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Abstract: This paper addresses the design of an unknown input fuzzy observer for Takagi-
Sugeno (T-S) fuzzy model subject to unknown inputs. The main contribution of the paper is
the development of a robust fuzzy observer in presence of disturbances. Based on Lyapunov
function, it is shown how to determine observers gains in linear matrix inequalities (LMI). The
proposed T-S observer is used for detection and isolation of faults which can affect a T-S model.
The proposed methodology is illustrated by estimating the yaw rate and the fault of automatic
steering vehicle.

1. INTRODUCTION

A system for automatic fault detection and isolation
(FDI) in a technical process can bring several benefits to
the operator of the plant. Indeed, it provides him with
information on the state of health of the supervised system
at each moment. This allows the operator to follow the
evolution of possible system degradations, and to predict
when maintenance will be needed (see for example Patton
et al. [1998], Kinnaert [1999]). A typical system for FDI
is made of three parts: a residual generator, a residual
evaluation system, a decision-making part.

Many standard observer-based techniques exist in the lit-
erature providing different solutions to both the theoretical
and practical aspects of FDI problem for linear and non-
linear system (Frank [1996], Frank et al. [2000]). Many of
these procedures are based on the design of an unknown
input observer robust with respect to the disturbances
(Staroswiecki and Varga [2001], Kinnaert [2003], Yan and
Edwards [2007]). If the disturbances and modelling errors
are not properly taken into account in the estimation
process, it is then likely that any attempt in monitoring the
system’s health based on the observer leads to numerous
false alarms.

Over the past decades, many researchers have paid atten-
tion to the problem of state estimation of dynamic linear
systems subjected to both known and unknown inputs
(Darouach et al. [1994], Wang et al. [1995], Sename [1997]).
Many approaches have developed full and/or reduced or-
der unknown input observers to estimate the state of linear
time-invariant dynamical system driven by both known
and unknown inputs (Xiong and Saif [2003], Edwards
[2004]).

However, the real physical systems are often nonlinear. As
it is delicate to synthesize an observer for an unspecified
nonlinear system, it is preferable to represent this system
with the Takagi-Sugeno (T-S) fuzzy model (Takagi and
Sugeno [1985]). The idea of the T-S model approach is to

apprehend the global behaviour of a system by a set of
local models (linear or affine), each of them characterizing
the behaviour of the system in a particular zone of oper-
ation. The local models are then aggregated by means of
an interpolation mechanism. This approach includes the
multiple model approach (Murray-Smith [1997], Chadli
et al. [2003]) and Polytopic Linear Differential Inclusions
(Boyd et al. [1994]) .

In this paper, for state and unknown input estimation,
the suggested technique consists in associating to each
local model a local unknown input high gain observer. The
considered observer is then a convex interpolation of these
local observers. This interpolation is obtained throughout
the same activation functions as the T-S fuzzy model. Our
contribution here lies in the design of the unknown input
fuzzy observer by eliminating the unknown inputs from
the dynamics of the state estimation error. The synthesis
conditions of fuzzy observer are expressed in LMI terms.
The designed observer is then applied for sensors and
actuators FDI.

The paper is organized as follows. In Section 2, the
general structure of the considered T-S fuzzy model is
presented. In Section 3, the proposed structure of unknown
input fuzzy observer is described and the main result
is presented. The derived conditions ensuring the global
asymptotic convergence of the estimation error are given
as a set of LMI terms. The proposed T-S observer is used
for detection and isolation of faults which can affect a
nonlinear models in T-S representation. The validity of
the proposed methodology is illustrated by estimating the
yaw rate and faults of automatic steering vehicle.

Notation: Throughout the paper, the following useful
notation is used: XT denotes the transpose of the matrix
X , X > 0 means that X is a symmetric positive definite
matrix, IN = {1, 2, ..., N} and ‖.‖ represents the Euclidean
norm for vectors and the spectral norm for matrices.



2. TAKAGI-SUGENO FUZZY MODEL
REPRESENTATION

Many physical systems are very complex in practice so
that rigorous mathematical model can be very difficult to
obtain, if not impossible. However, many of these systems
can be expressed in some form of mathematical model
locally or as an aggregation of a set of mathematical
models. Here, using the T-S fuzzy dynamic model (Takagi
and Sugeno [1985]), we consider a complex nonlinear
system with unknown inputs. Then, the following T-S
fuzzy model is adopted :











ẋ =

N
∑

i=1

µi (ξ)
(

Aix + Biu + Riū + Di

)

y = Cx

(1)

with
N

∑

i=1

µi(ξ) = 1, 0 ≤ µi(ξ) ≤ 1 ∀i ∈ IN

where x ∈ Rn is the state vector, u ∈ Rm the input
vector, ū ∈ Rq, q < n, contains the unknown inputs
and y ∈ Rp the measured outputs. Matrices Ai ∈ Rn×n

and Bi ∈ Rn×m denote respectively the state matrix, the
input matrix associated with the ith local model. Matrices
Ri ∈ Rn×q are the distribution matrices of unknown
inputs. Di ∈ Rn is introduced to take into account the
operating point of the system. At last, ξ is the so-called
decision vector which may depend on some subset of the
known inputs and/or measured variables to define the
operating regimes.

Matrices Ai, Bi, Ri and C can be obtained by using the
direct linearization of an a priori nonlinear model around
operating points, or alternatively by using an identification
procedure (Gasso et al. [2001], Johansen and Babuska
[2003], Angelov and Filev [2004], Murray-Smith [1997]).
In the following it is assumed that the vector ξ depends
on measurable variables.

3. STRUCTURE OF THE UNKNOWN INPUT FUZZY
OBSERVER

In this paper, we consider the state and unknown input
estimation of a T-S fuzzy model perturbed by unknown
inputs. The proposed unknown input fuzzy observer is
based on a nonlinear combination of local unknown input
observer. The proposed structure of the T-S fuzzy observer
has the following form:

˙̂x =

N
∑

i=1

µi (ξ)

(

Aix̂ + Biu + Di + Gi(y − Cx̂) + Ri ˆ̄ui

)

(2a)

ˆ̄ui = γWi

(

y − Cx̂
)

(2b)

ˆ̄u =

M
∑

i=1

µi (ξ) ˆ̄ui (2c)

The aim of the design is to determine gain matrices Gi ∈
Rn×p, Wi ∈ Rq×p and the positive scalar γ, that guarantee
the asymptotic convergence of x̂ towards x. Let us note

that ˆ̄ui can be considered as variables which compensate
the errors due to the unknown inputs.

Assumption: In this paper, we consider that the inputs
ū(t) are bounded:

‖ū‖ < ρ (3)

where ρ is a positive scalar.

The set of residuals is defined as follows:

r = y − ŷ (4a)

= Ce (4b)

where e represents the state estimation error:

e = x − x̂ (5)

The dynamic of the state estimation error is given as
follows:

ė =

N
∑

i=1

µi (ξ)
(

(Ai − GiC)e + Riū − Ri ˆ̄ui

)

(6)

Replacing ˆ̄ui by its expression (2b) we get

ė =

N
∑

i=1

µi (ξ)
(

(Ai − GiC)e + Riū − γRiWiCe
)

(7)

The following result proposes a solution to design the gain
parameters Gi ∈ Rn×p, Wi ∈ Rq×p and the positive scalar
γ of the proposed observer (2).

Theorem 1: the state estimation of the unknown input
fuzzy observer (2) can asymptotically estimate with any
desired degree of accuracy ε > 0, the state of the T-S
fuzzy model (1), if there exist a symmetric positive definite
matrices P and Q and the gain matrices Gi and Wi which
satisfies the following constraints ∀ i ∈ IN :

(Ai − GiC)T P + P (Ai − GiC) < −Q (8a)

WiC = RT
i P (8b)

The fuzzy observer (2) is then completely defined by
choosing:

γ ≥
1

2

(

λmin(P−1Q)λmin(P ) ε2
)

−1

ρ2 (9)

and the input estimation is given by

ˆ̄u = γ

M
∑

i=1

µi (ξ)Wi

(

y − Cx̂
)

(10)

where ρ is defined in (3).

Proof: Consider the Lyapunov function

V (e) = eT Pe (11)

Its derivative with respect to time is

V̇ =

N
∑

i=1

µi (ξ)

(

eT
(

(Ai − GiC)T P + P (Ai − GiC)
)

e+

2eT PRiū − 2γeT PRiWiCe

)

≤

N
∑

i=1

µi (ξ)

(

eT
(

(Ai − GiC)T P + P (Ai − GiC)
)

e+

2ρ‖(PRi)
T e‖ − 2γeT PRiR

T
i Pe

)

For any positive scalar β, we have the following inequality:

2ρ‖(PRi)
T e(t)‖ ≤ β−1ρ2‖(PRi)

T e(t)‖2 + β (12)



Then

V̇ ≤

N
∑

i=1

µi (ξ)

(

eT
(

(Ai − GiC)T P + P (Ai − GiC)
)

e+

β − [2γ − β−1ρ2]‖(PRi)
T e‖2

)

Choosing

γ ≥
1

2
β−1ρ2 (13)

V̇ ≤

N
∑

i=1

µi (ξ)

(

eT
(

(Ai − GiC)T P + P (Ai − GiC)
)

e + β

)

(14)

Using the inequality (8a), the derivative of the Lyapunov
function becomes as follows

V̇ (e) ≤ −eT Qe + β (15)

with α = 1
2 λmin(P−1Q) > 0, we can easily deduce

V̇ (e) ≤ −2 αV (e) + β (16)

Tacking account the expression of V (e) (11) and the fact
that α > 0, we get when t → ∞ the following inequality

‖e‖ ≤

√

1

λmin (P )

β

2α
(17)

To guarantee for any desired ǫ > 0 that ‖e‖ < ǫ, it suffices
to choose

γ ≥
1

2

(

λmin(P−1Q)λmin(P ) ε2
)

−1

ρ2 (18)

which end the proof.

Remark 1: The inequalities (8a) are nonlinear in P and
Gi. To linearize these inequalities, the following change of
variables is used

Ki = PGi (19)

We obtain a linear matrix inequalities in P and Ki that
can be easily solved by the means of LMI tools:

AT
i P + PAi − CT KT

i − KiC < −Q (20a)

WiC = RT
i P (20b)

Finally, the matrix gains Gi are computed as follows

Gi = P−1Ki (21)

Remark 2: In case of presence of noise measurement on

the system output, choosing a large gain γ leads to the
amplification of noise and thus a bad estimation state and
unknown inputs.

4. APPLICATION TO AUTOMATIC STEERING OF
VEHICLE

4.1 Representation of the vehicle model by a T-S fuzzy
model

Different models related to automatic steering of vehicle
have been studied in the literature (see for example Zhang
and Xu [2002], El Hajjaji and Bentalba [2003], Moriwaki
[2005], Chadli et al. [2008], Oudghiri et al. [2008]). Here, we
have chosen to consider the coupling model of longitudinal
and lateral motions of a vehicle. This model, already used
in Zhang and Xu [2002], is strongly nonlinear and is given
by the following equations:

u̇ = vr − fg +
(fk1 − k2)

M
u2 + cf

v + ar

Mu
δ +

T

M
(22a)

v̇ = −ur −

(

cf + cr

)

Mu
v +

(

bcr − acf

)

Mu
r +

cfδ + Tδ

M
(22b)

ṙ =

(

bcr − acf

)

Izu
v −

(

b2cr + a2cf

)

Izu
r +

aTδ + acf δ

Iz

(22c)

where, u, v and r are the longitudinal velocity, the lateral
velocity and the yaw rate, respectively, δ is the steering
angle, T is the traction and/or braking force. Table 1 lists
the parameters of the above vehicle model.

Parameters of the vehicle system
M Mass of the full vehicle 1480 kg
Iz Moment of inertia 2350 kg.m2

g Acceleration of gravity force 9.81 m/s2

f Rotating friction coefficient 0.02
a Distance from front axle to CG 1 1.05 m
b Distance from rear axle to CG 1.63 m
cf Cornering stiffness of front tyres 135000 N/rad
cr Cornering stiffness of rear tyres 95000 N/rad
k1 Lift parameter from aerodynamics 0.005 Ns2/m2

k2 Drag parameter from aerodynamics 0.41 Ns2/m2

The nonlinear vehicle dynamics can be written as follows:

ẋ = F (x, w) (23a)

y = Cx (23b)

where C =

[

1 0 0

0 0 1

]

, F is a nonlinear function of the state

vector x = [u v r], w gathers the two inputs δ and T and
y(t) gathers the two inputs y1 = u and y2 = r. As it is
delicate to synthesize an observer for a nonlinear system,
we preferred to represent this system with a T-S fuzzy
model. Then, we propose to linearize the nonlinear model
(23) around some operating points [x(i) w(i)]. Next, we
integrate the set of the linear models in a T-S fuzzy model.
The proposed T-S model is described as follows (Akhenak
et al. [2007]):

ẋ =

N
∑

i=1

µi (y1) (Aix + Biw + Di) (24a)

Ai =
∂F

∂x

∣

∣

∣

∣x=x(i)

w=w(i)

Bi =
∂F

∂w

∣

∣

∣

∣x=x(i)

w=w(i)

(24b)

Di = F (x(i), w(i)) − Aix
(i) − Biw

(i) (24c)

with
N

∑

i=1

µi(u) = 1 and µi(u) ≥ 0 ∀i ∈ IM

Ai =

[

A11i A12i A13i

A21i A22i A23i

A31i A32i A33i

]

A11i =
2 (fk1 − k2)ui

M
−

cf (vi + ari)

Mu2
i

δi

A12i = ri +
cfδi

Mui

A13i = vi +
acfδi

Mui

A21i = −ri +
(cf + cr)

Mu2
i

vi −
(bcr − acf )

Mu2
i

ri



A22i = −
(cf + cr)

Mui

A23i = −ui +
(bcr − acf )

Mui

A31i = −
(bcr − acf )

Izu
2
i

vi +

(

b2cr + a2cf

)

Izu
2
i

ri

A32i =
(bcr − acf )

Izui

A33i = −

(

b2cr + a2cf

)

Izui

Bi =















cf

vi + ari

Mui

1

M
cf + Ti

M

δi

M
aTi + acf

Iz

aδi

Iz















Di = F (xi, δi, Ti) − Aixi − Bi

[

δi

Ti

]

where xi = (ui vi ri)
T , with i = {1, 2, 3}, xi, δi and Ti

are the operating points. Three local models are used to
approximate the nonlinear model (22). Using a quadratic
criterion of the error between the state variables of the
nonlinear model (22) and state variables of the T-S fuzzy
model (24), we obtain the following operating points:

Three local models were chosen for this application. This
number gives a good compromise between the quality of
the obtained model and its complexity. The activation
functions given in figure 2 depend only on the longitu-
dinal velocity u(t). The numerical values of the different
matrices Ai, Bi, Di are:

A1 =







0.052 0.403 0.239

−0.366 −10.82 −13.743

0.728 0.388 −11.890






B1 =







10.99 7 × 10−4

91.216 −10−4

60.319 0







A2 =







−0.085 2.895 1.925

−0.989 −9.282 −16.213

0.507 0.333 −10.198






B2 =









3.359 7 × 10−4

91.216 3 × 10−4

60.319 2 × 10−4









A3 =







−0.031 2.065 0.693

−1.141 −8.468 −17.870

0.441 0.303 −9.303






B3 =









1.548 7 × 10−4

91.216 2 × 10−4

60.319 1 × 10−4









D1 =







−0.832

5.259

−10.46






D2 =







0.087

16.562

−8.496






D3 =







0.392

20.951

−8.092







The membership functions µ1(u), µ2(u) and µ3(u) are
given in figure 2.

The system (22) is simulated using the steering angle δ and
attraction force T depicted in figure 1. Figures 2 and 3show
that the state variables of the nonlinear model (22) and its
approximate by T-S fuzzy model (24) are superimposed.
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Fig. 1. δ: steering angle T : attraction force
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Fig. 2. Membership functions u and its approximate
by (22a)
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In order to check the good accuracy of the T-S fuzzy model
(24), its behaviour and that of the nonlinear model (22)
have been simulated. Figure 1 shows the time evolution of
the two inputs δ, the steering angle and T the traction-
braking force.

Figures 2 and 3 show the superposition of the state vector
of the nonlinear model (22) and their approximation by
the T-S fuzzy model (24). Clearly the T-S fuzzy model is
able to represent the nonlinear behaviour of the considered
system.

The following section exploits the obtained T-S model and
the observer designed above to propose a diagnosis method
for the steering vehicle model (22).

5. FAULT DETECTION AND ISOLATION

The objective of this part is to generate residuals that
reflect the faults acting on the system (24). An ideal
residual signal should remain zero in the fault-free case
and non-zero when fault occurs. Once a fault has been
detected, it must be estimated. The fault estimation will
specify the type of fault, its duration, its amplitude and
eventually its probable evolution. In the literature, there
are several fault detection techniques. They are generally
based on the change detection of the average and the
variance. In this FDI study, we will not deal with the
detection thresholds of residuals. We will confine ourselves
only to the detection and localization of sensor (subsection
A) and actuator faults (subsection B) taking into account
the uncertainties modeling.

5.1 Sensor fault detection and isolation

In order to identify the sensor fault, we consider that the
actuators are faultless (w̄ = 0) while the output vector y
is corrupted by the sensor fault ∆y. Then the system (24)
becomes:











ẋ =

M
∑

i=1

µi (y1)
(

Aix + Biw + Di

)

y = Cx + ∆y + ν

(25)

Firstly we can easily checked that the following neces-
sary conditions are satisfied: ∀i ∈ {1, 2, 3}, j ∈ {1, 2}
rank(Ai, C(j, :)) = 3



Three T-S observers are designed, the first is based on the
longitudinal velocity y1 = u, the second is based on the
yaw rate y2 = r and the last is based on the two outputs
u and r.

longitudinal velocity
observer1

global observer3

yaw rate observer2

[

δ

T

]

û1
r̂1

û3
r̂3

û2
r̂2

u

r

Fig. 4. Block diagram of the banc observer-based FDI

The sensor fault detection and localization is based on the
analysis of the residuals ryik

= yi − ŷi,k, k ∈ {1, 2, 3},
i ∈ {1, 2} generated by three observers (figure 4) which
depend on two inputs δ and T applied to the system
(22). The longitudinal velocity observer1 and the yaw rate
observer2 use respectively only one output u and r. The
global observer3 uses two outputs u and r.

Figures 5 shows the additive signal that represents sensor
failure, the fault has been added to sensor 2 output y2 = r
between 5 and 10s.

0 5 10 15 20
0   
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0.3 

Fig. 5. Sensor failure ∆y2

FDI using global observer3 and yaw rate observer2. The
simulation results of the fault detection and isolation based
on the observer3 and the observer2 are illustrated by the
figures 6 and 7 with the initial conditions (u0 v0 r0) =
(15 0 0) and (x̂1(0) x̂2(0) x̂3(0)) = (16 1 1). The
residuals (u − ûi) and (r − r̂i), i = 1, 2 show that there
are sensor failures without being able to locate them since
the corresponding observers depend on the faulty output
y2 = r.
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Fig. 6. Sensor fault detection and isolation using observer2
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Fig. 7. Sensor fault detection and isolation using observer3

FDI using longitudinal velocity observer1. The simula-
tion results of the fault detection and isolation based on
the observer1 are illustrated by the figure 8. The residuals
(u − û1) and (r − r̂1) generated by the observer1 allow to

detect and locate the fault sensor on the yaw rate output
r. Thus the fault detection and localization is possible by
these three observers.
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Fig. 8. Sensor fault detection and isolation using observer1

5.2 Fault detection using unknown input fuzzy observer

The problem is to detect the occurrence of two fault
signals m1 and m2 such as the wind force, which disturb
the motion of the vehicle. To this end, we suppose the
existence of a fault signal on the system (nonlinear model
(22)). For that, we use the unknown input fuzzy observer
(2) developed previously in this paper. In this case, we
consider the nonlinear model with defect describes as
follows:

ẋ = F (x, δ, T ) + Rm (26)

with m =

[

m1

m2

]

, R =

[

1 0
0 −1
1 0

]

The considered unknown input fuzzy observer that esti-
mates the state and the defect (regarded as an unknown
input) of the nonlinear model (22) is described by:

˙̂x =

2
∑

i=1

µi (u)

(

Aix̂ + Biw + Di + Gi(y − Cx̂) + Rm̂i

)

(27a)

m̂i = γWi

(

y − Cx̂
)

(27b)

m̂ =

2
∑

i=1

µi (u) m̂i (27c)

For simulation the following initial conditions are consid-
ered: (u0 v0 r0) = (15 0 0) and (x̂1(0) x̂2(0) x̂3(0)) =
(16 1 1). The gain matrices G1, G2, G3, W1, W2 and W3

are obtained by solving the constraints (20). We get

G1 =

[

9.22 −3.88
0.45 −1.02
22.51 −11.92

]

G2 =

[

10.78 −4.10
6.64 0.55
27.38 −16.19

]

G3 =

[

8.49 −4.83
4.40 1.36
20.27 −17.07

]

γ = 78.12

W1 = W2 = W3 =

[

34.14 0
0 −10

]

Figures 9 and 10 represent the comparison between the
fault signals m1 and m2 affecting the nonlinear model (22)
and their estimates by the unknown input fuzzy observer
(27). These figures clearly show the occurrence of the
fault signals m1 and m2. Figures 11 and 12 present the
comparison between the output of the nonlinear model
with the faults m1 and m2 (26) and their estimates
with the designed unknown input observer. The output
variables and their estimates are superimposed except in
the vicinity of the origin (choice of the initial conditions).
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Fig. 9. Fault m1 and its estimate
m̂1 by (27)
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Fig. 10. Fault m2 and its esti-
mate m̂2 by (27)
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Fig. 11. longitudinal velocity
u and its estimate by (27)

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

r r̂

Fig. 12. lateral velocity v and
its estimate by (27)

6. CONCLUSION

In this paper, based on a T-S fuzzy model representation,
the design of an unknown input T-S observer is proposed.
The synthesis conditions lead to the resolution of an LMI
problem. Moreover, the estimation of unknown inputs of
the system is considered. The proposed observer is then
used for state estimation and for detection and isolation of
faults which can affect nonlinear models. The effectiveness
of the proposed methodology is illustrated by estimating
the yaw rate and faults of automatic steering vehicle. The
considered structure of unknown input T-S observer can
be also benefic for fault detection and isolation of a fault
actuator.
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