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Abstract: This paper addresses a new scheme for fault diagnosis in nonlinear systems described
by a Takagi-Sugeno multiple models. Two cases are considered, the first one concern the T-S
models with known premise variables (the input or the output of the system). The second
case suppose that the weighting functions depend on unmeasurable premise variables (state
of the system). The approach is based on the design of observer-based residual generator by
minimization of the disturbances and maximizing the effects of the faults. The Lyapunov method
is used to stability analysis and design of the residual generator. The convergence conditions
are given in LMI formulation.

1. INTRODUCTION

Linear models are largely studied and an important liter-
ature is devoted to this class of systems. Although they
provide solutions for many problems, nonlinear behavior
are often present in practical systems then reduces the do-
main of applicability and performances of tools developed
for linear models. Indeed, linear models only represent the
behavior of the system around a local operating point. It is
known that nonlinear systems are complex and difficult to
study, so all the works on the nonlinear systems concerned
only specific classes but there is no a general framework
like for linear systems. One of the more interesting classes
of nonlinear systems is the Takagi-Sugeno (TS) multiple
model form which is introduced in Takagi and Sugeno
[1985]. It is proved in Tanaka and Wang [2001] that often
nonlinear behaviors can be represented exactly or approx-
imated by TS multiple models. The most advantage of
these models is the ability to extend the tools designed
in the linear system framework. Indeed, many topics of
control are extended to TS systems, such as stability and
stabilization in Tanaka et al. [1998], Guerra et al. [2006],
Chadli et al. [2002], observers and state estimation in
Akhenak et al. [2007], Bergsten et al. [2002].

Due to an increasing demand for higher performances,
as well as for higher safety and reliability, the model-
based approaches to fault diagnosis for dynamic systems
have received more attention these last years Patton et al.
[1989], Chen and Zhang [1991], Chen et al. [1996], Ding
and Frank [1989], Marx et al. [2003]. Concerning the TS
fuzzy systems few efforts have been made in fault detection
and isolation. Nevertheless we can cite the method based
on observers in Akhenak et al. [2007].

In this paper an observer-based approach is developed for
robust residual generator and diagnosis which minimizes
the sensitivity to the disturbances and maximizes the
sensitivity to the faults. Two cases are studied. The first

⋆

case concern the T-S systems with measurable premise
variables and the second one deals with the systems with
unmeasurable premise variables. The paper is organized
as follows, section 2 gives some notations and states the
problem. Robust residual generation is tackled in section 3.
An LMI-based design of the residual generator is proposed.

2. PROBLEM STATEMENT

Consider the following continuous-time TS nonlinear sys-
tem subject to faults and disturbances given by


















ẋ(t) =
r
∑

i=1

µi(ξ(t)) (Aix(t) + Biu(t) + Eid(t) + Fif(t))

y(t) =

r
∑

i=1

µi(ξ(t)) (Cix(t) + Diu(t) + Gid(t) + Rif(t))

(1)
where Ai ∈ Rn×n, Bi ∈ R

n×nu , Ci ∈ Rny×n, Di ∈
Rny×nu , Ei ∈ Rn×nd , Fi ∈ Rn×nf and Gi ∈ Rny×nd ,
and Ri ∈ Rny×nf .

The weighing functions µi are nonlinear and depend on
the decision variable ξ(t) which can be measurable like
{u(t), y(t)} or not measurable like the state x(t) of the
system. The weighting functions satisfy the following prop-
erties:











0 ≤ µi(ξ(t)) ≤ 1
r
∑

i=1

µi(ξ(t)) = 1 (2)

Thus the structure of the multiple model is simple and
is considered as a universal approximator since it can
represent any nonlinear behavior according to an adequate
number r of the local models. The multiple model struc-
ture provides a mean to generalize the tools developed for
linear systems to nonlinear systems due to the properties
expressed in (2).



The input signals u(t), f(t) and d(t) belong in L2 set. The

L2-norm of u(t) ∈ L2 is given by ‖u‖
2

=

√

+∞
∫

0

uT udt.

In the field of observer design and diagnosis of nonlinear
systems using multiple model approach, Patton et al.
[1998] proposed an observer-based method to generate
residual generator and using an observer bank in order to
achieve isolation, an application to DC motor is proposed.
In Akhenak et al. [2007], a sliding mode observer for TS
systems is proposed to detect and estimate actuator faults.
In these works, the authors assumed that the weighting
functions depend on measurable premise variables (input
or output) of the system. It is clear that the choice of
measurable premise variables offers a good simplicity to
generalize the methods already developed for linear sys-
tems. But in the case where the premise variables are not
measurable, the problem becomes very hard. However, this
formalism is very important in both the exact representa-
tion of the nonlinear behavior by multiple model (see the
simulation example) and in diagnosis method based on
observer banks to detect and isolate actuator and sensor
faults. Indeed in this case, the use of measurable premise
variables requires to develop two different multiple models,
but using multiple models with unmeasurable premise
variables allows to develop only one model of the system
behavior to detect and isolate actuator and sensor faults
using observer banks. In the literature, a few works are
devoted to the case of unmeasurable decision variables,
nevertheless, we can cite Bergsten et al. [2002], Palm and
Bergsten [2000], where the authors proposed the fuzzy
Thau-Luenberger observer which is an extension of the
classical Luenberger observer. The main contribution of
this paper is to propose a method for fault diagnosis of
nonlinear systems described by TS models with measur-
able and unmeasurable premise variables using the stan-
dard H∞ framework developed for linear systems.

3. RESIDUAL GENERATOR DESIGN

3.1 case 1: measurable premise variables

Let consider the TS nonlinear system subject to distur-
bances and sensor and actuator faults modeled in (1)
An observer-based residual generator is proposed in the
following form



























˙̂x(t) =

r
∑

i=1

µi(ξ)(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) =

r
∑

i=1

µi(ξ)(Cix̂(t) + Diu(t))

r(t) = M(y(t) − ŷ(t))

(3)

where x̂(t) ∈ Rn is the estimated state vector and r(t) ∈
Rnf is the residual signal. The matrices Li ∈ Rn×ny

and M ∈ Rnf×ny are the residual generator gains. The
objective is to design the gains Li and M in order to
minimize the transfer from the disturbances w(t) and to
maximize the transfer of the faults f(t) to the residual
signal r(t). Let define the state estimation error e(t) =
x(t) − x̂(t). Its dynamic is deduced from (1) and (3) as
follows

{

e(t) = Aξe(t) + Eξd(t) + Fξf(t)
r(t) = Cξe(t) + Gξd(t) + Rξf(t)

(4)

where

Aξ =
r
∑

i=1

r
∑

j=1

µi(ξ)µj(ξ)(Ai − LiCk)

Eξ =

r
∑

i=1

r
∑

j=1

µi(ξ)µj(ξ)(Ei − LiGk)

Fξ =
r
∑

i=1

r
∑

j=1

µi(ξ)µj(ξ)(Fi − LiRk)

Cξ =
r
∑

i=1

µi(ξ)MCi, Gξ =
r
∑

i=1

µi(ξ)MGi

Rξ =

r
∑

i=1

µi(ξ)MRi

For convenience, the system (4) can be written as the
following compact form

r = Grdd + Grff (5)

where Grd represents the transfer from the disturbances
d(t) to r(t) and defined by

Grd :=

(

Aξ Eξ

MCi Gξ

)

(6)

and Grf is the transfer from f(t) to r(t) which is defined
by

Grf =

(

Aξ Fξ

Cξ Rξ

)

(7)

In standard H∞ framework (see figure 1.), the maxi-

System

r(t)
Residual Generator

re(t)

+

−

Wf

y(t)u(t)

f (t)d(t)

Fig. 1. Scheme of robust residual generation

mization of the effect of the faults f(t) on the residual
r(t) can be expressed as a minimization problem. Indeed,
by introducing a weighting parameter Wf , the problem
is reduced to a minimization of the effect of the faults
on the residual error re(t) = r(t) − Wff(t). As explained
in Stoustrup and Niemann [2000] that the FDI problem
depends on the selected structure of the weight parameter
Wf . Indeed, The fault estimation problem is obtained
when Wf = I and the detection problem is considered
when Wf ∈ R1×nf . In addition, Wf can be chosen as a
dynamic parameter. Consider the parameter Wf defined

Wf =

(

Af Bf

Cf Df

)

(8)



Wf ∈ S where S is the set of stable filters which have been
the following property

‖Wf‖− = infw∈R (σ (Wf (jw))) ≥ 1 (9)

(see Mazars et al. [2008] and Mazars et al. [2006] for more
details). The interest in this kind of filters is that there is
no attenuation of the faults but only an amplification on
all frequency ranges which improves the problem of fault
detection. The detection, isolation and estimation of the
faults can be considered by an appropriate choice of the
matrices Af , Bf , Cf and Df . The FDI problem is then
formulated as the following multi-objective optimization
problem

Obtain Li and M which minimize aγf + (1 − a)γd where
a ∈ [0 1] subject to the following constraints

‖Grf − Wf‖∞ < γf (10)

‖Grd‖∞ < γd (11)

Ai − LiCj is stable for i, j = 1, ..., r (12)

The theorem 1 gives an LMI method to solve the optimiza-
tion problem and provides the residual generator gains Li

and M .

Theorem 1. Given a positive parameter a and a weighting
function Wf . The residual generator (3) exists if there exist
matrices P1 = PT

1 > 0, P2 = PT
2 > 0 and gain matrices

Ki and M and positive scalars γ̄f and γ̄d solution of the
following optimization problem

min
Li,M,P1,P2,Ki,γ̄f ,γ̄d

aγ̄f + (1 − a)γ̄d

s.t.






X1

ik 0 P1Fi − KiRk CT
k MT

0 X2

f P2Bf −CT
f

F T
i P1 − RT

k KT
i BT

f P2 −γ̄f I RT
k MT

− DT
f

MCk −Cf MRk − Df −I







< 0

(13)
(

Xik P1Ei − KiGk CT
k MT

ET
i P1 − GT

k KT
i −γ̄dI GT

k MT

MCk MGk −I

)

< 0 (14)

where
X1

ik = AT
i P1 + P1Ai − KiCk − CT

k KT
i (15)

X2

f = AT
f P2 + P2Af (16)

∀i, k = 1, . . . , r

The gains Li are derived from

Li = P−1

1 Ki i = 1, ..., r (17)

and the attenuation levels are given by

γd =
√

γ̄d γf =
√

γ̄f (18)

Proof. In faulty case without disturbances the residual
generator is reduced to r = Grff . In order to maximize the
effects of faults on the residual we consider the weighting
stable filter Wf (s) defined in (9). Then the maximization
problem can be formulated as a minimization problem by
solving (11). Grf − Wf can be written in the following
form

Grf − Wf :=





Aξ 0 Fξ

0 Af Bf

Cξ −Cf Rξ − Df



 (19)

Let define a positive and symmetric bloc diagonal matrix

P =

(

P1 0
0 P2

)

(20)

Using the bounded real lemma Boyd et al. [1994], the
condition (11) is formulated as follows






AT
ξ P1 + P1AT

ξ 0 P1Fξ CT
ξ

0 AT
f P2 + P2AT

f P2Bf −CT
f

F T
ξ P1 BT

f P2 −γ2

f I RT
ξ − DT

f

Cξ −Cf Rξ − Df −I







< 0 (21)

Using the definitions of the matrices Aξ, Fξ, Cξ and Rξ

and the convex property of the weighing function, the
following matrices are obtained






X1

ik 0 P1Fi − P1LiRk CT
k MT

0 X2

f P2Bf −CT
f

F T
i P1 − RT

k KT
i BT

f P2 −γ2

f I RT
k MT

− DT
f

MCk −Cf MRk − Df −I







< 0

(22)
where

X1

ik = AT
i P1 + P1Ai − P1LiCk − CT

k LT
i P1 (23)

X2

f = AT
f P2 + P2AT

f (24)

i, k = 1, . . . , r

In order to obtain the linear matrix inequality (14), we
use the change of variables Ki = PLi and γ̄f = γ2

f and

γ̄d = γ2
d .

In fault-free case with disturbances, a similar way, by using
the bounded real lemma, allows to obtain the LMI (15).
The LMI (15) ensure the stability of the observer (i.e.
Ai − LiCk are stable ∀i, k = 1, ..., r) and the robustness
against disturbances.

Now, in the faulty case with disturbances, the relative
importance of minimizing the effects of the disturbances
and maximizing the effects of the faults on the residual
signal can be expressed as a minimization of the linear
combination aγf + (1 − a)γd where a ∈ [0 1].

3.2 case 2: unmeasurable premise variables

In this section, it is assumed that the weighting functions
of the TS nonlinear system (1) depend on the unmeasur-
able state x(t) of the system. The weighting function of
the residual generator then depend on the estimated state
x̂(t) as follows



























˙̂x(t) =

r
∑

i=1

µi(ξ̂)(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) =

r
∑

i=1

µi(ξ̂)(Cix̂(t) + Diu(t))

r(t) = M(y(t) − ŷ(t))

(25)

By adding and subtracting the term
r
∑

j=1

µj(ξ̂(t)) (Ajx(t) + Bju(t) + Ejd(t) + Fjf(t))

in state equation of the system (1) and the term
r
∑

j=1

µj(ξ(t)) (Cjx(t) + Dju(t) + Gjd(t) + Rjf(t))



in the output equation of (1) and by some manipulations
using convex property of the weighting function the fol-
lowing equivalent system is obtained






















ẋ(t) =

r
∑

i=1

r
∑

j=1

µi(ξ)µj(ξ̂)(Ãijx(t) + B̃iju(t)+Eid(t) + Fif(t))

y(t) =

r
∑

i=1

r
∑

j=1

µi(ξ)µj(ξ̂)(C̃ijx(t) + D̃iju(t) + Gid(t) + Rif(t))

(26)

where

Ãij = Ai + ∆Aij , C̃ij = Ci + ∆Cij

B̃ij = Bi + ∆Bij , D̃ij = Di + ∆Dij

and
∆Xij = Xi − Xj , Xi ∈ {Ai, Bi, Ci,Di}

i, j = 1, ..., r

After calculating the dynamic of the state estimation error,
the following is obtained
{

e(t) = Ã
ξξ̂

e(t) + ∆Ã
ξξ̂

x(t) + B̃
ξξ̂

d̃(t) + F̃
ξξ̂

f(t)

r(t) = C̃
ξξ̂

e(t) + ∆C̃
ξξ̂

x(t) + G̃
ξξ̂

d̃(t) + R̃
ξξ̂

f(t)
(27)

By adopting the following writing
r
∑

i=1

r
∑

j=1

r
∑

k=1

r
∑

l=1

µi(ξ)µj(ξ̂)µk(ξ)µl(ξ̂) ⇔
r
∑

i,j,k,l=1

µiµ̂jµkµ̂l

The matrices of (28) are defined by

Ã
ξξ̂

=
r
∑

i,j,k,l=1

µiµ̂jµkµ̂l(Aj − LjCl)

B̃
ξξ̂

=

r
∑

i,j,k,l=1

µiµ̂jµkµ̂l [ ∆Bij − Lj∆Dkl Ei − LjGk ]

F̃
ξξ̂

=

r
∑

i,j,k,l=1

µiµ̂jµkµ̂l(Fi − LjRk)

C̃
ξξ̂

=

r
∑

i,j,k,l=1

µiµ̂jµkµ̂lMCl,

G̃
ξξ̂

=
r
∑

i,j,k,l=1

µiµ̂jµkµ̂l[M∆Dkl MGk]

R̃
ξξ̂

=
r
∑

i,j,k,l=1

µiµ̂jµkµ̂lMRk

∆Ã
ξξ̂

=

r
∑

i,j,k,l=1

µiµ̂jµkµ̂l(∆Aij − Lj∆Ckl)

∆C̃
ξξ̂

=

r
∑

i,j,k,l=1

µiµ̂jµkµ̂l∆Ckl

d̃(t) =
[

u(t)T d(t)T
]T

Let define the augmented state vector x̃ = [eT xT ]T . The
residual vector r is then given by the equation

r = Grdd̃ + Grff (28)

where

Grd =







Ã
ξξ̂

∆Ã
ξξ̂

B̃
ξξ̂

0 Aξ B̃ξ

C̃
ξξ̂

Cξ G̃
ξξ̂






(29)

and

Grf =





Ã
ξξ̂

∆Ã
ξξ̂

F̃
ξξ̂

0 Aξ Fξ

C̃
ξξ̂

Cξ R̃
ξξ̂



 (30)

Aξ =

r
∑

i=1

µi(ξ)Ai, Fξ =

r
∑

i=1

µi(ξ)Fi

B̃ξ =
r
∑

i=1

µi(ξ) [ Bi Ei ]

The FDI problem is the same as the problem given in
(11)-(13). In order to determine the gains Li and M of
the residual generator (26), the theorem 2 gives an LMI
solution of the problem (11)-(13) for TS nonlinear systems
with unmeasurable premise variables.

Theorem 2. Given a positive parameter a and a weighting
function Wf . The residual generator (3) exists if there exist
matrices P1 = PT

1 > 0, P2 = PT
2 > 0 and gain matrices

Ki and M and positive scalars γ̄1 and γ̄2 solution of the
following optimization problem

min
Li,M,P1,P2,Ki,γ̄f ,γ̄d

aγ̄f + (1 − a)γ̄d

s.t.








X1

jl Ξijkl 0 P1Fi − KjRk CT
l MT

∗ X2

i 0 P2Fi ∆CT
klM

T

∗ ∗ X3

f P3Bf −CT
f

∗ ∗ ∗ −γ̄f I (MRk − Df )T

∗ ∗ ∗ ∗ −I









< 0 (31)









X1

jl Ξijkl P1∆Bij − Kj∆Dij P1Ei − KjGk CT
l MT

∗ X2

i P2Bi P2Ei ∆CT
klM

T

∗ ∗ −γ̄
d̃
I 0 0

∗ ∗ ∗ −γ̄
d̃
I GT

k MT

∗ ∗ ∗ ∗ −I









< 0

(32)
where

X1

jl = AT
j P1 + P1Aj − KjCl − CT

l KT
j (33)

X2

i = AT
i P2 + P2Ai (34)

X3

f = AT
f P3 + P3Af (35)

Ξijkl = P1∆Aij − Kj∆Ckl (36)

∀i, j, k, l = 1, . . . , r

The gains Li are derived from

Li = P−1

1 Ki i = 1, ..., r (37)

and the attenuation levels are given by

γd =
√

γ̄d γf =
√

γ̄f (38)

Proof. After calculating the augmented system with x̃ =
[eT xT xT

f ]T by including the filter Wf which has xf as

a state vector and calculating re(t) = r(t) − rf (t) where
rf (t) is the output of the filter Wf (see figure 1). The
proof follows exactly the steps which have been given for
the proof of the theorem 1.

Remark 1. Note that the theorem 2 is more general that
the theorem 1. Indeed, if the weighting functions µi of the
system (1) depend on measurable premise variables, the
problem given in the theorem 1 can be deduced from the
theorem 2 by taking i = j and k = l.



4. ROBUST FAULT DIAGNOSIS

Due to the presence of exogenous disturbances, the resid-
ual signals are different from zero even in the fault-free
case. In the framework of fault detection, a threshold based
on the obtained attenuation levels γf and γd is generated.
An alarm is generated by comparison between the residual
signals r(t) and the threshold. A fixed threshold is deter-
mined as follows

Jth = γdρ (39)

where ρ is the bound of d(t) in the measurable premise
variables case and it represent the bound the bound of
d̃(t) in the unmeasurable premise variables. The decision
logic is given by

{

|ri(t)| < Jth ⇒ no fault
|ri(t)| > Jth ⇒ fault

(40)

5. DISCUSSION AND REMARKS

Remark 2. In order to improve the fault detection, resid-
ual generator is constructed for each fault separately. Each
residual generator is designed to minimize the transfer
from fi to rei = ri − Wfifi, i = 1, ..., nf .

Remark 3. In the unmeasurable premise variables case,
the system is seen as an uncertain system. The input
u(t) then appear in the dynamic of state estimation error.
The method proposed in this paper considers the input
u(t) as a perturbation as d(t) and by considering the new

perturbation vector d̃(t) = [u(t)T d(t)T ]T the problem
is solved. It is clear that considering the input u(t) as
a perturbation penalizes the fault detection because the
computed threshold depends on the upper bound of d̃(t).
Using the method proposed in Casavola et al. [2008] for
linear systems with polytopic uncertainties where u(t) is
considered as a perturbation to minimize separately from
d(t). Indeed, instead of minimizing the index (aγ̄f + (1 −
a)γ̄d̃) under the LMI constraints, the index which has
been used in Casavola et al. [2008] described by (aγ̄f +
bγ̄d +cγ̄u) can be used. An adaptive threshold can be then
generated using a time-windowed rms-norm (see Casavola
et al. [2008], Frank and Ding [1997]).

Remark 4. It is often considered that the fault vector f(t)
has two components, the first one noted fa(t) represent
the vector of the faults affecting only the actuator, thus,
they appear in the state equation. The second component
noted fs(t) are the vector of the faults affecting only the
sensors. The output of the system is given by

y(t) =

r
∑

i=1

µi(ξ) (Cix(t) + Diu(t) + Gid(t) + Rif(t))

(41)
In the case where the faults fa(t) do not affect the output
of the system, the matrices Ri are not full rank. As pointed
out in (Stoustrup and Niemann [2000]), in this case, where
Wf = I the attenuation level γf >= 1 or the problems
in theorem 1 and 2 have not solutions. In order to avoid
this problem, a perturbation term is added in the output
equation as follows

y(t) =

r
∑

i=1

µi(ξ)

(

Cix + Diu + Gid +
[

εi R1

i

]

[

fa

fs

])

(42)

where εi are the matrices of distribution of the actuator
faults fa(t) in the output equation and are chosen as small

as possible. In the context of fault isolation, this approach
may generate a false alarms. To improve the isolation
results, we propose to add and subtract the perturbation
term and make the added term to ensure the full rank of
Ri and consider the subtract term as a perturbation to
minimize

y(t) =

r
∑

i=1

µi(ξ)

(

Cix + Diu + Ḡid̄ + R̄i

[

fa

fs

])

(43)

where

Ḡi = [ Gi bεi ] , R̄i =
[

εi R1
i

]

, d̄ =

[

d

−fa

b

]

where b is a positive real parameter. Using this second
approach, the threshold Jth is calculated by using the
bound of the new perturbation vector d̄(t), thus the fault
isolation is improved.

6. NUMERICAL EXAMPLE

The proposed algorithm of robust diagnosis is illustrated
by an academic example. Let consider the nonlinear sys-
tem (1) defined by

A1 =

[

−2 1 1
1 −3 0
2 1 −8

]

, A2 =

[

−3 2 −2
5 −3 0
1 2 −4

]

,

B1 =

[

1
5

0.5

]

, B2 =

[

3
1
−7

]

, E1 =

[

0 7
0 5
0 2

]

, F1 =

[

0 1
0 0
0 0

]

,

F2 =

[

0 0
0 0
0 1

]

, E2 =

[

0 6
0 3
0 1

]

,

and

C =

[

1 1 1
1 0 1

]

, G =

[

5 0
1 0

]

, R =

[

1 0
0 0

]

The unknown inputs vector d(t) is made up of d1(t) which
affects only the outputs of the system and d2(t) affecting
only the dynamic of the system (see the matrices E1, E2

and G). The first component of the vector f(t) is a sensor
fault and the second component is an actuator fault. Wf

is chosen to be a diagonal of first order low-pass filters.
The minimization of γ results in γ = 0.1392, the obtained
residuals are displays on figure 3.

A second simulation is performed in order to estimate the
faults. Wf is then chosen an identity matrix. The original
and estimated faults are depicted in figure 4.

7. CONCLUSION

Considering nonlinear systems represented by TS systems,
two methods for observer-based residual generator (RG)
design are proposed. One is devoted to the systems where
the premise variables depend on the measured variables
such as the input or the output of the system which
are available, the other one concerns the systems which
the premise variables depend on the unmeasured state
variables. Sufficient conditions for the existence of RG
were established in the LMI formalism in order to ease
RG design.
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