degree of freedom and lead to a less conservative design. Duan et al. [5] extends the existing 
result on the robust 2H and H∞ filtering problem and introduces a new structure of slack variables 

to provide extra free dimension in the solution space for the 2H and H∞ optimization. The other 
approach is the so-called guaranteed cost filtering or robust Kalman filtering, the idea is to design 
a filter to minimize the estimation error covariance, see [6]-[8]. In many applications, an extra 
model for the system may not be available. In this situation, the error variance for all allowed 
parametric uncertainties is desirable. In [8]-[12] both the finite and the infinite-horizon filtering 
problem were addressed. Necessary and sufficient conditions for the existence of robust filter with 
an optimized upper bound for the error variance are given in terms of a pair of parameterized 
Riccati equations.  

In the present work, we consider the problem of joint state and fault estimation for linear 
discrete time-varying systems with norm-bounded parameter uncertainty. The state and the 
measurement noises are assumed white signal with known statistics. The problem is addressed to 
design a robust filter that can solve the latter problem. In this case, when dynamical evolution of 
the fault is available, we may use the augmented state robust Kalman filter (ASRKF). 

This paper is organized as follows, in section 2, we give the problem formulation. In section 3, 
the problem of state and fault estimation over finite-horizon is developed. A numerical example is 
illustrated in section 4.  

2. Problem formulation 

The problem consists of designing a filter that gives a robust state and fault estimation for 
discrete time-varying uncertain system. This problem is described by the bloc diagram of Fig. 1. 

 

 

 

  

 

Fig.1. State and fault estimator filter 
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The plant PΔ  represents the uncertain discrete time-varying systems with additive fault and is 
described by 

( ) 1
0

( )
, :

( )

x x x
k k k k k k k k k k

y
k k k k k k k

x A A x G u F f B w
P

y C C x F f v
+⎧ = + Δ + + +⎪Δ ⎨
= + Δ + +⎪⎩

   (1) 

where n
ku ∈ℜ is the known input, n

kx ∈ℜ is the system state, p
kf ∈ℜ is the addition fault vector, 

m
ky ∈ℜ is the measurement vector, n

kw ∈ℜ and m
kv ∈ℜ white noise sequences of zero-mean. 

The matrices , , , , x
k k k k kA B C G F and y

kF are known and have appropriate dimensions. Whereas, 

kAΔ and kCΔ represent the time-varying parameters uncertainties in the matrices kA and kC  
respectively. These uncertainties have the following form: 

 

    

where 1,kH , 2,kH  and kE  are known real matrix of appropriate dimensions, and kF is an unknown 

perturbation matrix that satisfies the constraint [ ] ,   0,T
k kF F I k N≤ ∀ ∈  . 

We treat the additive fault kf as a stochastic process generated by  

1 : k k k k k

k k k

A B w
P

f C

ξ ξ ξ
ξ

ξ

ξ ξ

ξ
+⎧ = +⎪

⎨
=⎪⎩

      (2) 

where ,k k kA B and Cξ ξ ξ are known real matrices with appropriate dimensions.   

Assumptions 

A1 : the noises x
k kw and v  are uncorrelated white noise sequences with the following covariance: 

x xT x
k l k klw w W δ⎡ ⎤ =⎣ ⎦E ;  T

k l k klv v V δ⎡ ⎤ =⎣ ⎦E ; 0x T
k lw v⎡ ⎤ =⎣ ⎦E  

where, [ ]iE denotes the expectation operator and δ  is the Kronecker delta function. 

A2 : the noise kwξ is zero-mean white noise sequence with the following covariance: 

T
k k k klw w Wξ ξ ξδ⎡ ⎤ =⎣ ⎦E ;  0x T T

k l k lw w v wξ ξ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦E E  

A3 : the initial state is a Gaussian random variable and is uncorrelated with the white noise process 
x
kw , kwξ  and kv . 
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A4 : conditions on matrices ranks  

( )rank x
kF p=  ; ( )rank y

kF p=  ; ( ) ( )rank kC m m p= ≥  

First, we will establish the state space model of the augmented system following from system (1) 

and filter (2). Define a new state vector as k
k

k

x
x

ξ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� , and then the state dynamic equation of the 

failed model (1) can be augmented with the failure model of equation (2) to give: 

1 1,

2,

( )

( )

 

k k k k k k k k k k

k k k k k k k k

k k k

x A H F E x G u B w

y C H F E x D v

f C x

+ = + + +

= + +

=

� �� � �� � �
� � � ��

��
       (3) 

where, k
k

k

x
x

ξ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� ;
0

x
k k k

k
k

A F C
A

A

ξ

ξ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
 ; 0

0

x
k

k
k

B
B

Bξ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
 ;  

0
k

k
G

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�
 

y
k k k kC C F Cξ⎡ ⎤= ⎣ ⎦
�

 ; 0k kC Cξ⎡ ⎤= ⎣ ⎦
�   ; k kD D=

�
; 

1,
1,

0
0 0

k
k

H
H ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�
 ; 2, 2, 0k kH H⎡ ⎤= ⎣ ⎦
�

 ;  0
0 0
k

k
E

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�
 ;

x
k

k
k

w
w

wξ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�  

The objective of this paper is to design a robust Kalman filter to joint fault and state 
estimations of a discrete time-varying system in the presence of norm-bounded parameter 
uncertainty in both the state and output matrices, in the finite case. We can consider that the filter 
has the following form: 

1
ˆ ˆ ˆ ˆˆ;

Tf f
k k k k k k k k k kx A x G u K y x x ξ+

⎡ ⎤= + + = ⎣ ⎦
�� � �    (4)                                        

where f
kA and f

kK are time-varying matrices to be determinate in order that the variance of the 
estimation error is guaranteed to be smaller than a certain bound for all uncertainty matrices. The 
estimation error dynamics satisfies: 

T
k k k k kx x x x S⎡ ⎤− − ≤⎣ ⎦
� � � �ˆ ˆE ( )( )  

With kS being an optimized upper bound of filtering error covariance over the class of robust 
quadratic filters. 
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3. Filter design 

In this section, a solution to the robust state and fault estimation problem over finite horizon  
[0, N] will be given, by the application of the robust Kalman filters presented in ([1], [8] and [9]). 
This problem of simultaneously state and fault estimation is solved by the use of the augmented 
state robust Kalman filter (ASRKF) approach. A sufficient condition for the existence of such a 
filter is proposed in term of Riccati equations. 

First we assume that the initial condition ( )0x�  is a zero mean Gaussian random variable with 

an unknown covariance matrix that satisfies the following assumption: 

A5 [11-12]: 

• 0 0 0
Tx x S⎡ ⎤ ≤⎣ ⎦

� �E ,   where  0 0 0TS S= >  is a known matrix. 

• 
1

2
1,k k k krank A H B W n p⎡ ⎤ = +⎢ ⎥⎣ ⎦

� � � �
 

where kW
�

=
0

0

x
kT

k k
k

W
w w

W ξ

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

� �E  

Define the state estimation error kx� by 

ˆ
k k kx x x= −� ��  

A state-space model describing the augmented system formed by combining (3) and (4) can be 
expressed as follow: 

1 1, 1, 1, 1, 1,( )k c k c k k c k k c k k c k k

k k

A H F E G u M
x L
ζ ζ η

ζ
+ = + + +⎧⎪

⎨
=⎪⎩ �

     (5) 

where 

ˆ
k

k
k

x

x
ζ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
� ; 

0

0
0 0

0

x
f

ζ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

; k

0

k

k

w
vη
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�

; 1,

f f f
k k k k k k k

c k f f f
k k k k k

A K C A A K C
A

K C A K C
⎡ ⎤− − −

= ⎢ ⎥
+⎣ ⎦

� � � �
� � ; [ ]0L I= ; 

1, 0

f
k k

c k f
k

B K
M

K
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

�
;   1,c k k kE E E⎡ ⎤= ⎣ ⎦

� �  ;  1, 2,
1,

2,

f
k k k

c k f
k k

H K H
H

K H
⎡ ⎤−

= ⎢ ⎥
⎢ ⎥⎣ ⎦

� �
�   ; 1,

0
c k

k
G

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
�  
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Definition [11], [12]: The filter (4) is said to be quadratic filter if and only if for some 0kα > , 

there exists a bounded 0T
k kΣ = Σ ≥ that satisfies the following Riccati difference equation (RDE): 

1 1 1
1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,( )T T T T T T

k c k k c k k c k c k c k c k c k k c k k c k k c k c k k c kA A H H M WM A E I E E E Aα α− − −
+Σ = Σ + + + Σ − Σ Σ    (6) 

where 1, 1, 0 T
k c k k c kI E Eα− Σ > , { }0 0 ,0diag SΣ =  and { }, , ,0xW diag W W Vξ= .  

The following result can be obtained by the application of the lemma1 presented in reference [6]. 

Lemma [12]: Consider the uncertain system (3) satisfying assumption A1, and let (4) be a given 

quadratic filter associated with a guaranteed cost matrix 0T
k kΣ = Σ ≥ . Then the covariance matrix 

of kζ of the error system (5) satisfies the bound  0T
k k k k Nζ ζ ⎡ ⎤⎡ ⎤ ≤ Σ ∀ ∈⎣ ⎦ ⎣ ⎦E , , for all admissible 

uncertainties. Furthermore, T T
k k kx x L L⎡ ⎤ ≤ Σ⎣ ⎦� �E , [ ]0,k N∀ ∈  and kx�  is the estimation error. 

Remark 1: The necessary condition on the filter for optimality of the upper bound on the error 
variance, ( )T

ktr L LΣ , [ ]0,k N∀ ∈  is that the optimal solution kΣ of (6) should be of the following 

partitioned form: 

11, 12,

21, 22,

k k
k

k k

Σ Σ⎡ ⎤
Σ = ⎢ ⎥Σ Σ⎣ ⎦

  

Next we can introduce the following form:    

11,

11,

0
 

0
k

k
k kP

Σ⎡ ⎤
Σ = ⎢ ⎥

−Σ⎢ ⎥⎣ ⎦
 

where T
k k kP x x⎡ ⎤= ⎣ ⎦

� �E and [ ]12, 21, 0 ,  0,  k k k NΣ = Σ = ∀ ∈ which is argued similar to the 

continuous -time case as in [13]. 

 In the case, where the system is without uncertainty this simply implies the orthogonality of 
estimation error kx�  to the estimate ˆ

kx� of kx� , which is necessary for ˆ
kx� to be optimal. Furthermore, 

12, 11,k k kPΣ = −Σ  follows from the fact: 

11, 12, 21, 22,k k k k kP = Σ +Σ +Σ +Σ  

As derived in ([6], [11] and [12]), the filter parameters (the state and the gain matrices) are 
optimized to give a minimal upper bound on the state error covariance estimation for all 
admissible uncertainties. By the multiplying both sides of (6) by L and TL  , respectively, it follows 
that: 
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11, 1 1

11, 11,

1
11,

1
11, 1, 2, 1, 2,

( ) ( ) ( )( )

( ) [( ) ]

[( ) ] ( )(

T
k k

f f T f f
k k k k k k k k k k k k k

f f T f f f T
k k k k k k k k k k k k k k

f f f T f f
k k k k k k k k k k k k k k

L L

A K C A K C A A K C P

A A K C A A K C P A E M E

A A K C P A H K H H K Hα

+ +

−

−

Σ = Σ

= − Σ − + − − −Σ ×

− − + − − + Σ ×

− − + Σ + − −

� � � � � �

� � � � � ��
� � � � � �

)

( )

T

T f f T
k k k kB WB K V K+ +
� � �

   (7)
 

where, 1 0T
k k k k kM I E P Eα−= − >

� ��  

Considering 0kΣ ≥  , we know that 11, 0k kP −Σ ≥ . Using this fact and noting 0kM ≥� , it is 

obvious that ( )1
11,

T
k k k k kI E M E P−+ −Σ
� �� is invertible and so is ( ) 1

11,
T

k k k k kI P E M E−+ −Σ
� �� . Note 

that ( ) ( ) ( ) ( )1 11 1
11, 11, 11, 11,

T T
k k k k k k k k k k k k k kI P E M E P P I E M E P

− −− −⎡ ⎤ ⎡ ⎤+ −Σ −Σ = −Σ + −Σ⎣ ⎦ ⎣ ⎦
� � � �� � . Then it 

follow from (7) that 

( ) ( )( ){ }
( ) ( )

( ) ( ) ( ){ }

1 1
11, 1 11,

11
11, 11,

1 1
11,

f f T f T
k k k k k k k k k k k k k k k

T
k k k k k k k

TT T T f
k k k k k f k k k k k k k

K A I P E M E A K C I P E M E

I P E M E P

I E M E P A I P E M E A K C

− −
+

−−

− −

⎡ ⎤Σ = Δ + + −Σ − − +⎣ ⎦

⎡ ⎤× + −Σ −Σ⎣ ⎦

⎡ ⎤× + −Σ − + −⎣ ⎦

� �� � � �� �

� ��

� �� � � �� �
                    (8) 

where 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )
( )( ) ( )

11, 1, 2, 1, 2,

1
11,

1
11,

1T Tf f f f fT f fT
k k k k k k k k k k k k kk k k k k k k

k
Tf f f fT T T

k k k k k k k k k k k k k k kk k k k

f T T
k k k k k k k k k kk

K A K C A K C B W B K V K H K H H K H

A K C P A K C A K C P E M E P A K C

A K C I P E M E I P E M

α

−

− −

Δ = − Σ − + + + − −

+ − −Σ − + − −

− − + × + −Σ

� � � � � � � � � � �

� � � � � � � �� ��

� � � � �� � ( )

( )( )

11
11,

1

k k k

TfT
k k k k k kk

E P

I P E M E A K C

−

−

⎡ ⎤ − Σ⎣ ⎦

× + −

�

� �� ��

 

Note that 11, 1 1k kS+ +Σ =  

Since ( ) ( )22
1 / 0f

k ktr S A+∂ ∂ >
 

and ( ) ( )22
1 / 0f

k ktr S K+∂ ∂ > , ( )1ktr S +  
is minimal if 

( )1 / 0f
k ktr S A+∂ ∂ = and ( )1 / 0f

k ktr S K+∂ ∂ = . Moreover, from ( )1 / 0f
k ktr S A+∂ ∂ = ,  we have 

1 1[ ( ) ] [ ( ) ]f T T f T T
k k k k k k k k k k k k k k k k k k k k k kA A A S E I E S E E K C C S E I E S E Eα α α α− −= + − − + −

� � � �� � � � � � � �
                 (9) 

Next substituting (9) into (8) we have 1
f

k kS K+ = Δ . After some algebraic manipulation,  
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( )

( ) ( )

1 1, 1, 1, 2,

1
1, 2,

1, 2,

1 1

1

1

fT T T T T T
k k k k k k k k k k k k k k k k k kk

k k

T
fT T T T

k k k k k k k k k k k k kk
k

T T
k k k k k

k

S A Q A H H B W B K R C Q C A Q C H H

R C Q C K R C Q C A Q C H H

A Q C H H

ε

ε ε

α α

α

α

+

−

⎡ ⎤⎛ ⎞
= + + + + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
× + + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
− +⎜
⎝

� � � � � �� � � � � � � �

� � � � � �� � � �

� � � � ( ) 1
1, 2,

1
T

T T T
k k k k k k k k k

k
R C Q C A Q C H Hε α

− ⎛ ⎞
× + +⎟ ⎜ ⎟
⎠ ⎝ ⎠

� � � �� � �

                                        

 
                                                                                                                                                        (10) 

where, 1 1 T
k k k k kQ S E Eα− −= −

� �
 and 2, 2,

1 T
k k k

k

R V H Hε α
= +

� � � . 

And from ( )1 / 0f
k ktr S K+∂ ∂ =  , we have: 

1
1, 2,

1( )( )f T T T
k k k k k k ek k k k

k

K A Q C H H R C Q C
α

−= + +
� � � �� � �

                              

(11) 
Now, substituting (11) into (10), we have 

1
1 1, 2,

1, 2, 1, 1,

1( )( )

1 1                        ( )

T T T T
k k k k k k k k k ek k k k

k

T T T T T
k k k k k k k k k

k k

S A Q A A Q C H H R C Q C

A Q C H H H H B WB

α

α α

−
+ = − + +

× + + +

� � � � � �� � �

� � � � � � � � �       (12) 

Furthermore, the covariance matrix of the augmented state satisfies 
 

( ) ( )
1

1, 1,

T
k k k

T T
k k k k k k k k k k k k

P x x

A H F E P A H F E B W B

ε+ ⎡ ⎤= ⎣ ⎦

= + + +

� �

� �� � � � � � �
 

 
By the use of the lemma1 presented in reference [6], an upper bound of 1kP +  is given by 

1
1 1, 1,

1( )T T T T T T
k k k k k k k k k k k k k k k k k

k k

IP A P A A P E E P E E P A H H B WB
α α

−
+ ≤ + − + +

� � � �� � � � � � � � �
                             (13)                                     

A robust quadratic filter for the uncertain system (3) that minimizes the bound on the error 
variance can exist if and only if, for some 0kα > , exist a solution 0T

k kP P= > over [ ]0, N to the 

RDE (13) and such that ( ) 1
0T

k k k kP E Eα
−
− >

� �
. Under these conditions are verified, the robust 

quadratic filter with an optimized upper bound for error covariance is given by: 

Remark 2: It is clear that when parameter uncertainty in system (3) disappears, the robust filter 
reduces to the standard finite horizon Kalman filter. 
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Remark 3: The scaling parameter kα could be exploited to optimize the filtering performance. 

Furthermore, if kα is the supremum of kα such that T
k k k kE P E Iα <
� �

 the RDEs (12) and (13) admit a 

positive definite solution for any ( )0,k kα α∈  and ( )ktrace P , ( )ktrace S  are both convex function 

of kα ([11], [12]). 

Step 1 : Initialisation for 0k =   

0 0

0 0

ˆ;x x

S P=

� �
 

Step 2 : Implementation of ASRKF 

For 1:k N=  

 Step 2.1: Calculate of optimal values *
kα and kS∗   

[ ]
( )( )

0,
arg min

  (12)  (13)
k k

k k ktrace S

Such that equations and
α α

α α∗

∈
=

 

          ( )*
k k kS S α∗=  

( )*
k k kP P α∗=  

 Step 2.2: Estimation of augmented state  

( ) ( )1
ˆ ˆ ˆf

k k ek k k k k k k ek kx A A x G u K y C C x+
⎡ ⎤= + Δ + + − + Δ⎣ ⎦

� � � � �� � �  

( ) 1* * * *T T
ek k k k k k k k k kA A S E I E S E Eα α

−
Δ = −
� � � � � �

 

( ) 1* * * *T T
ek k k k k k k k k kC C S E I E S E Eα α

−
Δ = −
� � � � � �

 

( )( ) 11
1, 2,

f T T T
k k k k k k k ek k k kK A Q C H H R C Q Cα

−−= − +
� � � �� � �

 

Table 1: Recursive algorithm of the augmented state robust Kalman filter (ASRKF)                                      

4. Illustrative example  

This section is focused to the application of the proposed filter ASRKF. The system under 
consideration is given by 



10 
 

 

( )
( )

1
1

0.5 1.5 1 1 1
0.3 0.4 0.5 1 0 0.5

1 0 1 1
0 1 1 0

x
k k k k k

k k k k

a k
x x u f w

k

y x f v

δ+

⎧ ⎡ − ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + +⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎪ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎨
⎡ ⎤ ⎡ ⎤⎪ = + +⎢ ⎥ ⎢ ⎥⎪ ⎣ ⎦ ⎣ ⎦⎩  

1

0.2 0.7 3
0.1 0.3 1.5

1 0.1
0 1

k k k

k k

w

f

ξξ ξ

ξ

+

⎧ ⎡ ⎤ ⎡ ⎤
= +⎪ ⎢ ⎥ ⎢ ⎥−⎪ ⎣ ⎦ ⎣ ⎦

⎨
⎡ ⎤⎪ = ⎢ ⎥⎪ ⎣ ⎦⎩

 
where, ( ) ( )1 0.4 0.1*sin 0.6*a k k= +  

The varying noise

( )
( )
( )

0.6,    if  30

0.8,    if  30 70

0.6,    if  70

k

N W k

w N W k

N W k

ξ

ξ ξ

ξ

⎧ − ≤
⎪⎪ < ≤⎨
⎪

− >⎪⎩

∼  

The above system is of the form of system (1)-(2) with: 

1,

0
1kH ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

; 2,

0
0kH ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

; [ ]0 0.3kE =

 

  

0.1x
kW = ; 0.1 0

0 0.1kV ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

; 0.1kW ξ =  

where ( )kδ  is the uncertain parameter satisfying ( ) ( )0.3*sin 0.5*k kδ =  

The initial conditions are given by 

0

1
1

x ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,       0

0
ˆ

0
x ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,     0

1
1

f ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,       0

0ˆ
0

f ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The optimal value of the state covariance matrix kP∗  and the optimized upper bound of error 

covariance matrix kS∗ are shown in Figure2 respectively. 
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Fig.2. The optimal value of ( ) and ( )k ktrace P trace S∗ ∗  

In figure 2, we observe that the optimal value of the derived upper bound of the covariance matrix 

kS is below the state covariance matrix kP∗ for any admissible uncertainty.  

 Figures 3 and 4, present the state, the fault and their estimations respectively.  
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Fig.3. State estimation 
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Fig.4. Fault estimation 

The performances of the resultant filter are given in Figures 3 and 4 which verifies that the robust 
filter is optimal in spite of the presence of time-varying parameter uncertainties. 

5. Conclusion 

In this paper, the problem of joint robust fault and state estimation for linear discrete time-varying 
uncertain systems has been established. A recursive solution using an augmented state robust 
Kalman filter (ARSKF) is proposed. The filter has been tested by an illustrative example that has 
given a robust estimation of the state and the fault in spit the presence of norm-bounded parameter 
uncertainties in both the state and the measurement matrices. 

References 

[1]  Jammouli, H.: Génération de résidus directionnels pour le diagnostic des systèmes linéaires 
stochastiques et la commande tolérante aux defaults. Thèse de l’université Henri Poincaré, 
Nancy I, 2003. 

[2] Blanke, M., Kinnaert, M., Lunze, J., & Staroswiechi, M.: Diagnosis and Fault-Tolerant 
Control.Srpinger-Verlag, Berlin Heidelberg, 2006. 

[3] Hung, Y. S., Yang, F.: Robust H∞ filtering with error variance constraints for discrete time-

varying Systems with uncertainty. Automatica, 39 (2003) 1185-1194. 



13 
 

[4] Xie, L., Lu, L ., Zhang, D., & Zhang, H.: Improved Robust 2H and H∞  filtering for 

uncertain Discrete-time Systems. Automatica, 40 (2004). 873-880. 

[5] Duan, Z., Zhang, J., Zhang, C., & Mosca, E.: Robust 2H and H∞ and filtering for uncertain 

linear Systems. Automatica, 42 (2006) 1919-1926. 

[6] Dong, Z., You, Z.: Finite Horizon Robust Kalman Filtering for Uncertain Discrete Time- 

Varying Systems with Uncertain Covariance White Noises. IEEE Signal Processing 

Letters, 13 (2006) 493-496. 

[7]  El Ghaoui, L., Calafiore, G.: Robust Filtering for Discrete-Time Systems with Bounded 

Noise and Parametric Uncertainty. IEEE Transactions on Automatic control, 46 (2001) 

1084-1089. 

[8]  Fu, M., de Souza, C .E., & Luo, Z-Q.: Finite horizon Robust Kalman Filter Design. IEEE 

Transactions on Signal Processing, 49 (2001) 2103-2112. 

[9] Xie, L., Soh, Y. C., & de Souza, C. E.: Robust Kalman Filetring for uncertain Discrete-

Time Systems. IEEE Transactions on Automatic Control, 39 (1994) 1310-1314. 

[10] Yang, F., Wang, Z., & hung, Y. S.: Robust Kalman Filtering for Discrete Time-varying 

Uncertain Systems with Multiplicative Noises. IEEE Transactions on Automatic Control, 

47 (2002) 1179-1183. 

[11]   Zhu, X., Soh, Y. C., & Xie, L.: Robust Kalman Filter Design. Proceeding of the 39th  IEEE  

conference  on decision  and control Sydney, Australia , (2000)  3813-3818. 

[12]   Zhu, X., Soh, Y. C., & Xie, L.: Design and analysis of Discrete-time Robust Kalman filters. 

Automatica, 38 (2002) 1069-1077. 

[13] Shaked,U., de Souza,C.E. :Robust minimum variance filtering. IEEETransactions on Signal 

Processing, 43 (1995) 2474-2483.  

 

 


