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Abstract— This paper addresses the problem of state esti-
mation of nonlinear systems described by a Takagi-Sugeno
multiple model with unmeasurable decision variables. The
method is based on the reformulation of the multiple model
in an equivalent form. First, the convergence conditions of
the state estimation error are established using the Lyapunov
method and they are expressed in LMI formulation. Secondly,
performances of the observer are enhanced by pole clustering
and L2 attenuation of bounded exogenous disturbances. Finally,
the method is applied to estimate the state of a link flexible joint
robot.

I. INTRODUCTION

The problem of designing observers for nonlinear systems
constitutes an important field of research these last years.It
is due to a large domain of application such as, estimating of
the not accessible states, when sensors are not available or
expensive, designing feedback control laws and generating
residual signals in order to detect and isolate failures.

Early work on the state estimation of nonlinear systems
dates back to 1973 when Thau [19] proposed an extension
of the Luenberger observer [11] to Lipschitz systems, he
then provided sufficient conditions for the convergence of
the state estimation error, however, he did not propose a
methodology for synthesizing the observer gain. In [15],
authors have used the same structure of observer but they
provided an iterative method for obtaining the observer gain.
Unfortunately, Raghavan’s algorithm often fails to obtain
a solution even if the observability condition is satisfied
and it fails if the Lipschitz constant has a large value.
Raghavan then proposed a state transformation to relax the
design conditions. In [16] Rajamani gave a solution to these
problems. He obtained necessary and sufficient conditions
on the observer matrix that ensure asymptotic stability of
the observer and proposed a design procedure, based on the
use of a gradient based optimization method. He discussed
the equivalence between the stability condition and theH∞
minimization in the standard form, and pointed out that
this design method was not solvable since the regularity
assumptions are not satisfied. In recent work [14], based
on the result of Rajamani [13], Pertew proposed a dynamic
observer. The problem of regularity assumptions pointed out
in [16] is solved by modifying theH∞ problem. Other classes
of nonlinear systems are also studied in the literature to
design observers for nonlinear systems, among them, we can
cite the use of Linear Parameter Varying systems (LPV) [3].
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In this paper another method is proposed by using a
Takagi-Sugeno multiple model approach to design observers
for nonlinear systems. We consider the case where the
weighting functions depend on unmeasurable decision vari-
ables (the state of the system). Section II introduces the
problem and some background. In Section III, the main
results to design the observer are given under LMI formu-
lation. After, the result to minimization of theL2 norm of
the transfer from bounded unknown exogenous disturbances
to the state estimation error is proposed. The performances
of the observer are improved by eigenvalues assignment.
Finally, in section IV, a simulation example is given.

II. TAKAGI -SUGENO MULTIPLE MODEL APPROACH

Let us consider the multiple model representation of a
nonlinear system:







ẋ(t) =
r
∑

i=1
µi(ξ (t))(Aix(t)+Biu(t))

y(t) = Cx(t)
(1)

x(t) ∈ R
n is the state vector,u(t) ∈ R

m is the control input
andy(t)∈R

p is the measurement output.Ai, Bi andC are real
known matrices with appropriate dimensions. The weighting
functionsµi are nonlinear inξ (t) and satisfy the convexity
property:







r
∑

i=1
µi(ξ (t)) = 1

0≤ µi(ξ (t)) ≤ 1, i ∈ {1, ...,r}
(2)

The decision variableξ (t) can depend on measurable signals,
for example the inputu(t) or the outputy(t) of the system
(this situation is largely studied in the literature), or onun-
measurable signals like the statex(t). The next section gives
a comparison between using measurable or unmeasurable
signals.

A. Motivations

Takagi-Sugeno multiple model has proved its effectiveness
in the study of nonlinear systems. Indeed, it gives a simpler
formulation from the mathematical point of view to represent
the behavior of nonlinear systems [17]. In the field of
stability analysis and stabilization, many works, such as
state feedback control [18][10][7], have been developed and
applied in a lot of practical situations. The problem of state
estimation has also been studied in order to design state
feedback control laws and design a residual generator to
detect and isolate faults in the system and reconfiguring the
control laws in the presence of faults [2][5].



In the field of state estimation and diagnosis of nonlinear
systems using multiple model approach, the most of the pub-
lished works considered T-S models with measurable premise
variables [2][13]. It is clear that the choice of measurable
premise variables offers a good simplicity to generalize the
methods already developed for linear systems. But in the
case where the premise variables are not measurable, the
problem becomes very hard. However, this formalism is very
important in both the exact representation of the nonlinear
behavior by multiple model (see the simulation example)
and in diagnosis method based on observer banks to detect
and isolate actuator and sensor faults. Indeed in this case,
the use of measurable premise variables requires to develop
two different multiple models, the first using the inputu(t)
in the premise variable to detect and isolate sensor faults,
and the second using the output of the system for actuator
faults. Multiple model with unmeasurable premise variables
allows to develop only one model of the system behavior to
detect and isolate actuator and sensor faults using observer
banks. In the literature, a few works are devoted to the case
of unmeasurable decision variables, nevertheless, we can
cite [5][12][4], where the authors proposed the fuzzy Thau-
Luenberger observer which is an extension of the classical
Luenberger observer. The main contributions of this paper
are to reduce the conservatism of the existing works [4][5]
by reducing the number of LMIs to be solved and relaxing
the conditions under which the method is applicable.

III. M AIN RESULTS

Consider the following nonlinear system described by a
multiple model:







ẋ(t) =
r
∑

i=1
µi(x(t))(Aix(t)+Biu(t))

y(t) = Cx(t)
(3)

Let us consider the matricesA0 and Āi defined in one of the
two following ways:

1) The matrixA0 is defined as a mean of the matricesAi

then:

A0 =
1
r

r

∑
i=1

Ai (4)

2) The matrixA0 is chosen as a dominant local model
of the system. Let thejth local model is the dominant
one, then:

A0 = A j (5)

The matrixĀi is then defined by:

Āi = Ai −A0 (6)

By substitutingA0 andĀi in the state equation (3), we obtain
the following equivalent system:

ẋ(t) = A0x(t)+
r

∑
i=1

µi(x(t))(Āix(t)+Biu(t)) (7)

The proposed observer is in the following form:

˙̂x(t) = A0x̂(t)+
r
∑

i=1
µi(x̂(t))(Āix̂(t)+Biu(t))+L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
(8)

The state estimation error is given by:

e(t) = x(t)− x̂(t) (9)

and its dynamic is:

ė(t) = (A0−LC)e(t)+∆(x, x̂,u) (10)

where:

∆(x, x̂,u) =
r

∑
i=1

[Āi(µi(x(t))x(t)−µi(x̂(t))x̂(t))

+ Bi(µi(x(t))−µi(x̂(t))u(t))] (11)

Assumption 1: Assume that the following conditions
holds:

• A1. |µi(x(t))x(t)−µi(x̂(t))x̂(t)| < αi |x(t)− x̂(t)|
• A2. |Bi(µi(x(t))−µi(x̂(t)))| < βi |x(t)− x̂(t)|
• A3. |u(t)| < ρ

whereαi > 0 andβi > 0.
The calculation ofαi andβi is given by the following steps:
Consider a functionf (x) : x ∈ Rn → Rn defined as follows:

f (x) =
[

f1(x)T · · · fn(x)T
]T

,x =
[

xT
1 · · · xT

n

]T

The Taylor formula at order zero with an integral remainder
term of f (x) around ˆx is:

fi(x)− fi(x̂) =
x1
∫

x̂1

∂ fi
∂x1

(t)dt + ...+
xn
∫

x̂n

∂ fi
∂xn

(t)dt (12)

i ∈ {1, ...,n}. Each functionfi can be bounded as follows:

| fi(x)− fi(x̂)| ≤

x1
∫

x̂1

∣

∣

∣

∣

∂ f1
∂x1

(t)

∣

∣

∣

∣

dt + ...+

xn
∫

x̂n

∣

∣

∣

∣

∂ f1
∂xn

(t)

∣

∣

∣

∣

dt (13)

Let defineai j = max
t∈[x j x̂ j ]

∣

∣

∣

∂ fi
∂x j

(t)
∣

∣

∣
i, j ∈ {1, ..,n}. The interval

[x j x̂ j] is not known, soai j is calculated fort ∈ R. We obtain

ai j = max
t∈R

∣

∣

∣

∂ fi
∂x j

(t)
∣

∣

∣
. Then, (13) can be re-written as follows:

| fi(x)− fi(x̂)| ≤ ai1 |x1− x̂1|+ ...+ain |xn − x̂n|



By rewriting the above inequalities in matrix form, we
obtain:

| f (x)− f (x̂)| ≤ J |x− x̂|

where:

J =







a11 · · · a1n
...

.. .
...

an1 · · · ann







The Lipschitz constant off (x) is given by the maximum
singular value ofJ.

Remark 1: The weighting functionsµi(x) are globally
Lipschitz. In the assumptionA1,

• if the functionsµi(x)x are globally Lipschitz then even
if the system is unstable the constantsαi exist and the
proposed method can be applied.

• If the functionsµi(x)x are locally Lipschitz the stability
of the system is required.

Note that the method proposed in [5] requires the stability
of the system.

Using the assumptionsA1, A2 andA3 the term∆(x, x̂,u)
can be bounded as follows:

|∆(x, x̂,u)| < γ |x(t)− x̂(t)| (14)

where:

γ =
r

∑
i=1

(σ̄(Āi)αi +βiρ) (15)

where σ̄(M) represents the maximum singular value of the
matrix M.

Theorem 1: The state estimation error between the mul-
tiple model (7) and the multiple observer (8) converges
asymptotically toward zero, if there exists matricesP = PT >

0 andQ = QT > 0 and gain matrixK such that the following
condition holds:

[

AT
0 P+PA0−CT KT −KC + γ2Q P

P −Q

]

< 0 (16)

The gain of the observer is computed byL = P−1K.
Proof: The convergence condition of the state esti-

mation error is obtained by using a quadratic Lyapunov
function:

V (t) = e(t)T Pe(t), P = PT
> 0 (17)

its derivative is given by:

V̇ (t) = ė(t)T Pe(t)+ e(t)T Pė(t) (18)

By substituting (10) in (18) we obtain:

V̇ (t) = e(t)T (

ΦT P+PΦ
)

e(t)+2e(t)T P∆(x, x̂,u) (19)

whereΦ = A0−LC.

Lemma 1: For two matricesX and Y with appropriate
dimensions, the following property holds:

XTY +XY T
< XT Ω−1X +Y ΩY T

, Ω > 0
For Q > 0, by using lemma 1 and assumptions 1 in (19), we
obtain:

e(t)T (ΦT P+PΦ+PQ−1P)e(t)

+∆(x, x̂,u)T Q∆(x, x̂,u) < 0 (20)

Taking into account (14), the negativity oḟV (t) is assured
if:

e(t)T (ΦT P+PΦ+PQ−1P+ γ2Q)e(t) < 0 (21)

The inequality (21) holds if:

(A0−LC)T P+P(A0−LC)+PQ−1P+ γ2Q < 0 (22)

The condition (22) is not linear with respect to the variables
P, L and Q. In order to solve them with the classical LMI
approaches, the change of variableK = PL, and the Schur
complement [6] are used. The condition given in theorem 1
is obtained.

Example 1: Consider the following example to show the
advantages of using the proposed design procedure. This is
an example of a second-order system with:

A =

[

3 −1
0 −2

]

,B =

[

0
1

]

, f (x) =

[

ksin(x1)
0

]

,

C =
[

1 0
]

The Lipschitz constant is|k|. The maximum Lipschitz values
for which there exit a solution is 2.2360 for the technique
proposed in [19] and 2.1181 for that proposed in [1]. Using
a nonlinear sector transformation approach (see [18]), we
obtain two sub-models defined by:

A1 =

[

3+ k −1
0 −2

]

,A2 =

[

3−0.2172k −1
0 −2

]

,

B1 = B2 = B

The weighting functions are are given by:
{

µ1(z(t)) = z(t)+0.2172
1.2172

µ2(z(t)) = 1−z(t)
1.2172

(23)

wherez(t) = sin(x1)
x1

. Theorem 1 gives solutions for a greater
value of the Lipschitz constant compared to those obtained
above. The following table gives the admissible value ofγ
defined in (15) with respect to different values ofk.

k 1 50 100
γ 165.02 138.59 106.79



Note that the first component of the state vectorx(t) is
unstable, then the method proposed in [4] for Takagi-Sugeno
models with unmeasurable decision variables cannot be
applied because the considered Lipschitz constant goes to
∞ which implies that there is no solution for LMIs proposed
in [4].

As conclusion, the multiple model approach applied to the
state estimation of Lipschitz nonlinear systems reduces the
conservatism of the methods proposed in the literature with
regard to the admissible Lipschitz constants. In addition,the
number of LMIs to solve has been reduced. Indeed, in the
method given in [4], the number of LMI depends on the
numberr of sub-models which is not the case in the proposed
approach.

A. L2 attenuating observer

In this section, the result proposed in the previous section
is extended for nonlinear system affected by unknown ex-
ogenous disturbancesω(t) ∈ L2. Our purpose is to design
the observer gainL such that the observer error dynamics
are asymptotically stable and that the following specifiedL2

norm upper bound is simultaneously guaranteed.

‖e(t)‖2

‖ω(t)‖2
< ξ ,ξ > 0 (24)

The perturbed system is described by






ẋ(t) =
r
∑

i=1
µi(x(t))(Aix(t)+Biu(t)+Eiω(t))

y(t) = Cx(t)
(25)

By using the matrices defined in (4), (5) and (6) we obtain
the following equivalent system:

ẋ(t) = A0x(t)+
r

∑
i=1

µi(x(t))(Āix(t)+Biu(t)+Eiω(t)) (26)

The observer is given by the equations (8).
Theorem 2: The optimally robust observer (8) for system

(25) which satisfies (24), is determined by minimizinḡξ
under the following LMI constraints in the variablesP, K
and ξ̄ (real positive number):





Θ P PEi

P −Q 0
ET

i P 0 −ξ̄ I



 < 0, i = 1, . . . ,r (27)

where:

Θ = AT
0 P+PA0−KT P−PK + γ2Q+ I (28)

The gain of the observer is computed byL = P−1K. The

attenuation level is given byξ =
√

ξ̄ .

Proof: The dynamic of the state estimation error
between (26) and (8) is given by the following equation:

ė(t) = (A0−LC)e(t)+∆(x, x̂,u)+
r

∑
i=1

µi(x(t))Eiω(t) (29)

where ∆(x, x̂,u) is defined in (11). Consider the following
Lyapunov function:

V (t) = eT (t)Pe(t), P = PT
> 0 (30)

then

V̇ (t) = e(t)T (ΦT P+PΦ)e(t)+2e(t)T P∆(x, x̂,u)

+ 2
r

∑
i=1

µi(x(t))e(t)
T PEiω(t) (31)

According to the above assumptions and the lemma 1 we
have:

V̇ (t) ≤ e(t)T (ΦT P+PΦ+PQ−1P+ γ2Q)e(t)

+ 2
r

∑
i=1

µi(x(t))e(t)
T PEiω(t) (32)

The condition which guarantees the boundedness of theL2

norm of the transfer fromω(t) to e(t) (which satisfies (24))
is given by:

V̇ (t)+ e(t)T e(t)−ξ 2ω(t)T ω(t) < 0 (33)

Using the derivative of the Lyapunov function (32), we
obtain:

e(t)T (ΦT P+PΦ+PQ−1P+ γ2Q+ I)e(t)

+2e(t)T P
r

∑
i=1

µi(x(t))Eiω(t)−ξ 2ω(t)T ω(t) < 0 (34)

In matrix form we obtain:
[

e(t)
ω(t)

]T

M

[

e(t)
ω(t)

]

< 0 (35)

where :

M =
r

∑
i=1

µi(x(t))

[

Θ+PQ−1P PEi

ET
i P −ξ 2I

]

(36)

Using, the change of variablesK = PL, ξ̄ = ξ 2 and the Schur
complement, we obtain the following LMI, which guarantees
that (35) holds:





Θ P PEi

P −Q 0
ET

i P 0 −ξ̄ I



 < 0, i = 1, . . . ,r (37)



B. Pole Assignment

In order to increase the performances of the observer,
for example, to ensure that the estimation errore(t) of the
observer have fast and well damped response, it is necessary
to assign all eigenvalues of(A0 − LC) in a specific region
of the complex-plane. In order to ensure a minimal decay
rate a and a damping ratio, the eigenvalues of the system
generatinge(t) are clustered inS(a,R,q) defined by

S(a,R,q) = {z ∈ C | |z+q| < R,Re(z) < a,q > 0,a > 0}
(38)

(see [13][8]). The observer eigenvalue constraints can be
verified by theorem 3.

Theorem 3: The optimally robust observer (8) for system
(25) which satisfies (24) and the eigenvalues of the matrix
(A0 − LC) have their eigenvalues in the regionS(a,R,q),
is determined by minimizingξ̄ under the following LMI
constraints in the variablesP, K andξ̄ (real positive number):





Ξ P PEi

P −Q 0
ET

i P 0 −ξ̄ I



 < 0, i = 1, . . . ,r (39)

[

−RP qI +AT
0 P−CT KT

qI +PA0−KC −RP

]

< 0 (40)

where :

Ξ = AT
0 P+PA0−KT P−PK + γ2Q+ I +2aP (41)

Proof: The proof is based on adding the constraints on
the eigenvalues of the matrix(A0−LC). (see [13])

IV. SIMULATION RESULTS

Consider a one-link manipulator with revolute joints ac-
tuated by a DC motor [9] defined as follows: The equations
of this system are given by:















θ̇m(t) = ωm(t)
ω̇m(t) = k

Jm
(θl(t)−θm(t))− B

Jm
ωm(t)+ Kτ

Jm
u(t)

θ̇l(t) = ωl(t)
ω̇l(t) = − k

Jl
(θl(t)−θm(t))− mgh

Jl
sin(θl(t))

(42)

where θm(t) stands for the angular rotation of the motor,
ωm(t) is the angular velocity of the motor,θl(t) is the angular
position of the link, andωl(t) is the angular velocity of
the link. The input signal is given byu(t) = sin(t), and the
initial condition arex0 = 0 for the system and ˆx0 = 1 for the
observer. The state representation is:

ẋ(t) = Ax(t)+ f (x(t))+Bu(t)+Eω(t), y(t) = Cx(t)

where:

A =







0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
1.95 0 −1.95 0






,B =







0
21.6

0
0







x =







θm
ωm
θl
ωl






, f (x) =







0
0
0

−3.33sin(x3)






,E =







0.5
1
0
0







C =

[

1 0 0 0
0 1 0 0

]

The Lipschitz constant off (x) is α = 0.333. ω(t) is a
Gaussian perturbation bounded by 0.6. By using a nonlinear
sector transformation approach [18], a multiple model rep-
resentation of the above system, which describes exactly the
behavior of the original model, is given by (1) with:

A1 =







0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −22.83 0







A2 =







0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −18.77 0







B1 = B2 = B
{

µ1(z(t)) = z(t)+0.2172
1.2172

µ2(z(t)) = 1−z(t)
1.2172

(43)

where z(t) = sin(x3)
x3

. The figure 1 (a) presents the states of
the original model and those of the multiple model. The
weighting functions are illustrated in figure 1 (b).
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µ
1
(t)

µ
2
(t)

Fig. 1. (a) States of the original and multiple model. (b) Weighting
functions

Using the calculation method of Lipschitz constants given
in section III, we obtainα1 = α2 = 16.95. Due to the fact that
B1 = B2 = B and the property (2) of the weighting functions,
we have:

r

∑
i=1

Bi [µi(x(t))−µi(x̂(t)))]u(t) = 0 (44)

Then, the term (11) can be reduced as follows:

∆(x, x̂,u) =
r

∑
i=1

(Āi(µi(x(t))x(t)−µi(x̂(t))x̂(t)) (45)



Thus, the constantγ is given by:

γ =
r

∑
i=1

σ̄
(

Āi
)

αi = 0.2027α1 +0.2027α2 = 6.8715

Using theorem 3, withq = 0, R = 11, a = 0.5, we get:

L =







9.2540 1.8725
−79.1011 25.0030
−10.2161 5.1087
−36.4449 19.1960







The obtained attenuation level isξ = 0.3084. Figure 2
displays the simulation results.
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Fig. 2. Actual and estimated states

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a method for the state estimation of nonlinear
systems is proposed. The Takagi-Sugeno multiple model
representation is used. In this work, the most difficult caseis
considered, namely, where the weighting functions depend
on unmeasurable variables (system state). These functions
allow to obtain a multiple model which represent exactly
the behavior of the initial nonlinear model. The proposed
method is less conservative with regard to the value of the
Lipschitz constant. Furthermore, finding a common matrix
P for all sub-models is difficult or impossible if the number
of sub-models is important, what limits the existing methods
proposed in the literature. The proposed method reduces the
number of LMIs to solve to only one LMI (theorem 1). An
extension of the method is proposed to attenuate the effect of
bounded exogenous disturbances and the performance of the
observer are improved by eigenvalue assignment in a specific
LMI region.
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