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Abstract: This paper addresses both analysis and observer design for nonlinear systems modelled by
decoupled multiple models. With respect to classic used multiple models, the decoupled multiple model
is characterized by heterogeneous submodels in the sense that their state spaces may be of various
dimensions. Thanks to this fact, flexibility and generality is introduced in the modelling stage. The main
contribution of the paper is the development of new sufficient conditions on LMI form for ensuring the
exponential convergence towards zero of the estimation error in the continuous and in the discrete-time.
The new proposed conditions enable to obtain a better decay rate with respect to the existing conditions.
The validity of the proposed methodology and its application to sensor faults detection and isolation is
illustrated by an academic example.
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1. INTRODUCTION

Context. Nowadays, fault diagnosis systems is becoming un-
avoidable in order to ensure the safety of systems and opera-
tors. In order to setting up a fault diagnosis system strategy,
sensitive signals to faults must be available. These signals can
be obtained, for example, with the help of state estimation tech-
niques [Patton et al., 2000],[Isermann, 2006]. Indeed, the state
estimation of a system provided by an observer, is an interme-
diary stage to estimate the characteristic variables of the system
such as its outputs. These estimations can be considered as an
analytical source of redundancy of the system. With the help
of this source of redundancy, fault diagnosis tasks (detection,
isolation and identification) can be effectively accomplished
by analysing the signals sensitive to faults (residual signals)
generated by the discrepancies between the measured outputs
of the system and their estimated. Indeed, if the residual signal
deviates from zero then an abnormal behaviour of the system
can be detected. Consequently, the observer design plays an
important role in the described fault diagnosis strategy.

Note however that the state estimation problem (i.e. observer
design) can be particularly arduous when the dynamic be-
haviour of the system must be represented by nonlinear models.
A nonlinear representation of the system is generally needed
when the whole operating space of the system must be consid-
ered (global modelling) instead of a reduced operating space
for example around an operating point (local modelling). This
situation frequently arise in a fault diagnosis strategy because
all admissible dynamic behaviours of the system must be taken
into consideration. In order to capture highly nonlinear dynamic
behaviours, in a wide operational range of the system, nonlinear
representations based on local model networks also known as
multiple model approach can be used as an appropriate global

modelling tool [Murray-Smith and Johansen, 1997]. On the
other hand, by means of this representation the specific anal-
ysis of the non-linearity of the system can be avoided and the
observer design can be in this way simplified.

Tools and proposed method. In the multiple model approach
the use of an only one complex model is avoided by intro-
ducing a set of submodels correctly interconnected by means
of an interpolation mechanism. The multiple models are able
to accurately capture the nonlinear behaviour of a large class
of systems in the whole operating space. In this modelling
strategy, the operating space of the system under investigation is
decomposed in a finite number of operating zones. The dynamic
behaviour of the system, inside each operating zone, is then
modelled by a local model (a submodel), often a linear model of
reduced dimension. Finally, according to the current operating
point of the system, the contribution of each submodel is more
or less taken into consideration thanks to weighting functions.

In this modelling approach, two main structures of multiple
models can be considered [Filev, 1991]. In the first one, the
submodels have the same state-space and consequently the mul-
tiple model is composed of homogeneous submodels. The well
known Takagi-Sugeno model proposed, in a fuzzy modelling
framework, by Takagi and Sugeno [1985] and in a multiple
model modelling framework by Johansen and Foss [1993] is
a good example of this kind of multiple model. In the second
structure, the multiple model uses heterogeneous submodels, in
the sense that the submodels do not share the same state-space.
This second structure, so-called decoupled multiple model, will
be employed in the present work.

Related work. The main interest for employing heterogeneous
submodels lies in the fact that the order (i.e. the state space
dimension) of each submodel can be different. Consequently,



the degree of generality of the decoupled multiple model is
undoubtedly increased because a non uniform decomposition
of the operating space can be made, i.e. the complexity of
the system in each operating zone may be different. Nonlinear
systems identification using this multiple model is presented
in Venkat et al., 2003, Vinsonneau et al., 2005, Orjuela et al.,
2006 and the design of control laws in Gawthrop, 1995, Gatzke
and Doyle III, 1999, Gregorcic and Lightbody, 2000, Garcı́a-
Nieto et al., 2008. Note however that the state estimation
problem of nonlinear systems using this multiple model has
been poorly considered in the literature. To the best of the
authors’ knowledge, only in the few recent works [Uppal et al.,
2003, 2006] this structure of multiple is employed in a fault
detection and isolation scheme for nonlinear dynamic systems
(in these works, the proposed structure is namely Neuro-Fuzzy
Decoupling Fault Detection Scheme NFDFDS). However, only
a note of the convergence estimation error is proposed in
these works and no analytic proof of the convergence of the
estimation error is given.

Contribution. This paper refers to the development of new con-
ditions for ensuring exponential convergence towards zero of
the estimation error as a further development of previous works
[Orjuela et al., 2007, 2008]. With respect to these works, the
proposed conditions makes it possible to improve the dynamic
performances of the observer. In particular, the convergence ve-
locity of the estimation error can be improved because a better
decay rate can be obtained. The analytic proof of the estimation
error convergence is proposed using the Lyapunov theory and
the existence condition of the observer, in both continuous and
discrete-time, are formulated using linear matrix inequalities
(LMIs) [Boyd et al., 1994].

Paper organisation. The decoupled multiple model is pre-
sented in section 2. In section 3, sufficient conditions for ob-
server design are remember and new conditions for ensuring the
exponential convergence of the estimation error are proposed.
Finally, in section 4, the validity of the proposed methodology
and its application to sensor faults detection and isolation is
illustrated by an academic example.

Notations. P > 0 (P < 0) denotes a positive (negative) definite
matrix P; XT denotes the transpose of matrix X and I is the
identity matrix of appropriate dimension and diag{} is a block
diagonal matrix of appropriate dimension.

2. ON THE DECOUPLED MULTIPLE MODEL

Modelling complex system by a rigorous mathematical model
can be very arduous and even if this model exist its systematic
exploitation can be delicate because this model is generally
nonlinear. Multiple models offer an excellent way to avoid
partially these difficulties.

Definition 1. (Operator δ ). The operator δ is the time deriva-
tive for continuous-time models, i.e. δ (x(t)) = ẋ(t), and the
shift operator for discrete-time models, i.e. δ (x(t)) = x(t +1).

The structure of the decoupled multiple model used in the
sequel is given by [Orjuela et al., 2008]:

δ (xi(t)) = Aixi(t)+Biu(t) , (1a)

yi(t) = Cixi(t) , (1b)

y(t) =
L

∑
i=1

µi(ξ (t))yi(t) , (1c)

where xi ∈ R
ni and yi ∈ R

p are respectively the state vector
and the output of the ith submodel; y ∈ R

p is the output of the
multiple model. The matrices Ai ∈ R

ni×ni , Bi ∈ R
ni×m and

Ci ∈ R
p×ni are known and constant. Note that the dimensions

ni of each state vector xi can be different. Indeed, the submodel
contribution is taken into account via a weighted sum of the
submodel outputs and consequently the submodels do not share
the same state space.

The weighting functions µi(ξ (t)) are associated to each operat-
ing zone. They satisfy the following convex sum properties:

L

∑
i=1

µi(ξ (t)) = 1 and 0 ≤ µi(ξ (t))≤ 1 ,∀i = 1...L, ∀t . (2)

The weighting functions quantify the relative contribution of
each submodel to the global model according to the current
operating point of the system. The current operating point is
taken into account by means of the so-called decision variable
ξ (t) which is a characteristic variable of the system (e.g. inputs
and/or measured variables). This variable is considered as an
accessible signal free of faults. For simplicity, in the sequel, we
shall simply write µi(ξ (t)) = µi(t).

Comments on the multiple model representation. The main
feature of this multiple model is that the state space dimension
of submodels can be different and thanks to this fact, complex
systems with variable structure in the operating range can be
well modelled. Indeed, the complexity of each submodel can
be well adapted to the complexity of the nonlinear system
in each operating zone. Thanks to this fact, the number of
parameters needed for modelling the system can be reduced
and the well known problem of curse of dimensionality of the
model can be reduced in a good way. From a practical point of
view, matrices Ai, Bi and Ci describe the local behaviour of the
system inside of the ith operating zone. Intuitively, the number
of submodels is given by the granularity of the operating space
decomposition. Multiple model parameters can be obtained by
using the direct linearisation of an a priori nonlinear model
around some operating points, or alternatively by using an
identification procedure as proposed in Venkat et al., 2003,
Vinsonneau et al., 2005, Orjuela et al., 2006.

3. OBSERVER DESIGN

In this section the observer design based on decoupled multi-
ple model is investigated. New convergence conditions of the
estimation error are established based on our previous works
[Orjuela et al., 2007, 2008].

3.1 Preliminaries

For the simplicity of manipulations, the decoupled multiple
model (1) is rewritten in the following compact form:

δ (x(t)) = Ãx(t)+ B̃u(t) , (3a)

y(t) = C̃(t)x(t) , (3b)

where:

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L (t)

]T
∈ R

n, n =
L

∑
i=1

ni , (4a)

Ã = diag{A1 · · · Ai · · · AL} , (4b)

B̃ =
[

B1
T · · · Bi

T · · · BL
T
]T

, (4c)

C̃(t) = [µ1(t)C1 · · · µi(t)Ci · · · µL(t)CL] . (4d)



Remark 1. The matrix C̃(t) can be rewritten as a weighted sum
of matrices as follows:

C̃(t) =
L

∑
i=1

µi(t)C̃i , (5)

where C̃i is a constant block matrix given by:

C̃i = [0 · · · Ci · · · 0] (6)

such that the term Ci is found on the ith block column of C̃i.

3.2 Observer structure

The proposed observer based on the decoupled multiple model
has the following form:

δ (x̂(t)) = Ãx̂(t)+ B̃u(t)− K̃(y(t)− ŷ(t)) , (7a)

ŷ(t) = C̃(t)x̂(t) , (7b)

where x̂(t) is the state estimation and ŷ(t) the output estimation
and K̃ ∈ R

n×p is the observer gain to be determined such as
the exponential convergence of x̂(t) towards x(t) is guaranteed.
Note that the exponential convergence is investigated in order
to introduce dynamic performances of the observer.

Remark 2. The outputs yi(t) of the submodels are “artificial
modelling signals” only used in order to provide an approxi-
mation of the output of the real system. Therefore the outputs
yi(t) cannot be employed as accessible signals for driving an
observer.

3.3 Convergence condition of the estimation error

Let us define the state estimation error:

e(t) = x(t)− x̂(t) . (8)

The estimation error dynamics is obtained by applying the
operator δ to (8), and by using the equations (3) and (7):

δ (e(t)) = Aobs(t)e(t) , (9)

where Aobs(t) is given by:

Aobs(t) =
L

∑
i=1

µi(t)φi , (10)

φi = Ã+ K̃C̃i . (11)

Remark 3. The observer design based on each submodel can-
not guarantee in a general way the convergence towards zero
of the estimation error. Indeed, the matrix Aobs(t) is a time-
varying matrix and consequently the combination of the sub-
model contributions must be taken into consideration in the
observer design stage. The observer gain K̃ must be selected
in order to ensure the convergence of the estimation error for
an arbitrary combination of the submodel contributions and for
any initial conditions. For this purpose, the Lyapunov method
is employed.

Theorem 1. (Continuous-time case). Consider the decoupled mul-
tiple model (3) and the observer (7). The exponential conver-
gence of the estimation error (8) is guaranteed if there exists
a symmetric and positive definite matrix P, a matrix G and a
positive scalar α such that:

(Ã+αI)T P+P(Ã+αI)+(GC̃i)
T +GC̃i < 0, i = 1...L (12)

where α is the decay rate. The observer gain is given by
K̃ = P−1G.

Proof. See [Orjuela et al., 2008]. 2

Theorem 2. (Discrete-time case). Consider the decoupled mul-
tiple model (3) and the observer (7). The exponential conver-
gence of the estimation error (8) is guaranteed if there exists
a symmetric and positive definite matrix P, a matrix G and a
positive scalar α such that:

[

(1−2α)P ÃT P+C̃T
i GT

PÃ+GC̃i P

]

> 0, i = 1...L (13)

where α is the decay rate. The observer gain is given by
K̃ = P−1G.

Proof. See [Orjuela et al., 2007]. 2

Comments and discussion on the observability issues. The
augmented matrices Ã and C̃i have been introduced in order
to establish the observer existence conditions of the observer.
The exponential convergence of the estimation error is carried
out by considering a decay rate α different to zero. Note
however that the choice of this decay rate can be limited by the
particular form of matrices Ã and C̃i used in theorems 1 and 2.
Indeed, all columns of matrix C̃i are equal to zero except the ith

block column. Consequently, eigenvalues assignment of matrix
Aobs(t) may be limited because de pair (Ã,C̃i) is not observable.

In order to partially avoid this problem new convergence condi-
tions are established by introducing new augmented matrices.

3.4 New convergence conditions

In this section the main contribution of the paper are presented.
New convergence conditions of the estimation error are pro-
posed by considering the matrix Aobs(t), in (9), as constant
matrix with some “artificial” norm-bounded uncertainties due
to the weighting functions. For this purpose, the mean value of
the matrices C̃i is introduced:

C̃0 =
1

L

L

∑
i=1

C̃i =
1

L
[C1 C2 · · · CL] . (14)

By taking into consideration

C̃i = C̃i +C̃0 −C̃0 , (15)

= C̄i +C̃0 , (16)

the matrix Aobs(t), defined by (10), becomes

Aobs(t) = Ã+
L

∑
i=1

µi(t)K̃C̃i , (17)

= Ã+ K̃C̃0 +
L

∑
i=1

µi(t)K̃C̄i (18)

where C̄i = C̃i−C̃0. Now, the matrix Aobs(t) can then considered
as constant matrix with norm-bounded uncertainties due to the
weighting functions.

Lemma 1. For any constant real matrices X and Y with ap-
propriate dimensions, a matrix function F(t) bounded-norm,



i.e. FT (t)F(t) ≤ I, then the following property holds for any
positive matrix Q

XF(t)Y +Y T FT (t)XT ≤ XQ−1XT +Y T QY .

Lemma 2. (Schur complement). The following two inequali-
ties are equivalent:

(1)

[

Q S

ST R

]

> 0 where Q = QT and R = RT

(2) R > 0, Q−SR−1ST > 0.

The convergence towards zero of the estimation error can
be investigated as previously by considering the following
candidate quadratic Lyapunov function:

V (t) = eT (t)Pe(t), P > 0 P = PT . (19)

Continuous-time case

Theorem 3. (Continuous-time case). Consider the decoupled mul-
tiple model (3) and the observer (7). The exponential conver-
gence towards zero of the estimation error (8) is guaranteed if
there exists symmetric and positive definite matrices P and Q,
a matrix G and a positive scalar α such that:





∆ Ḡ ¯̄CT Q

ḠT −Q 0

Q ¯̄C 0 −Q



 < 0 (20)

where

∆ = P(Ã+αI)+(Ã+αI)T P+GC̃0 +(GC̃0)
T ,

C̃0 =
1

L

L

∑
i=1

C̃i ,

Ḡ = [G · · · G · · · G] ,

¯̄C =
[

C̄T
1 · · · C̄T

i · · · C̄T
L

]T
,

C̄i = C̃i −C̃0 .

where α is the decay rate and the observer gain is given by
K̃ = P−1G.

Proof. The exponential convergence towards zero of the esti-
mation error is guaranteed if the following inequality is ensured
[Boyd et al., 1994]

∃α > 0 : V̇ (t) < −2αV (t) , (21)

where α is the so called decay rate.

By using the Lyapunov function (19) and the definition of
δ (e(t)), given by (9), then the inequality (21) is ensured if the
following inequality holds:

PAobs(t)+AT
obs(t)P+2αP < 0 . (22)

Considering the new definition (18) of Aobs(t) then the inequal-
ity (22) becomes

PÃ+GC̃0 + ÃT P+(GC̃0)
T +2αP

+
L

∑
i=1

µi(t)GC̄i +
L

∑
i=1

µi(t)(GC̄i)
T < 0 ,

(23)

where G = PK̃. The previous inequality can be rewritten as
follows:

PÃ+ ÃT P+GC̃0 +(GC̃0)
T +2αP

+ ḠF(t) ¯̄C +(ḠF(t) ¯̄C)T < 0 ,
(24)

where

Ḡ = [G · · · G · · · G] , (25a)

F(t) = diag{µ1(t)I · · · µi(t)I · · · µL(t)I} , (25b)

¯̄C =
[

C̄T
1 · · · C̄T

i · · · C̄T
L

]T
. (25c)

Let us notice that the matrix F(t) in (24) is norm-bounded
(i.e. FT (t)F(t) ≤ I) because the weighting functions satisfy
0 ≤ µi(t) ≤ 1.

With the help of lemma 1 then the inequality (24) is guaranteed
if the following inequality holds:

P(Ã+αI)+(Ã+αI)TP+GC̃0 +(GC̃0)
T

+ ḠQ−1ḠT + ¯̄CT Q ¯̄C < 0 .
(26)

Note that the previous inequality is not in a LMI form. However,
using two times the Schur complement (see lemma 2) the
inequality (26) becomes an LMI and this completes the proof
of theorem 3. 2

Discrete-time case

Theorem 4. (Discrete-time case). Consider the decoupled mul-
tiple model (3) and the observer (7). The exponential conver-
gence towards zero of the estimation error (8) is guaranteed if
there exists symmetric and positive definite matrices P and Q,
a matrix G and a positive scalar α such that:





(1−2α)P− ¯̄CT Q ¯̄C (PÃ+GC̃0)
T 0

PÃ+GC̃0 P Ḡ

0 ḠT Q



 > 0 (27)

where

C̃0 =
1

L

L

∑
i=1

C̃i ,

Ḡ = [G · · · G · · · G] ,

¯̄C =
[

C̄T
1 · · · C̄T

i · · · C̄T
L

]T
,

C̄i = C̃i −C̃0 .

where α is the decay rate and the observer gain is given by
K̃ = P−1G.

Proof. The exponential convergence towards zero of the es-
timation error in the discrete-time case is investigated in a
similar way. Consider the same candidate quadratic Lyapunov
function as (19). The exponential convergence is guaranteed if
the following inequality is ensured

∃α > 0 : ∆V (t) < −2αV (t) , (28)

where ∆V (t) = V (t +1)−V (t).

By using the Lyapunov function (19) and the estimation error
dynamics given by (9), this inequality becomes

AT
obs(t)PAobs(t)− (1−2α)P < 0 . (29)

By applying the Schur complement the obtained inequality (29)
becomes



[

(1−2α)P AT
obs(t)P

PAobs(t) P

]

> 0 . (30)

Using the expression of Aobs(t) given by (18), this last expres-
sion can be rewritten as follows:

[

(1−2α)P ∆T

∆ P

]

+XF(t)Y +Y T F(t)XT > 0 (31)

where

∆ = PÃ+GC̃0 , G = PK̃ , X =
[

0 ḠT
]T

, Y =
[

¯̄C 0
]

. (32)

and where matrices Ḡ, F(t) and ¯̄C are defined in (25). The proof
of theorem 4 is completed by using the lemma 1 and the Schur
complement. 2

Comments and discussion on the observability issues. Notice
that in the previous theorems the matrix C̃i is not directly
used for decay rate selection. Indeed, the supplementary matrix
C̃0 introduce some degrees of freedom for decay rate choice
because the rank of C̃0 is greater than the rank of matrices C̃i

and the provides a better observability of the system. Indeed,
the pair (Ã,C̃0) in theorems 3 and 4 are observable.

4. SIMULATION EXAMPLE

Consider the continuous-time decoupled multiple model with
L = 2 different dimension submodels given by:

A1 =

[

−2.0 0.5 0.6
−0.3 −0.9 −0.5
−1.0 0.6 −0.8

]

, A2 =

[

−0.8 −0.4
0.1 −1.0

]

,

B1 = [1.0 0.8 0.5]
T

, B2 = [−0.5 0.8] ,

C1 =

[

0.9 −0.8 −0.5
−0.4 0.6 0.7

]

, C2 =

[

−0.8 0.6
0.4 −0.7

]

.

Here, the decision variable ξ (t) is the input signal u(t) ∈ [0,1].
The weighting functions are obtained from normalised Gaus-
sian functions:

µi(ξ (t)) = ηi(ξ (t))/
L

∑
j=1

η j(ξ (t)) , (33)

ηi(ξ (t)) = exp
(

−(ξ (t)− ci)
2/σ2

)

, (34)

with the σ = 0.5, c1 = 0.25 and c2 = 0.75.

Conditions of theorem 1 are fulfilled with:

K̃ =

[

−0.546 −0.119 −0.142 −0.078 0.057

−0.647 −0.109 −0.148 −0.019 0.038

]T

with a decay rate α = 0.8. Note that solutions satisfying
conditions of theorem 1 are not found for a decay rate α > 0.8.

On the other hand, conditions of theorem 3 are fulfilled with:

K̃ =

[

0.507 −0.082 0.539 −1.674 1.393

−0.153 0.115 −0.200 0.520 −0.945

]T

with a decay rate α = 1. Note that solutions satisfying condi-
tions of theorem 3 are found for a decay rate α > 0.8.

State estimation errors provided by these two observers are de-
picted in figures 1 and 2. Let us notice that the initial conditions
of the multiple model are not null and the initial conditions of
the observers are null. It can be seen from these figures that
the observer design using theorem 3 provides a better decay
rate and good dynamics performances of the estimation errors.

However a great decay rate is obtained by a high gain and this
fact is at the origin of undesirable phenomenons, for example
an amplification of the noise. The choice of the observer gain
is subject to a trade-off between the noise amplification and the
decay rate.
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Figure 1. State estimation errors of submodel 1
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Figure 2. State estimation errors of submodel 2

Application to sensor faults diagnosis

The state estimation provided by the proposed observer can
be used in a classic way for fault diagnosis of nonlinear sys-
tems represented by means of a decoupled multiple model, as
proposed in Orjuela et al. [2008]. For example, sensor fault
detection and isolation task can be well achieved by struc-
turing judiciously the residual signals with the aid of an ob-
server schemes (e.g. Dedicated and/or Generalized Observer
Schemes) and by using an appropriated logical decision rule
[Patton et al., 2000],[Isermann, 2006].

Here, two dedicated observers are designed by using the new
conditions proposed by the theorem 3. The first dedicated
observer is driven only by the first output of the system and
the second one by the second output. Each dedicated observer
provides an estimation of the system outputs, noted by ŷobs

i (t)
where i is the number of the estimated output and obs is the
considered observer. Hence, signals sensitive to sensor faults
acting on the system, residuals ri,obs(t), can be easily generated
by considering the discrepancies between the measured outputs
of the system yi(t) and their estimated ŷobs

i (t). Sensor faults
detection and isolation are accomplished by considering the
simultaneous configuration of the obtained residual signals
ri,obs(t) (see the fault signatures of different faults).

r1,1 r2,1 r1,2 r2,2

δ1 ? ? 1 0

δ2 0 1 ? ?

Table 1. Fault signatures of different faults

The fault signatures of different faults δi is built as follows.
Considering that y1(t) is free of fault, if a sensor fault δ2 acts
on the second output of the system then the sensitive signals
obtained with the help of the first observer are, in theory,
r1,1(t) = 0 and r2,1(t) = 1. Note that the configuration of the
residual signals generated by the second observer ri,2(t) cannot



be taken into consideration because this observer is driven
by the corrupted output y2(t). Consequently, configuration of
ri,2(t) is represented by “ ? ” in the fault signatures table 1.
When a sensor fault δ1 acts on the first output then the residuals
obtained with the help of the second observer are r1,2(t) = 1 and
r2,2(t) = 0. In the same way, the residual signals ri,1(t) are not
taken into consideration (configuration of ri,1(t) is represented
by “ ? ”). A logical decision rule can be then established on
the basis of the proposed configuration of the residuals ri,obs(t)
summarized in table 1 (see [Orjuela et al., 2008] for details).
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Figure 3. Evolution of the residual signals

In this simple example, two constant sensor faults δ1 and δ2 act-
ing respectively on output 1 and output 2 are considered. In the
simulation sensor noise are also added on the system outputs.
The time evolution of the residual signals are plotted on figure
3. Considering the evolution of the residual signals ri,2(t). In
the time-interval t = 2s and t = 3s, these residual signals are
r1,2(t) = 1 and r2,2(t) = 0. Consequently, a sensor fault acting
on y1(t) can be well detected in this time-interval. On the other
hand, the residual signals ri,1(t), in the time-interval t = 4s and
t = 5s, are r1,1(t) = 0 and r2,1(t) = 1. Consequently, a sensor
fault acting on y2(t) can be well detected in this time-interval.

5. CONCLUSIONS

This paper has proposed a new way for designing a proportional
observer based on a decoupled multiple model. Systematic
procedure, based on the LMI framework, has been established
in order to design an observer which ensures the exponential
convergence of the estimation error. The new proposed con-
ditions allow to obtain a better decay rate with respect to the
existing conditions. The effectiveness of the proposed approach
is illustrated via a simulation example. The application of the
proposed observer in a sensor fault detection and isolation is
also illustrated.

The feasibility of the new proposed conditions with respect
to the previous ones must be investigated in the future in
order to stablish the conservatism of the proposed conditions
with respect to the previous ones. The use of the proposed
approach in a FDI strategy must be investigated in detail in
order to ensure, for example, an attenuation level with respect
to disturbances and a maximal amplification level with respect
to faults.
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