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Abstract—This paper addresses the problem of state esti-  In this paper another method is proposed by using a
mation of nonlinear systems described by a Takagi-Sugeno Takagi-Sugeno multiple model approach to design observers
multiple model with unmeasurable decision variables. The for nonlinear systems. We consider the case where the

method is based on the reformulation of the multiple model ighting functi d d ble decisi .
in an equivalent form. First, the convergence conditions of weighting functions depend on unmeasurablie decision vari-

the state estimation error are established using the Lyapunov ables (the state of the system). Section Il introduces the
method and they are expressed in LMI formulation. Secondly, problem and some background. In Section lll, the main

performances of the observer are enhanced by pole clustering results to design the observer are given under LMI formu-
and L3 attenuation of bounded exogenous disturbances. Finally, |40 - After, the result to minimization of thé, norm of
the method is applied to estimate the state of a link flexible joint .
robot. the transfer from bounded unknown exogenous disturbances
to the state estimation error is proposed. The performances
. INTRODUCTION of the observer are improved by eigenvalues assignment.

The problem of designing observers for nonlinear systenfdn@lly, in section IV, a simulation example is given.
constitutes an important field of research these last yd#ars.
is due to a large domain of application such as, estimating of
the not accessible states, when sensors are not available oket us consider the multiple model representation of a
expensive, designing feedback control laws and generatimgnlinear system:
residual signals in order to detect and isolate failures. ;

Early work on the state estimation of nonlinear systems X(t) =3 mi(&(t)) (Ax(t)+Biu(t))
dates back to 1973 when Thau [19] proposed an extension i=1
of the Luenberger observer [11] to Lipschitz systems, he y(t) =Cx()

then provided sufficient conditions for the convergence q((t) € R" is the state vecton)(t) € R™ is the control input
the state estimation error, however, he did not propose aghdy(t) € RP is the measurement outpé, B; andC are real
methodology for synthesizing the observer gain. In [15]known matrices with appropriate dimensions. The weighting

authors have used the same structure of observer but thgwctions ; are nonlinear inf (t) and satisfy the convexity
provided an iterative method for obtaining the observengai property:

Unfortunately, Raghavan’s algorithm often fails to obtain

Il. TAKAGI-SUGENO MULTIPLE MODEL APPROACH

@)

a solution even if the observability condition is satisfied iui(f(t)) -1
and it fails if the Lipschitz constant has a large value. iZ1 _ (2)
Raghavan then proposed a state transformation to relax the 0<pi(§(t) <1ie{l,..r}

design conditions. I_n [16] Rajamani gave a s_o_lutlon o t_h_es?he decision variablé(t) can depend on measurable signals,
problems. He obtalne_d necessary and sufﬂm_ent cor@uorg r example the inputi(t) or the outputy(t) of the system
on the observer matrix that ensure asymptotic stability his situation is largely studied in the literature), or omn-
the observer and proposed a design procedure, based on deeasurable signals like the stai¢). The next section gives

use of a gradient based optimization method. He discussg comparison between using measurable or unmeasurable
the equivalence between the stability condition andHe signals

minimization in the standard form, and pointed out that
this design method was not solvable since the regularity potivations

assumptions are not satisfied. In recent work [14], based ) ) ) )

on the result of Rajamani [13], Pertew proposed a dynamic Takagi-Sugeno multiple model has proved its effectiveness

observer. The problem of regularity assumptions pointed off! the stydy of nonlinear systems. '”‘?'eed’ i,t gives a simpler
in [16] is solved by modifying théi., problem. Other classes formulation from the mathematical point of view to represen
of nonlinear systems are also studied in the literature {'® Pehavior of nonlinear systems [17]. In the field of
design observers for nonlinear systems, among them, we cSigPility analysis and stabilization, many works, such as

cite the use of Linear Parameter Varying systems (LPV) [3ftate feedback control [18][10][7], have been developedi an
applied in a lot of practical situations. The problem of stat
All the authors are with the Centre de Recherche erestimation has also been studied in order to design state
Qﬁ&%matl?;e Iade f@’t\‘a”(?é (Sgg”)' 54é\llegncy_\l});r:\(/j?)§:}vre2’|es s‘gncyfeedback control laws and design a residual generator to
{dalil.ichalal, benoit.marx, jose.ragot, detect and isolate faults in the system and reconfiguring the

di di er. maqui n}@nsem i npl - nancy. fr control laws in the presence of faults [2][5].



In the field of state estimation and diagnosis of nonlineaBy substitutingAg andA; in the state equation (3), we obtain
systems using multiple model approach, the most of the putie following equivalent system:
lished works considered T-S models with measurable premise r
variables [2][13]. It is clear that the choice of measurable X(t) = Aox(t) + Zyi(x(t))(,&x(t)_ysiu(t)) )
premise variables offers a good simplicity to generalize th i=
methods already developed for linear systems. But in thene proposed observer is in the following form:
case where the premise variables are not measurable, the ]
problem becomes very hard. However, this formalism is verygz(t) =AR(t) + T i (g(t))(,g.;((t) +Biu(t)) 4+ L(y(t) —y(t))
important in both the exact representation of the nonlinear_ N i=1
behavior by multiple model (see the simulation example)y(t) =Cx(t)
and in diagnosis method based on observer banks to detef.%te state estimation error is aiven bv:
and isolate actuator and sensor faults. Indeed in this case, 9 y:
the use of measurable premise variables requires to develop e(t) = x(t) —X(t) (9)
two different multiple models, the first using the input)
in the premise variable to detect and isolate sensor faul@nd its dynamic is:
and the second using the output of the system for actuator . .
faults. Multiple model with unmeasurable premise variable &(t) = (Ao~ LOJe(t) + A X, ) (10)
allows to develop only one model of the system behavior tghere:
detect and isolate actuator and sensor faults using olsserve r
banks. In the literature, a few works are devoted to the case  A(x, %, u) Z[A_i(ui (X(1))X(t) — Wi (R(1))X(1))
of unmeasurable decision variables, nevertheless, we can i=
cite [5][12][4], where the authors proposed the fuzzy Thau- Bi (i (x(t)) — ti (X(t))u(t))] (11)
Luenberger observer which is an extension of the classical . ) : "
Luenberger observer. The main contributions of this pap rAssgmpnon 1: Assume that the following conditions
are to reduce the conservatism of the existing works [4][ ]olds.
by reducing the number of LMIs to be solved and relaxing ¢ AL [Hi(X(t))X(t) — i (X(t))X(t)] < ai [x(t) —X(t)]
the conditions under which the method is applicable. o A2, [Bi(Hi(x(t)) — Hi(X(1)))] < B [x(t) — X(t)]

« A3. Jult)|<p
I[Il. M AIN RESULTS wherea; >0 andf; > 0.

Consider the following nonlinear system described by dNe calculation ofx; andf; is given by the following steps:
multiple model: Consider a functiorf (x) : x € R" — R" defined as follows:

{ X(t) = f)=[ 1007 - faT ]Tx=[x - X ]
y(t)

Let us consider the matrices andA_i defined in one of the X1 X
two following ways: fi(x) — fi(X) = Aj‘g—g(t)dt+...+Af %(t)dt (12)

1) The matrixAq is defined as a mean of the matricks 1 *n
then: i € {1,...,n}. Each functionf; can be bounded as follows:

r
A0 - % ZlAi (4) X1 dfl
2 010 < [
2) The matrixAg is chosen as a dominant local model %1
of the system. Let th¢'" local model is the dominant ot
one, then: Let definea;; :teg]_aé_] d—x;(t)
Ao =A| (5) [x; %] is not known, s@; is calculated fot € R. We obtain

The matrixA; is then defined by: ajj = rpE%x‘g—xf}(t)‘. Then, (13) can be re-written as follows:

(8)

+

Hi(X(1)) (AX(t) + Biu(t))
@) , , :
) The Taylor formula at order zero with an integral remainder
term of f(x) aroundxis:

QIM-

oty
M(t)'dt+...+/‘m(t)‘dt (13)

i,j€{1,..,n}. The interval

A=A-A (6) [fi(x) — fi(R)| < a1|xa—Ka| + ... 4+ @n X — Xn|



By rewriting the above inequalities in matrix form, we Lemma 1. For two matricesX and Y with appropriate
obtain: dimensions, the following property holds:

f(x)— f(X)| <Ix—X
[F(¥) = F(X)] < I|x—¥X| XTY £ XYT < XTQIX+YQYT, Q>0

where: For Q> 0, by using lemma 1 and assumptions 1 in (19), we
a1 - @ obtain:
J— . .
- o et) " (®TP+Pd 4 PQ P)e(t)
B B FAX, %, U) TQA(X, %, U) < 0 (20)

The Lipschitz constant of (x) is given by the maximum o e
singular value ofl. Taking into account (14), the negativity df(t) is assured

Remark 1: The weighting functionsyi(x) are globally if:
Lipschitz. In the assumptioAl, et)T(®TP+ PO+ PQ 1P+ yZQ)e(t) <0 (1)

« if the functionsy;(x)x are globally Lipschitz then even _ _ _

if the system is unstable the constantsexist and the The inequality (21) holds if:

proposed method can be applied. T _ 1
« If the functionsy; (x)x are locally Lipschitz the stability (Ao —LC)TP+P(A—LC)+PQ Py Q<0  (22)
of the system is required. The condition (22) is not linear with respect to the variable
Note that the method proposed in [5] requires the stabilitf, L and Q. In order to solve them with the classical LMI
of the system. approaches, the change of varialsle= PL, and the Schur
Using the assumptional, A2 and A3 the termA(x, X, u) complement [6] are used. The condition given in theorem 1
can be bounded as follows: is obtained. O
R R Example 1. Consider the following example to show the
AKX W) < yIx(t) —X(t)] (14)  advantages of using the proposed design procedure. This is
where: an example of a second-order system with:
)ai + 15 3 -1 0 ksin(xy
y= Z -+ Bp) (15) A:{OZ]’B:MJ(X):[ 0()},

where g(M) represents the maximum singular value of the
matrix M.

Theorem 1. The state estimation error between the mulThe Lipschitz constant i&|. The maximum Lipschitz values
tiple model (7) and the multiple observer (8) convergegor which there exit a solution is.2360 for the technique
asymptotically toward zero, if there exists matriées PT >  proposed in [19] and.2181 for that proposed in [1]. Using
0 andQ= Q' > 0 and gain matriX such that the following a nonlinear sector transformation approach (see [18]), we

c=[1 0]

condition holds: obtain two sub-models defined by:
AGP+PA—CTKT —KC+yQ P ] _o (1 3+k -1 3-0217% -1
P Q| = (16) A= A=
0o -2 0 -2
The gain of the observer is computed by= P~1K. Bi=B,=B

Proof: The convergence condition of the state esti- o _ _
mation error is obtained by using a quadratic LyapunoVhe weighting functions are are given by:

function: z )
V(t) = e(t)TPe(t), P=PT >0 (17) { (2(0) = 250" 23)
H2(2(t)) = 15172

its derivative is given by:

_ sin(xa) ; ;
Yoy T T wherez(t) = 30X Theorem 1 gives solutions for a greater
V(1) = &(t) " Pe(t) +e(t) " Pe(t) (18) value of the Li(ﬁschitz constant compared to those obtained
By substituting (10) in (18) we obtain: above. The following table gives the admissible valueyof
. T - ~ defined in (15) with respect to different valueskof
V(t)=et) (®'P+Pd)e(t)+2e(t) PAX,X,u)  (19) T 55 60

where® = Ay — LC. y | 16502 | 13859 | 10679




Note that the first component of the state vecker) is Proof: The dynamic of the state estimation error

unstable, then the method proposed in [4] for Takagi-Suger®tween (26) and (8) is given by the following equation:

models with unmeasurable decision variables cannot be r

applied because the considered Lipschitz constant goes t@(t) = (Ao — LC)e(t) +A(X, X, u) + Z\ui (X(t))Eiw(t) (29)

oo which implies that there is no solution for LMIs proposed i=

in [4]. _ _ _ where A(x,%,u) is defined in (11). Consider the following
As conclusion, the multiple model approach applied to thEyapunov function:

state estimation of Lipschitz nonlinear systems reduces th

conservatism of the methods proposed in the literature with V(t) =€ (t)Pe(t), P=PT >0 (30)

regard to the admissible Lipschitz constants. In additibe,

number of LMIs to solve has been reduced. Indeed, in thtgen

method given in [4], the number of LMI depends on the V(t) _ e(t)T(q)Tp+p¢)e(t)+Ze(t)TpA(X7)’z, u)

numben of sub-models which is not the case in the proposed r

approach. + 2 Zlui (x(t))e(t) TPE w(t) (31)
=

A. L5 attenuating observer According to the above assumptions and the lemma 1 we

In this section, the result proposed in the previous sectigfpve:
is extended for nonlinear system affected by unknown ex- ) T ™
ogenous disturbances(t) € £,. Our purpose is to design V() < et) (®TP+PO+PQ P+ FQ)e(t)

the observer gai. such that the observer error dynamics . Tor
are asymptotically stable and that the following specified + 221“ |(X()e(t)” PRiw(t) (32)
norm upper bound is simultaneously guaranteed. » )
The condition which guarantees the boundedness of’the
le®llz _ £E>0 (24) horm of the transfer frono(t) to e(t) (which satisfies (24))
()]l is given by:
The perturbed system is described by V(1) +et)Tet) — E2w(t) T w(t) < 0 (33)
r
X(t) =3 mi(x(t)) (AX(t) +Biu(t) + Eiw(t)) 25) Using the derivative of the Lyapunov function (32), we
i=1 hel
y(t) = Cx(t) obtain:
TipT —1
By using the matrices defined in (4), (5) and (6) we obtain et) r(qn P+P®+PQ P+ y2Q+I)e(t)
the following equivalent system: 12e(t)TP Zl’“" (X)) E c(t) — Ezw(t)Tw(t) <0 (34)
r _ i=
X(t) = Aox(t) +.ZM (X)) (Ax(t) + Biu(t) + Bi(t))  (26) In matrix form we obtain:
=
The observer is given by the equations (8). { e(t) }TM { e(t) ] <0 (35)
Theorem 2: The optimally robust observer (8) for system w(t) w(t)
(25) which satisfies (24), is determined by minimizidg |\ ore -
under the following LMI constraints in the variablé€s K ' ] L
and & (real positive number): < ©+PQ™"P PE
© P PE = B
P -Q 0 |[<0i=1..r (27)  Using, the change of variablé&s= PL, & = £2 and the Schur
E'P 0 =&l complement, we obtain the following LMI, which guarantees
where: that (35) holds:
] P PE
©=AjP+PAy—KTP—PK +y?Q+1 (28) P 0 0 |<0i-t1. .1 @a7)
The gain of the observer is computed hy= P~1K. The E'P 0 =&l

attenuation level is given b§ = \E O



B. Pole Assignment

In order to increase the performances of the observer,

for example, to ensure that the estimation ey of the

observer have fast and well damped response, it is necessary

to assign all eigenvalues @¢Py — LC) in a specific region

of the complex-plane. In order to ensure a minimal decay.

rate a and a damping ratio, the eigenvalues of the syste
generatinge(t) are clustered ir§(a, R, q) defined by

S(a,Rq) ={zeC| |z+9 <R Re(z) <a,g>0,a>0}
3

(see [13][8]). The observer eigenvalue constraints can be

verified by theorem 3.

Theorem 3: The optimally robust observer (8) for system
(25) which satisfies (24) and the eigenvalues of the matr
(Ao — LC) have their eigenvalues in the regi®ia,R,q),
is determined by minimizingg under the following LMI
constraints in the variabldy K andé (real positive number):

= P PE
P —Q 0 |<0i=1..,r (39)
E'P 0 &I
“RP al +ASP-CTKT
[ql—s—PAo—KC —RP W
where :
Z=AP+PA-KTP_PK+2Q+I+2aP  (41)

Proof: The proof is based on adding the constraints o
the eigenvalues of the matridy — LC). (see [13]) O

IV. SIMULATION RESULTS

Consider a one-link manipulator with revolute joints ac-
tuated by a DC motor [9] defined as follows: The equation )

of this system are given by:

gm(t) = wm(t)
Gn(t) = 3, (8(1) — n(®) — Feam(®) + Ju®)
Gt =al)

6 (t) = = (8/(t) — (1) — P sin(8) (1))

where 0y (t) stands for the angular rotation of the motor
wm(t) is the angular velocity of the moto, (t) is the angular
position of the link, andw (t) is the angular velocity of
the link. The input signal is given by(t) = sin(t), and the
initial condition arexg = 0 for the system angdy= 1 for the
observer. The state representation is:

X(t) = AX(t) + f(x(t)) +Bu(t) + Ecw(t), y(t) =Cx(t)
where:

0 1 ) 0
_486 -125 486 0 216

A=1 o 0 o 1|8B=| 0
195 0 -195 0 0

Om 0 0.5
_ | wm 0 1
X= 8 ,f(x) = 0 E=1 »
W —3.33sinx3) 0

1 0 0 O

C:{o 10 o]

The Lipschitz constant off(x) is a = 0.333. w(t) is a
'Baussian perturbation bounded hg.0By using a nonlinear
sector transformation approach [18], a multiple model rep-
resentation of the above system, which describes exadctly th
behavior of the original model, is given by (1) with:

T 0 1 0 07
A _ | 486 125 486 0O
1= 0 0 0 1
: 195 0 —2283 0 |
X r 0 1 0 07
A _ | —486 -125 486 O
2= 0 0 0 1
19.5 0 —1877 0 |
Bi=B,=B
_ Z()40.2172
pa(z(t) = S o173 (43)
_ 171
H2(2(t) = 15175
wherez(t) = Sinbs) - The figure 1 (a) presents the states of

the original model and those of the multiple model. The
weighting functions are illustrated in figure 1 (b).
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Fig. 1. (a) States of the original and multiple model. (b) Weéih

functions

Using the calculation method of Lipschitz constants given
in section I, we obtaira; = a, = 16.95. Due to the fact that
B; = By =B and the property (2) of the weighting functions,
we have:

0

isi B (x(0) — (RO (D) = (44)

Then, the term (11) can be reduced as follows:

r
A(X, X, U) =

.Zl@ (ki (X(£))X(t) — pi (X(1))X(t))

(45)



Thus, the constant is given by:
r J—
y= ZE(A,—) a; =0.202701 +0.20270, = 6.8715
i=

Using theorem 3, witlp=0, R=11, a=0.5, we get:

9.2540 18725
L= —79.1011 250030
| —10.2161 51087

—36.4449 191960

The obtained attenuation level & = 0.3084. Figure 2

displays the simulation results.
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Fig. 2. Actual and estimated states

V. CONCLUSIONS AND FUTURE WORKS
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In this paper, a method for the state estimation of nonlinear
systems is proposed. The Takagi-Sugeno multiple mod&p!

representation is used. In this work, the most difficult dase

considered, namely, where the weighting functions deperitfl

on unmeasurable variables (system state). These functi

allow to obtain a multiple model which represent exactly
the behavior of the initial nonlinear model. The proposed

method is less conservative with regard to the value of t
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