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Abstract—In the steel industry, the determination of the control
system set-points of batch processes is a common problem. It
consists in adjusting the set-points in order to reach the given
product specifications thanks to a process model. Small changes
in operating conditions may impact final product quality. This is
particularly true for the Basic Oxygen Furnace (BOF) where the
information collected during a specific batch serves to adjust
the set-points of the next batch. For being able to control
that type of process, measurements must be made coherent
and it may be convenient to use data reconciliation procedure.
The proposed paper describes a method allowing simultaneous
data reconciliation and model parameter estimation. Parameter
estimation results can either be used to update the process model
or to detect abnormal parameter variations due, e.g. to fouling,
corrosion, degradation of parts of the process.

I. I NTRODUCTION

A. Context

In the steel industry, the determination of the control system
set-points of batch processes is a common problem. It consists
in adjusting the set-points in order to reach the given product
specifications thanks to a process model. Batch processes
are characterized by prescribed processing of raw materials
into refined products. The objective is to produce products
of the desired quality. However, small changes in operating
conditions may impact final product quality. Moreover, batch
processes with the same trajectory generally exhibit some
degree of batch-to-batch variation. This is particularly true
for the Basic Oxygen Furnace (BOF) where the information
collected during a specific batch serves to adjust the set-points
of the next batch. Usually measurements collected from an
industrial process contain random errors, systematic biases or
gross errors due to the quality of the instrumentation chain
and its environment. Based on first principles (mass and en-
ergy balances, chemical equilibrium relationships, etc),model-
filtering approach, commonly called data reconciliation may be
used to provide coherent data. However, the main hypothesis
underlying these methods is that the model describing the
system is perfectly known which is not the case in real world.
The proposed paper describes a method allowing simultaneous
data reconciliation and model parameter estimation.

B. The Basic Oxygen Furnace

Basic oxygen furnace is a method of primary steelmaking
in which carbon-rich molten iron is made into refined steel.
The vast majority of steel manufactured in the world is
produced using the basic oxygen furnace. Modern furnaces
will take a charge of iron of up to350 tons and convert it
into steel in less than40 minutes.
By blowing oxygen through molten pig iron, the carbon
content of the alloy is lowered and changes the material into
low-carbon steel.
The basic oxygen furnace actions are scheduled as follows:
molten iron from a blast furnace is poured into a large
refractory-lined container. Then the container is filled with
the required ingredients which quantities are computed thanks
to a setup charge balance model. As the required thermal
energy is produced during the process, it is relevant to
maintain a proper charge balance.
A water-cooled lance is so lowered down into the vessel
to blow pure oxygen onto the steel and iron, igniting the
carbon dissolved in the steel and burning it to form carbon
oxide, causing the temperature to rise to about1700◦C. This
melts the scrap, lowers the carbon content of the molten iron
and helps remove unwanted chemical elements. Other fluid
components are added to form slag which absorbs impurities
of the steelmaking process and emulsifies to make easier
the refining process. At the end of the blowing cycle, the
temperature is measured and samples are taken to give a
chemical analysis.
The main functions of the BOF are to decarburize and remove
phosphorus from the hot metal, and to optimize the steel
temperature so that any further treatments prior to casting
can be performed with minimal reheating or cooling of the
steel. These actions are essentially performed by blowing
oxygen with high pressure on hot metal and adding scraps
and iron ore. The exothermic oxidation reactions that occur
during BOF process generate a lot of heat energy, more than
is necessary to attain the target steel temperature. This extra
heat is used to melt scrap and/or iron ore additions.

For the BOF, the setup problem consists to determine



the quantity of iron ore to add and the oxygen volume to
blow to reaching the target of Carbon rate in steel and the
temperature defined for each heat (batch) by the given product
specification.

This task is done by a static charge computation based on
a model formed by comprehensive heat and mass balances.
These balances between input and output products describe the
system. For example, a simplified iron mass balance equation
could be as follows:

[%Fe]ScpQScp + [%Fe]HMQHM − [%Fe]StlQStl = 0 (1)

with
• [%Fe]Scp: the iron mass percentage in scraps
• [%Fe]HM : the iron mass percentage in hot metal
• [%Fe]Stl: the iron mass percentage in steel
• QScp: the scrap quantity to convert
• QHM : the hot metal quantity to convert
• QStl: the converted steel quantity

For each heat, the system state variables have a different
operating point.

C. Main objectives and proposed method

Data reconciliation and parameter estimation are funda-
mental components to real time optimization of industrial
processes. Great efforts have been made to develop models
for various processes. However, as mentioned by Rolandi and
Romagnoli [6], physical and chemical process phenomena
are complex and difficult to model conceptually and math-
ematically. Indeed, thermodynamic and transport properties
and reaction rates are difficult to characterize experimentally
and are subject to parametric uncertainties. Moreover, even
when measurements are sufficiently numerous, raw process-
instrumentation data are also corrupted by different errors.
Indeed, data sets taken at a certain operation point are not
model-consistent. Online optimization provides a mean to run
a process near its optimum operating condition by providing
real-time computed optimal set-points to the control system
[3]. However, the implemented algorithms need to be fed
by coherent data. The more classical way to deal with that
problem consists to reconcile process data based on the
minimization of measurement errors subject to satisfying the
model constraints and next estimate the model parameters
from these reconciled values. An alternative to this two-
step approach consists to develop simultaneous strategiesfor
data reconciliation and parameter estimation [5], [7], [4].
The proposed paper is dedicated to the presentation of such
method.

On a mathematical point of view, data reconciliation is
generally based on the assumption that the measurement errors
have Gaussian probability density function (pdf) with zero
mean. As some model parameters are uncertain, they are also
modeled as random Gaussian variables.

Simultaneous state variable and parameter estimates are
obtained using a maximum likelihood estimation approach

applied on a sliding time window of observation data. To
make less sensitive the parameter estimation to measurement
uncertainties, the parameters are considered as constant value
on a given time window.

Parameter estimation results can either be used to update
process model or to detect abnormal variation due, e.g. to
fouling, corrosion, degradation of parts of the process.

II. SIMULTANEOUS DATA RECONCILIATION AND

PARAMETER ESTIMATION

The proposed paper describes a method allowing simulta-
neous data reconciliation and model parameter estimation in
order to provide model-consistent data. In real process, model
parameters are subjected to smooth evolution/degradation,
that’s why simultaneous state variable and parameter estimates
will be extracted from a sliding time window of observation
data. For each observation data window, parameters are as-
sumed to be constant whereas state variables evolve around
different operating points. This computation artifice willmake
less sensitive the parameter estimates to measurement uncer-
tainties.

The method of simultaneous data reconciliation and param-
eter estimation on a given window of lengthN is firstly pre-
sented and the corresponding algorithm is outlined. Next, the
practical implementation using a sliding window is described

A. The process model

Consider the system described by:
• a set of nonlinear equations in relation to a vector of state

variablesx∗

i and a parameter vector with true valuea∗

F (x∗

i , a
∗) = 0, i ∈ [1, N ] (2)

x∗

i ∈ IRv, a∗ ∈ IRp, F : IRv×p → IRn

• observation equations

xi = x∗

i + εxi, i ∈ [1, N ] (3)

• a priori knowledge of the parameters

a = a∗ + εa (4)

Thexi measurements of the true valuesx∗

i are available for
theN realizations. For the parameter, the a priori knowledge is
formulated as a kind of “observation equation”. The parameter
is defined on the basis of a nominal value and a “pseudo-
noise”. This form allows to express in the same manner, the
state variable and parameters probability density functions,
given as follows:

pxi =
1

(2π)v/2 |V |
1/2

exp

(

−
1

2
(x∗

i − xi)
T V −1(x∗

i − xi)

)

(5)

pa =
1

(2π)p/2 |W |
1/2

exp

(

−
1

2
(a∗ − a)T W−1(a∗ − a)

)

(6)

with V and W the variance-covariance matrices of the state
variables and parameters respectively. The measurement and



parameter error distributions are then assumed independent
random variables.

B. State and parameter estimation method

The problem issue concerns the estimation of the true
value of the state variables and the model parameters based
on the knowledge of the measurements (3) on the given
horizon [1, N ], the a priori knowledge (4) of the parameter
and the process model (2). The estimation can be performed
by the maximum likelihood principle. Taking into account that
measurement errors are independent, the likelihood functionV
is the product of the probability density functions:

V =

N
∏

i=1

pxipa (7)

Estimations x̂i, â of the true values maximize the
likelihood functionV in relation tox∗

i anda∗ with respect to
the constraint (2) satisfaction.

Let Φ be the Lagrange function relative to the log-likelihood
function and the constraint that have to be satisfied:

Φ = lnV +

N
∑

i=1

λT
i F (x∗

i , a
∗) (8)

with λi ∈ IRn.

Genrally, this nonlinear optimisation problem must be
solved using an iterative algorithm solution. In this case,
instead of a global system linearization arised from Lagrange
regularity conditions, it is advisable to previously linearize
the constraint equations.

For all the realizationsi ∈ [1, N ], at the iterationj, we
assume that a solution pair{x̂i,j , âj} is available. From this
solution pair, estimates can be improved based on a first order
Taylor series expansion in the neighborhood of this solution
pair. Assuming the convergence of the estimation process,
the successive solution pairs constitute a convergent series
toward the problem solution.

At the iterationj + 1, for a solution pair{x̂i,j+1, âj+1},
in the neighborhood of{x̂i,j , âj}, the constraint first order
Taylor series is:

F (x̂i,j+1, âj+1) =F (x̂i,j , âj) + Gx(x̂i,j , âj)(x̂i,j+1 − x̂i,j)

+ Ga(x̂i,j , âj)(âj+1 − âj) (9)

with the constraint gradients as follows:

Gx(x̂i,j , âj) =
∂F (x∗

i , a
∗)

∂x∗T
i

∣

∣

∣

∣

x∗

i
=x̂i,j ,a∗=âj

(10a)

Ga(x̂i,j , âj) =
∂F (x∗

i , a
∗)

∂a∗T

∣

∣

∣

∣

x∗

i
=x̂i,j ,a∗=âj

(10b)

For more readability, these last expressions will be denoted
Fi, Gix, Gia omitting the dependancy with regard to the

quantities at iteration indexj. At iteration j + 1, estimation
problem reduces to the search of theΦj+1 Lagrange function
extremum in relation tox∗

i,j+1, a∗

j+1, andλi:

Φj+1 = Φ0 −
1

2
(a∗

j+1 − a)T W−1(a∗

j+1 − a)

−
1

2

N
∑

i=1

(x∗

i,j+1 − xi)
T V −1(x∗

i,j+1 − xi) (11)

+

N
∑

i=1

λT
i

(

Fi + Gix(x∗

i,j+1 − x̂i,j) + Gia(a∗

j+1 − âj)
)

whereΦ0 is the constant component of Lagrange function.

This Lagrange function presents an extremum forx∗

i,j+1 =
x̂i,j+1 anda∗

j+1 = âj+1 if:

∂Φj+1

∂x∗

i,j+1

= 0

∂Φj+1

∂a∗

j+1

= 0 (12)

∂Φj+1

∂λi
= 0

Equation (12) can be transformed into the following system:

−V −1(x̂i,j+1 − xi) + GT
ixλi = 0 (13)

−W−1(âj+1 − a) +

N
∑

i=1

GT
iaλi = 0 (14)

Fi + Gix(x̂i,j+1 − x̂i,j) + Gia(âj+1 − âj) = 0 (15)

From (13), (14) and (15), one can deduce:

x̂i,j+1 = xi + V GT
ixλi (16)

âj+1 = a + W

N
∑

i=1

GT
iaλi (17)

Gixx̂i,j+1 = Gixx̂i,j − Fi − Gia(âj+1 − âj) (18)

The Lagrange parameters can be deduced from (16) and
(18):

λi = (GixV GT
ix)−1(Gix(x̂i,j − xi) − Fi − Gia(âj+1 − âj))

(19)
Substituting (19) in (17) gives:

âj+1 = a + W

N
∑

i=1

Si(Gix(x̂i,j − xi)− Fi −Gia(âj+1 − âj))

(20)
with Si defined by:

Si = GT
ia(GixV GT

ix)−1 (21)

Let us defineR as follows:

R = I + W

N
∑

i=1

GT
ia(GixV GT

ix)−1Gia (22)



Assuming that the matrixR is regular,

âj+1 =R−1W

N
∑

i=1

Si(Gix(x̂i,j − xi) − Fi + Giaâj)

+ R−1a (23)

Finally the expression of the state estimation is obtained
from (16) and (19):

x̂i,j+1 = xi + V GT
ix(GixV GT

ix)−1
(

Gix(x̂i,j − xi)

−Fi − Gia(âj+1 − âj)
)

(24)

The estimationŝxi and â reliant to xi and a are obtained
using successive iterations provided algorithm convergence
(the analysis of this latter can be based on the norms of the
gradient matricesGix andGia).

C. Algorithm

For an observation data window of lengthN , an algorithm
based on the method developped in the previous section could
be formulated in the following way:

• Initialization
j = 0, ∀i ∈ [1; N ], x̂i,j = xi and âj = a

• Repeat
ComputeFi, Gix andGia using (9), (10a) and (10b).
Computeâj+1 using (23)
Computex̂i,j+1 using (24)
j = j + 1
until norms ofGix andGia are below a given threshold.

• Update the parameter and variable estimates
â = âj+1

x̂i = x̂i,j+1, ∀i ∈ [1; N ]

This algorithm gives coherent parameter and state estimates
for a given observation data window of lengthN . Let us now
examine the practical implementation of this algorithm.

D. Practical implementation – Estimation on a sliding window

In order to be able to monitor the time evolution of the
model parameters, the proposed algorithm is implemented
using a sliding window. Let us consider a first observation
window of lengthN . Let us denotea(N) thea priori nominal
value of the parameter vector (given by the user) for this
observation window. From the knowledge ofX1, . . . , XN

and a(N), the proposed algorithm provides the estimates
X̂1, . . . , X̂N and â(N). The observation window is then slid
from one observation. Based on the knowledge of the mea-
surementsX2, . . . , XN+1 and the previously estimated value
of parameter vector̂a(N) which serves as the nominal value
for this new observation data window, the algorithm is used to
provide the estimateŝXN+1 and â(N+1). This process, which
is depicted on figure 1 is re-iterated based on the availability
of new sets of measurements along the time.

As previously said, the determination of the control system
set-points of batch processes in the steel industry is difficult
to solve. Indeed, small changes in the operating conditions

Time

1 N

2 N+1

3 N+2

X1, . . . , XN , a(N)
→ X̂1, . . . , X̂N , â(N)

X2, . . . , XN+1, â
(N)

→ X̂N+1, â
(N+1)

X3, . . . , XN+2, â
(N+1)

→ X̂N+2, â
(N+2)

Fig. 1. Principle of estimation on a sliding window

may impact final product quality and some degree of batch-to-
batch variation exists. Therefore, model adaptation algorithm
are frequently implemented for that kind of processes. Clearly,
the performances of the existing model adaptation algorithm
will be enhanced when fed by the coherent estimated values
provided by the proposed method.

III. E XAMPLE : SIMULTANEOUS STATE AND PARAMETER

ESTIMATIONS OF A SIMPLIFIEDBOF PROCESS

The proposed simultaneous state and parameter estimation
method has been applied to a simplified nonlinear process
model of a basic oxygen furnace (BOF).

A. The process model

Due to the random nature of chemical reaction in the
non homogeneous slag or to the wear-out refractory-lined
container or other many causes, the process cannot accurately
be described with equilibrium balances. Therefore some of
the model parameters need to be estimated without forget to
use model consistent datas.

As described in section I-A, the model is a set of mass
and heat balances. Let the nonlinear equation system be a
simplified model of basic oxygen furnace described as next:

0.5x∗

1 + (−3 + x∗

2)x
∗

3 + (a∗

1 − x∗

4)x
∗

5 = 0

3x∗

1 + (0.25x∗

2x
∗

4 − x∗

5)x
∗

3 + 9 = 0

x∗

1 − 0.5x∗

2x
∗

3 + x∗

4 + a∗

2x
∗

5 − 1 = 0

The first equation represents the iron mass balance where
x1, x3, x5 are material quantities,x2 and x4 iron mass
percentage anda1 a parameter which evolves along the time.
The second equation describes a heat balance and the third
another chemical element mass balance.

We have at our disposal state variable measurementsxi for
1000 realizations. Their accuracies (constant for the whole
realizations) are given in the table I. For that example, it is
desired to monitor the values of the two parametersa∗

1 and
a∗

2, the others being assumed constant. A priori knowledge on
a1 anda2 parameters are gathered in table II.

B. Results

To validate the proposed method, a data base composed
of measurement data and true values of evolving parameters
have been created for1000 realizations. The simultaneous
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Fig. 2. a1 parameter estimation

state and parameter estimation algorithm described above was
performed based on the measurement data from the whole
realizations, the knowledge of the model, and only parameter
nominal values given in table II. Because data proceed from
created data base, we can easily observe the performance of
the parameter estimation by matching parameter estimates
with the true values. Results are given in figure 2 and 3
when the observation data window length is fixed toN = 20,
parameters estimates are near to the true value. Figure 4
shows a zoom (realizations 50 to 500) on the estimation of
parametera2 when using different lengths for the sliding time
window. The filtering capacity of the proposed estimator is
pointed out. The more the window length is bigger, the more
the parameter estimation filter the noise measurement, but,in
the same time, the more the estimation is delayed.

Figures 5, 6, 7, 8, 9 show the measurements of the state
variables and their estimations. As the measurements are
unbiased, the estimations are closed to the measurements.

IV. CONCLUSION

In this paper, a general methodology for simultaneous data
reconciliation and parameter estimation for nonlinear model
has been proposed. Data reconciliation based on balances
was performed to obtain model-consistent measurement data
and simultaneously parameter estimates. The use of a sliding
window on which parameters are considered as constant values
allows the desensitization of their estimations with regard
measurement uncertainties. It is interesting to note that the

Variable x1 x2 x3 x4 x5

Standard deviation 0.033 0.16 0.2 0.11 0.23

TABLE I
VARIABLE MEASUREMENT ACCURACIES
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Fig. 3. a2 parameter estimation
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Fig. 4. Width window impact on parameter estimation
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Fig. 5. x1 state estimation and measurement
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Fig. 6. x2 state estimation and measurement
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Fig. 7. x3 state estimation and measurement
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Fig. 8. x4 state estimation and measurement

Parameter a1 a2

Nominal value 2 1

Standard deviation 0.1 0.05

TABLE II
”A PRIORI” PARAMETER KNOWLEDGE
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Fig. 9. x5 state estimation and measurement

knowledge of parameter distribution errors is not a limiting
factor, indeed it would be easy to modify the algorithm in
order to run without any parameter knowledge. The next step
would be to include some robustness properties with regard
gross measurement errors using a so-called contaminated
distribution in the maximum likelihood estimation [2], [1].
Finally the proposed method must be evaluated on real process
model with real data in terms of process model adjustment
along the successive heat to observe the impact of the set-
points adjustment on the successive batch processes.
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