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Abstract: State estimation of nonlinear systems plays an important role in several control
engineering problems. Multiple model approach is an interesting way to cope with this relevant
problem. Indeed, multiple models are recognized as a powerful modelling tool for nonlinear
dynamic systems. In this framework, several realisations of multiple models can be considered
for submodel interconnections. In contrast to the most popular results found in the multiple
model literature, we consider here heterogeneous multiple models which allow to use submodels of
different state space dimensions. Thanks to this fact, flexibility and generality can be introduced
in the modelling stage. This paper provides survey of recent results in state estimation strategies
based on heterogeneous multiple models. Different kinds of observers are investigated in order to
improve the state estimation with respect to disturbance as well as unknown inputs. Theoretical
results on the observers design and the state estimation error convergence are presented.
Discussion and criticisms of the suggested approaches are also proposed and further research
are pointed out.
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1. INTRODUCTION

State estimation of dynamic systems is a central topic in
system theory and control engineering. Indeed, in many
real world situations, the state vector of a system is
completely or partially unavailable from the measured
output vector. This in turn motivates intensively efforts
for years to replace the direct measurement of the system
state via a sensor by an estimation obtained with the help
of a state estimator (i.e. a software sensor).

For systems described by linear time-invariant (LTI) mod-
els, the state estimation can be successfully accomplished
from their available inputs and outputs thanks to the well
known Luenberger observer or Kalman filter. However, it
turns out that LTI models fail for accurately describe the
dynamic behaviour of relatively complex systems in a large
operating range (global modelling). Indeed, LTI models
only provide a good representation of such systems around
an operating point (local modelling) and consequently the
generated state estimation is not valid far away from this
point. Hence, nonlinear models become unavoidable in or-
der to cope with the global modelling task. Unfortunately,
these relatively complex models cannot be easily used for
observer design because no generic method for observer
design based on any nonlinear model is available.

From the observer design viewpoint, this makes more dif-
ficult the modelling task because the accurate and global
description of the input-output behaviour of the system
must be accomplished with the help of a mathematical
model as simple as possible for observer design. For such
a purpose, a multiple model representation of the system
under investigation can be used.

In this modelling approach, the dynamic behaviour of the
system is accurately captured by the judicious intercon-
nection of a set of linear submodels, each of them being
valid in a particular operating zone of the system (Murray-
Smith and Johansen, 1997; Leith and Leithead, 1999).
It should be noted that various realisations of multiple
models can be employed in order to generate the global
output of the multiple model (Filev, 1991; Gregorcic and
Lightbody, 2008). Two essential realisations of multiple
models can be distinguished whether homogeneous or het-
erogeneous submodels are taken into account for modelling
the system behaviour. In the first case, an interpolation of
the submodel parameters is considered and the submodels
share the same state space (e.g. the so-called Takagi-
Sugeno multiple model). In the second one, only the sub-
model outputs are interpolated and consequently each
submodel have its own state space which can be of different
dimension (e.g. the so-called decoupled multiple model).
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Some of the approaches often used to obtain a multiple
model representation of a nonlinear system are:

(1) linearisation of the nonlinear model around several
operating points;

(2) parameter estimation of the submodels using input
and output data and appropriate identification tech-
niques, see for instance (Babuska, 1998; Boukhris
et al., 1999; Venkat et al., 2003).

Nowadays, multiple models are recognized as a powerful
modelling tool because a large class of nonlinear dynamic
behaviours can be captured using this representation. Mul-
tiple model representation makes it possible the partial
extension of some results obtained in the linear framework
to nonlinear systems avoiding specific analysis of the non-
linearity of the system. However, most relevant studies
only concern the observer design based on the homoge-
neous multiple model (Murray-Smith and Johansen, 1997;
Tanaka and Wang, 2001; Marx et al., 2007), much less are
devoted to observer design using heterogeneous multiple
models. To the best of the authors’ knowledge, this prob-
lem is only dealt in few recent works (Uppal et al., 2006).

This fact strongly motivates us to propose the present
contribution. Indeed, the state estimation problem of het-
erogeneous multiple models has drawn our attention in the
recent years and encouraging results have been obtained
in this direction. The aim of this contribution is to present
our ideas and our recent theoretical results concerning
the observer design and particularly conditions for ensur-
ing state estimation error convergence. Different observer
structures are proposed and the observer existence con-
ditions, under LMI, are presented as a slight extension of
the ideas previously developed in (Orjuela et al., 2008a,b,c,
2009). Consequently, discussions and related references are
provided instead of complete mathematical proofs, here
voluntary omitted. It should be noted that some of the
suggested observers seem poorly investigated so far in the
multiple model framework (homogeneous or heterogeneous
realisations). In this way, the presented results provide
a relevant contribution to the state estimation methods
based on multiple models.

The outline of this paper is as follows. A brief description
of the decoupled multiple model is presented in section 2.
Section 3 deals with the state estimation problem based on
heterogeneous multiple models. Three observer structures
are proposed and sufficient conditions, on the basis of
the Lyapunov method, are given in order to ensure the
convergence of the state estimation error provided by
these observers. Discussion on the presented approach
and directions for further researches are given in the last
section.

2. HETEROGENEOUS MULTIPLE MODEL

Heterogeneous multiple model appears in the literature
under some quite divers names such as: quasilinear fuzzy
model based on the second interpretation (Filev, 1991),
local-state local model network (Gawthrop, 1995), het-
erogeneous multiple model (Murray-Smith and Johansen,
1997), multiple local model (Gatzke and Doyle III, 1999;
Venkat et al., 2003), local model networks blending the
outputs (Gregorcic and Lightbody, 2008), multiple mod-

els with no common state (Kanev and Verhaegen, 2006),
decoupled multiple model (Orjuela et al., 2008c). In this
section, the heterogeneous multiple model is presented.

2.1 Heterogeneous multiple model structure

The structure of the proposed heterogeneous multiple
model can be viewed as a parallel interconnection of L
submodels via a weighted sum of their outputs (Gatzke
and Doyle III, 1999). By considering a state space repre-
sentation, this structure takes the following form (Orjuela
et al., 2008c):

ẋi(t) =Aixi(t) +Biu(t) +Diw(t) , (1a)

yi(t) =Cixi(t) , (1b)

y(t) =

L
∑

i=1

µi(ξ(t))yi(t) +Ww(t) , (1c)

where xi ∈ R
ni and yi ∈ R

p are respectively the state
vector and the output of the ith submodel; u ∈ R

m is the
multiple model input, y ∈ R

p is the multiple model output
and w ∈ R

r a perturbation e.g. a noise. The matrices
Ai ∈ R

ni×ni , Bi ∈ R
ni×m, Di ∈ R

ni×r, Ci ∈ R
p×ni

and W ∈ R
p×r are known and constant.
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Figure 1. Heterogeneous multiple model structure

The current operating point of the system is taken into
account by means of the so-called decision variable ξ(t)
which is a real-time accessible variable (e.g. inputs, out-
puts and/or other exogenous measured signal). The rel-
ative contribution of each submodel to the global model
according to the current operating point of the system
is quantified by the weighting functions µi(ξ(t)) (i.e. the
interpolation mechanism). They are associated to each
operating zone and satisfy the following convex sum prop-
erties:

L
∑

i=1

µi(ξ(t)) = 1 , (2a)

0 ≤ µi(ξ(t))≤ 1 , ∀i = 1, . . . , L and ∀t . (2b)

In this multiple model the contribution of each submodel
is taken into account via a weighted sum of the submodel
outputs. Consequently, heterogeneous submodels, i.e. sub-
models of different vector dimensions, can be considered in
the modelling stage. Hence, this multiple model structure:

• is well suited for modelling nonlinear systems which
structure varies with the operating regime, for exam-
ple when the complexity of the dynamic behaviour
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is not uniform across the operating space (Gregorcic
and Lightbody, 2008),

• offers an interesting degree of flexibility to cope with
the curse of dimensionality problem whereby the
number of parameters in the multiple model increases
extremely rapidly as the complexity of the nonlinear
system increases (Leith and Leithead, 1999).

Let us remark that in some particular situations, a discon-
tinuity in the multiple model output y(t) appears when a
submodel that is away of the current operating zone is
suddenly taken into consideration for building the mul-
tiple model output. Of course, this phenomenon does not
appear in a systematic way and it depends on the dynamics
of the submodels and/or on the choice of the decision vari-
able. When the decision variable is the input of the system,
this undesirable phenomenon can effectively be overcome
by using a filtered value of the decision variable instead
of its direct value. Usually, a low-pass filter with unit
gain is employed from a priori knowledge of the system as
proposed by Gatzke and Doyle III (1999). Note also that
the outputs yi(t) of the submodels can be considered as
artificial modelling signals only used in order to provide an
approximation of the output of the real system. Therefore
the outputs yi(t) cannot be employed as accessible signals
for driving an observer.

2.2 Notations

The following standard notations will be used throughout
the paper: P > 0 (P < 0) denotes a positive (negative)
definite matrix P ; XT denotes the transpose of the matrix
X; I is the identity matrix of appropriate dimension
and diag{} is a block diagonal matrix of appropriate
dimension. The L2−norm of a signal, quantifying its
energy, is denoted and defined by ‖e‖22 =

∫

∞

0
eT (t)e(t)dt

and we shall simply write µi(ξ(t)) = µi(t).

2.3 Preliminaries

For the simplicity of manipulations, the heterogeneous
multiple model (1) is rewritten in the following compact
form (Orjuela et al., 2008c):

ẋ(t) = Ãx(t) + B̃u(t) + D̃w(t) , (3a)

y(t) = C̃(t)x(t) +Ww(t) (3b)

where:

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L(t)

]T ∈ R
n, n =

L
∑

i=1

ni , (4a)

Ã= diag {A1 · · · Ai · · · AL} ∈ R
(n×n) , (4b)

B̃ =
[

B1
T · · · Bi

T · · · BL
T
]T ∈ R

(n×m) , (4c)

D̃=
[

D1
T · · · Di

T · · · DL
T
]T ∈ R

(n×r) , (4d)

C̃(t) = [µ1(t)C1 · · · µi(t)Ci · · · µL(t)CL] ∈ R
(p×n) . (4e)

The matrix C̃(t) is time-varying because the weighting
functions are taken into consideration in this matrix. It
should be noted that this matrix can be rewritten as a
weighted sum of constant matrices as follows:

C̃(t) =

L
∑

i=1

µi(t)C̃i (5)

where C̃i is a constant block matrix given by:

C̃i = [0 · · · Ci · · · 0] (6)

such that the term Ci is found on the ith block column of
C̃i.

2.4 Comments on the stability of the multiple model

The stability of the multiple model (1) can be easily
established by investigating the eigenvalues of the constant
matrix Ã given by (4b). This matrix is a block diago-
nal matrix and therefore its eigenvalues are in the open
left-half complex plane if and only if all eigenvalues of
all matrices Ai are also in the left-half complex plane.
Consequently, the stability of the multiple model (1) is
equivalent to the stability of all the submodels.

3. OBSERVER DESIGN PROBLEM

The observer design problem for systems represented with
the help of heterogeneous multiple models is poorly in-
vestigated in the literature. Recently, the heterogeneous
multiple model, namely Neuro-Fuzzy Decoupling Fault De-
tection Scheme NFDFDS, is successfully used for state
estimation in a fault detection and isolation perspective
by Uppal et al. (2006). In this paper, an independent local
observer design based on each submodel is considered and
only a note on the estimation error convergence is pro-
posed. This approach cannot be guaranteed, in a general
way, the convergence towards zero of the estimation error
because the interpolation of the submodel is not taken
into consideration in the observer design stage. Indeed,
the weighting sum of a set of stable systems is not a stable
system. On the other hand, the robustness properties of
the state estimation with respect to disturbances and
unknown inputs (UI) are not investigated in this work.

These interesting problems are tackled in our recent works
(Orjuela et al., 2008a,c). Sufficient conditions for ensuring
the exponential convergence towards zero of the estimation
errors ei(t) = xi(t) − x̂i(t) have been established on
the basis of the well-known Lyapunov method. Different
observer structures have been proposed in order to improve
the state estimation with respect to perturbations and UI
acting on the system. These observers are presented in the
next sections and the conditions for ensuring their stability
are summarised. They are expressed in the form of a set
of linear matrix inequalities (LMIs) (Boyd et al., 1994).

3.1 Proportional gain observer

A state estimation of a nonlinear system characterised by
a heterogeneous multiple model (1) can be generated on
the basis of a proportional observer defined by:

˙̂xi(t) =Aix̂i(t) +Biu(t) +Ki(y(t)− ŷ(t)) ,

ŷ(t) =
L
∑

i=1

µi(ξ(t))Cix̂i(t)

where Ki ∈ R
ni×p is the gain associated to the ith

observer.
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Assumption 1. The perturbation is a bounded energy sig-
nal, i.e. ‖w‖22 < ∞.

By using the augmented form (3) of the multiple model
(1), the state estimation error can be defined as:

e(t) = x(t)− x̂(t) (8)

and its time-derivative by:

ė(t) = (Ã− K̃C̃(t))e(t) + (D̃ − K̃W )w(t) (9)

where K̃ =
[

KT
1 · · · KT

i · · · KT
L

]T ∈ R
n×p is the aug-

mented gain of the observer to be determined such that
the following robust performances are respected:

lim
t→∞

e(t) = 0 for ω(t) = 0 , (10a)

‖e‖22 ≤ γ2 ‖w‖22 for w(t) 6= 0 and e(0) = 0 (10b)

where γ is the L2 gain from w(t) to e(t) to be minimised.
Notice that the convergence of the estimation error in the
disturbance-free case is ensured by (10a) and robust state
estimation in presence of a disturbance is ensured by (10b).
In other words, the influence of w(t) on the estimation
error (8) must be attenuated and the state estimation
errors must remain globally bounded.

The following theorem provides sufficient conditions for
ensuring the proportional observer existence under con-
straints (10).

Theorem 1. (Orjuela et al., 2008a) The proportional
observer (7) for the multiple model (1), under constraints
(10), is obtained if there exists a symmetric, positive defi-
nite matrix P and a matrix G solution of the constrained
optimisation problem for a given scalar α ≥ 0:

min γ subject to
[

Ai +AT
i + I B

BT −γ̄I

]

< 0 , i = 1, . . . , L

where

Ai = P (Ã+ αI)−GC̃i ,

B= PD̃ −GW

and C̃i is given by (6).

The observer gain is given by K̃ = P−1G, the L2 gain
from ω(t) to e(t) is given by γ =

√
γ̄ and α is the so-called

decay rate for exponential convergence of e(t).

Sketch of the proof. This theorem is obtained by consider-
ing a quadratic Lyapunov function:

V (t) = eT (t)Pe(t) P > 0 P = PT . (11)

The following well-known inequality (Boyd et al., 1994)
must be ensured in order to satisfying the robust state
estimation problem (10):

V̇ (t) + 2αV (t) < γ2wT (t)w(t)− eT (t)e(t) (12)

where α is the decay rate and γ is the attenuation level
from w(t) to e(t) for robust estimation. The LMI in
theorem 1 is obtained by using (8), (9) and (11) in (12)
on the one hand and the convex sum properties (2) of
the weighting functions µi(t) on the other hand. It can

be noted that for w(t) = 0 the exponential convergence
toward zero of the state estimation is guaranteed thanks
to the decay rate. Asymptotic convergence is obtained by
considering α = 0.2

Exponential convergence of the estimation error is carried
out by assigning the eigenvalues of the matrix Ã− K̃C̃(t),
in (9), in the shifted left-half complex plane. However, in
this approach, only the real parts of the eigenvalues are as-
signed and consequently, dynamics with strong oscillations
can appear because the imaginary part of the eigenvalues
is unbounded. In order to avoid this phenomenon, the
eigenvalues can be assigned in a specific region S of the
complex plane by using the general characterization for
eigenvalues clustering in subregions of the complex plane
in terms of LMIs proposed by Chilali and Gahinet (1996).

Note that an arbitrary decay rate α cannot be obtained
from the LMIs in the theorem 1 due to the particular
form of matrices Ã and C̃i used in these LMIs. Indeed,
all columns of matrix C̃i are equal to zero except the ith

block column, see (6). Hence, eigenvalues assignment of the

matrix Ã−K̃C̃(t) may be limited because the pairs (Ã, C̃i),
respectively given by (4b) and (6), are not observable and
therefore the decay rate choice can be limited. However,
this problem has been partially solved in (Orjuela et al.,
2009) by considering the weighting functions in the state
estimation error (9)

Notice finally, from equation (9), that the proportional ob-

server (7) offers only one degree of freedom K̃ for reducing
the influence of the disturbance and providing at the same
time good dynamic performances (two antagonist design
goals). In the next section another observer structure is
proposed to avoid this problem.

3.2 Proportional-Integral observer, first case

A Proportional-Integral observer is suggested in this sec-
tion in order to introduce a supplementary degree of
freedom in the observer design stage, robustness can be
improved in this way. This observer is characterised by
the use of two corrective injection terms, proportional and
integral, instead of the only one proportional correction
previously employed. Proportional-integral observers are
well-known by their interesting robustness properties with
respect to perturbations (Busawon and Kabore, 2001).

In order to introduce the supplementary integral variable

z(t) =
∫ t

0
y(ξ)dξ, the multiple model (3) is rewritten as

follows:

ẋa(t) = Ã1(t)xa(t) + C̄1B̃u(t)

+(C̄1D̃ + C̄2W )w(t) , (13a)

y(t) = C̃(t)C̄T
1 xa(t) +Ww(t) , (13b)

z(t) = C̄T
2 xa(t) (13c)

where

xa(t) =

[

x(t)
z(t)

]

, Ã1(t) =

[

Ã 0

C̃(t) 0

]

, C̄1 =

[

In
0

]

, C̄2 =

[

0
Ip

]

.

The proposed proportional-integral observer, based on the
multiple model (13), is given by:
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˙̂xa(t) = Ã1(t)x̂a(t) + C̄1B̃u(t) +KP (y(t)− ŷ(t))

+KI(z(t)− ẑ(t)) , (14a)

ŷ(t) = C̃(t)C̄T
1 x̂a(t) , (14b)

ẑ(t) = C̄T
2 x̂a(t) . (14c)

Notice that the use of the two correction terms KP and
KI is at the origin of the designation proportional-integral
observer.

As previously, by using the augmented forms (13) and (14),
an augmented state estimation error can be defined as:

ea(t) = xa(t)− x̂a(t) (15)

and its time-derivative by:

ėa(t) = (Ã1 − K̃P C̃(t)C̄T
1 − K̃IC̄

T
2 )ea(t) (16)

+ (C̄1D̃ + C̄2W − K̃PW )w(t) .

It can be seen, from equation (16), that:

(1) the proportional gain K̃P can be used to reduce the
impact of the disturbance w(t) on ea(t),

(2) the integral gain K̃I can be used to improve the
observer dynamics performances.

Hence, the proposed observer (14) offers two degrees of

freedom K̃P and K̃I . This fact constitutes one of the most
important interest of the proportional-integral observer
(14) with respect to the proportional observer (7).

The following theorem provides sufficient conditions for
ensuring the existence of the proportional-integral ob-
server (14) under constraints (10) slightly modified to take
into account ea(t) instead of e(t).

Theorem 2. (Orjuela et al., 2008a) The proportional-
integral observer (14) for the multiple model (13), under
constraints (10), is obtained if there exists a symmetric,
positive definite matrix P and matrices GP and GI solu-
tion of the constrained optimisation problem for a given
scalar decay rate α ≥ 0:

min γ subject to
[

Ai +AT
i + I B

BT −γ̄I

]

< 0 , i = 1, . . . , L

where

Ai = P (Ã1 + αI)−GP C̃iC̄
T
1 −GIC̄

T
2 ,

B= PC̄1D̃ + PC̄2W −GPW

and C̃i is given by (6).

The observer gains are given by K̃P = P−1GP and
K̃I = P−1GI , the L2 gain from ω(t) to ea(t) is given by
γ =

√
γ̄.

Sketch of the proof. As in the previous section us-
ing the following quadratic Lyapunov function: V (t) =
eTa (t)Pea(t), P > 0, P = PT .2

3.3 Proportional-Integral observer, second case

In this section, the multiple model (3) is considered but
the disturbance w(t) is now considered as an interesting

unknown input (UI) to be estimated instead of a distur-
bance to be attenuated. This UI acting on the system can
be employed in order to characterize an actuator failure
and/or an abnormal behaviour of an internal component
of the system.

Assumption 2. The unknown input signal w(t) is sup-
posed to be a constant signal, i.e. ẇ(t) = 0.

The goal is to generate both state and UI estimations
of nonlinear systems modelled by the multiple model (1).
To this end, the following proportional-integral unknown
input observer is employed (Orjuela et al., 2008b):

˙̂x(t) = Ãx̂(t) + B̃u(t) + D̃ŵ(t) + K̃P (y(t)− ŷ(t)) ,(17a)

˙̂w(t) = K̃I(y(t)− ŷ(t)) , (17b)

ŷ(t) = C̃(t)x̂(t) +Wŵ(t) . (17c)

where ŵ(t) provides an estimation of the UI w(t). The use
of an integral action given by (17b) is at the origin of the
designation proportional-integral observer.

Remark 1. The two observers, (14) and (17), previously
proposed are proportional-integral observers. However the
integral action is used in two different ways. In the first
case, the observer defined by (14), the integral action
introduces an additional degree of freedom for disturbance
attenuation. In the second one, the observer defined by
(17), the integral action allows the UI estimation.

Consider now the following augmented state vector:

Σ(t) =

[

e(t)
ε(t)

]

=

[

x(t)− x̂(t)
w(t)− ŵ(t)

]

∈ R
n+r , (18)

where e(t) is the state estimation error and ε(t) the UI
estimation error. By considering the assumption 2, the
time-derivative of (18) is given by:

[

ė(t)
ε̇(t)

]

=

[

Ã− K̃P C̃(t) D̃ − K̃PW

−K̃IC̃(t) −K̃IW

] [

e(t)
ε(t)

]

, (19)

which can be rewritten as:

Σ̇(t) = (Aa −KaCa(t))Σ(t) (20)

where

Aa =

[

Ã D̃
0 0

]

, Ka =

[

K̃P

K̃I

]

, Ca(t) =
[

C̃(t) W
]

. (21)

The following theorem provides sufficient conditions for
ensuring the existence of the proportional-integral un-
known input observer (17) under assumption 2.

Theorem 3. (Orjuela et al., 2008b) The proportional-
integral unknown input observer (17) for the multiple
model (3), is obtained if there exists a symmetric, pos-
itive definite matrix P and matrix a Ga solution of the
constrained optimisation problem for a given scalar decay
rate α ≥ 0:

Ai +AT
i < 0 , i = 1, . . . , L

where
Ai = P (Aa + αI)−GaC̄i ,

C̄i =
[

C̃i W
]

∈ R
p×(n+r)

and C̃i is given by (6). The observer gain is given by
Ka = P−1Ga.
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Sketch of the proof. As in the previous sections, the con-
ditions of theorem 3 are obtained by considering V (t) =
ΣT (t)PΣ(t), P > 0, P = PT and the following well-known
inequality for ensuring exponential error convergence to-
wards zero:

V̇ (t) + 2αV (t) < 0 (22)

where α is the decay rate for convergence velocity. Finally,
the LMIs in theorem 3 are obtained by using (18) and (20)
in (22). 2

It can be noted that here, disturbances acting on the
system are not considered. However, the disturbance and
UI can be both taken into account by introducing their
respective distribution matrices. In this case, robust per-
formance as proposed in (10) must be considered in the
state estimation study as proposed in sections 3.1 and 3.2.

Notice that the assumption 2 is needed for theoretical
proofs but our approach remains effective in practical cases
where the assumption 2 is not truly satisfied, of course the
UI must be a low frequency signal e.g. constant or slowly
varying-time signal (Orjuela et al., 2008b).

The suggested unknown input observer (17) can be used,
as an extension of the classic generalized observer scheme,
in the detection and the isolation of sensor and actuator
failures of complex systems. Indeed, the UI estimation can
be directly employed as a residual signal in a FDI scheme.

4. CONCLUSION AND FURTHER RESEARCHES

Recent theoretical results concerning the state estimation
of nonlinear systems represented by heterogeneous multi-
ple models are presented in this contribution. Three novel
observer structures based on the proportional gain and the
proportional-integral gains are investigated. The observer
existence conditions, based on the LMI framework, have
been established in order to ensure exponential conver-
gence and robust performances of the estimation error with
respect to disturbances and unknown inputs.

Further research will aim at reducing the conservatism
of the proposed solution using other Lyapunov functions,
such as piecewise Lyapunov functions. Improvements to
the proposed proportional-integral unknown input ob-
server, in order to take into consideration a more general
class of unknown inputs, provides promising prospects in
the future.
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