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∗ Centre de Recherche en Automatique de Nancy
UMR 7039 Nancy-Université CNRS
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Abstract: In this paper, the stability of Takagi-Sugeno (TS) descriptor systems is studied.
In most of previous works concerning TS descriptor systems, the authors claimed that the
study of polytopic matrix pencil (

∑

i λi(t)Ei,
∑

i λi(t)Ai) reduces to the study of an augmented
polytopic matrix pencil (E∗,

∑

i λi(t)A
∗

i ) with a common matrix E∗. The approach they have
used is based on a state augmentation. In this paper, it is proved that this transformation
introduces impulsive terms, because time derivate of the state variables are added in the state
vector. The major contribution of this paper is to avoid this state augmentation. A new sufficient
stability condition is established. Stability with guaranteed decay rate and L2-norm bound are
also studied. All results are given in the linear matrix inequality formalism.
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1. INTRODUCTION

In the last two decades, the Takagi-Sugeno systems (TS),
proposed by Takagi and Sugeno (1985), has received a
considerable amount of attention, due to its ability to
describe nonlinear systems. In Wang et al. (1996), stability
analysis is addressed and controller design is derived in
the LMI formalism. Relaxed sufficient conditions for fuzzy
controllers and observers are proposed in Tanaka et al.
(1998), taking benefit from properties of the activating
functions. A multiple Lyapunov function is defined in
Tanaka et al. (2003) to study the stability of TS systems.
The multiple Lyapunov function approach is appealing
in order to relax the conservativeness of stability and
stabilization problems.

As pointed in Dai (1989b), the descriptor formalism is
very attractive for system modeling , consequently much
attention has been paid to descriptor systems. Controlla-
bility and observability of descriptor systems were studied
in Cobb (1984), and H2 and H∞-controllers are designed
in Ikeda et al. (2000) and Uezato and Ikeda (1999) respec-
tively.

The TS model has been generalized to descriptor systems
in Taniguchi et al. (1999) and Taniguchi et al. (2000).
The stability and the design of state-feedback controllers
for TS descriptors systems (TSDS) are characterized via
LMI in Taniguchi et al. (1999). The particular problem of
nonlinear model following is treated in Taniguchi et al.
(2000). The study of TSDS is envisaged with interval
methods in Wang et al. (2001). In Marx and Ragot (2006),
stability, controller and observer design are envisaged
under pole clustering constraint, and LMI-based solutions
are given.
⋆ This work was supported by the TASSILI No.7 program under

MDU grant 714.

All the cited works use a particular state augmentation to
reduce the study of the general case of polytopic matrix
pencils (

∑

i λi(t)Ei,
∑

i λi(t)Ai) to the special case of an
augmented polytopic matrix pencil (E∗,

∑

i λi(t)A
∗

i ) with
a common E∗ matrix. This state augmentation will be
shown to be highly detrimental since it may artificially
introduce impulsive terms in the state response, and causes
poor controllability and observability.

In this paper we consider the class of TS descriptor sys-
tems, and no rank assumption is made on the Ei matri-
ces: the Ei matrices can be of different ranks, and rank
deficient. Stability and L2-norm bound are investigated.
All the results are given in LMI formalism, since this
approach is numerically efficient (Gahinet et al. (1995)).
The paper is organized as follows. In section 2, the TSDS is
presented and the motivations of this paper are discussed.
The section 3 is dedicated to the establishment of the
stability conditions. Emphasis is put on the relaxation of
the LMI condition, and an α-stability condition is given in
order to ensure a prescribed decay rate. In section 4 the
L2-norm bound condition is stated. Before concluding, a
numerical example is given.

Notation 1. For any matrix M , MT is the transpose of
M , M < 0 (resp. M > 0) stands for M is negative (resp.
positive) definite and S(M) is defined by S(M) = M+MT .

2. PROBLEM FORMULATION

In this paper, we consider the TSDS, which is an extension
of the Takagi-Sugeno models, defined in Tanaka et al.
(1998), to the descriptor case. The TS system is described
by fuzzy if-then rules, which represent linear input-output
descriptor relations. The class of TSDS can be defined by



Rule i : If z1(t) is Mi1 and . . . and zl(t) is Mil

Then

{

Eiẋ(t) = Aix(t) + Biu(t)
y(t) = Cix(t)

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input
vector, and y(t) ∈ Rm are the measurements. The premise

variable, z(t) ∈ Rl is defined by z(t) = [z1(t) . . . zl(t)]
T
.

The matrices Ei, Ai, Bi, and Ci, for i = 1, . . . , N , are
known constant real matrices of appropriate dimensions.
The matrices Ei may be rank deficient, their rank are
denoted rankEi = ri ≤ n. Mij is a fuzzy set and N is
the number of if − then rules. The overall model, defined
by Taniguchi et al. (2000), is

N
∑

i=1

hi(z(t))Eiẋ(t) =
N
∑

i=1

hi(z(t)) (Aix(t) + Biu(t)) (2)

y(t) =

N
∑

i=1

hi(z(t))Cix(t) (3)

where the normalized activating functions hi(z(t)) are
required to be C1 functions and to verify the following
constraints

N
∑

i=1

hi(z(t)) = 1 and hi(z(t)) ≥ 0, i = 1, . . . , N,∀t (4)

Most of the works addressing the class of T-S fuzzy
descriptor systems (e.g. Taniguchi et al. (1999), Taniguchi
et al. (2000), Wang et al. (2001)), use the following state
augmentation from (Ei, Ai, Bi, Ci) to (E∗, A∗

i , B
∗

i , C∗

i ), re-
writing the system (2-3) into the pretended equivalent
system :

E∗ẋ∗(t) =
N
∑

i=1

hi(z(t)) (A∗

i x
∗(t) + B∗

i u(t)) (5)

y(t) =

N
∑

i=1

hi(z(t))C∗

i x∗(t) (6)

where x∗, E∗, A∗

i , B∗

i , C∗

i are defined by :

x∗(t) =

[

x(t)
ẋ(t)

]

E∗ =

[

In 0
0 0

]

A∗

i =

[

0 In

Ai −Ei

]

B∗

i =

[

0
Bi

]

C∗

i = [Ci 0] (7)

Unfortunately, this augmentation causes major drawbacks.
Even for a non impulsive trajectory of the system x(t),
the time derivative of x(t), introduced in the augmented
state vector x∗(t), may be impulsive (discontinue). In fact,
unless the matrices Ei are full rank (in other words, the
pencil-matrices (Ei, Ai) are not differential-algebraic, but
usual dynamic systems), the pencil-matrices (E∗, A∗

i ) are
necessary impulsive. Moreover the systems (E∗, A∗

i , C
∗

i )
are not impulse observable, and the condition for impulse
controllability of (E∗, A∗

i , B
∗

i ) is more restrictive than the
one concerning the original systems (Ei, Ai, Bi).

Proposition 1. The following statement are equivalent, for
i = 1, . . . , N :

(i) rankEi = n
(ii) the system (E∗, A∗

i ) is impulse free
(iii) the system (E∗, A∗

i , C
∗

i ) is impulse observable

The following statements are equivalent, for i = 1, . . . , N :

(iv) the system (E∗, A∗

i , B
∗

i ) is impulse controllable
(v) rank [Ei Bi] = n

Proof: (i) ⇔ (ii). Let recall that (E∗, A∗

i ) i = 1, . . . , N is
impulse free if and only if (see Dai (1989a))

2n = rank

[

E∗ A∗

i
0 E∗

]

− rankE∗

= rank







In 0 0 In

0 0 Ai −Ei

0 0 In 0
0 0 0 0






− n (8)

which is obviously equivalent to rankEi = n.
(i) ⇔ (iii). Let us recall that (E∗, A∗

i , C
∗

i ) i = 1, . . . , N is
impulse observable if and only if (see Dai (1989b))

2n+rankE∗=rank

[

A∗T
i E∗T C∗T

i

E∗T 0 0

]

=2n+rankET
i (9)

which is obviously equivalent to rankEi = n.
(iv) ⇔ (v). Let us recall that (E∗, A∗

i , B
∗

i ) i = 1, . . . , N is
impulse controllable if and only if (see Dai (1989b))

2n+rankE∗=rank

[

A∗

i E∗ B∗

i
E∗ 0 0

]

=2n+rank [Ei Bi] (10)

�

Impulsive terms in the time response of a descriptor sys-
tem may be highly detrimental for its operation. The
impulse controllability (resp. the impulse observability) is
the ability to cancel (resp. reconstruct) these undesirable
impulsive terms. As a result of the above proposition,
if rank Ei 6= n the design methods based on the state
augmentation introduce impulsive terms which cannot be
observed. Moreover the impulse controllability of the orig-
inal systems (Ei, Ai, Bi) do not imply the impulse control-
lability of the systems (E∗, A∗

i , B
∗

i ), since the condition (v)
is more restrictive than

rank

[

Ai Ei Bi

Ei 0 0

]

= n + rankEi (11)

The previous considerations highlight that most of the
results concerning TS fuzzy descriptor systems are not
efficient for algebraic-differential systems but mainly ded-
icated to descriptor systems (i.e. Ei 6= In, with rankEi =
n), which is very restrictive. In such a case all the different
systems must be of the same order, despite one of the main
interest in TS fuzzy singular systems is the ability to model
systems with different orders behavior.

The aim of the paper is to propose a method which can
be applied to T-S singular systems, even if the matrices
Ei are not of full rank. The assumption made throughout
this paper is the following.

Assumption 1: There exist real positive scalars νi verifying
∣

∣

∣ḣi(z(t))
∣

∣

∣ ≤ νi, for i = 1, . . . , N. (12)

The determination of the νi is discussed in Tanaka et al.
(2003) and Jadbabaie (1999).

In the remaining of the paper some technical results are
often used, it is recalled in the following lemma.



Lemma 1. For any X and Y of appropriate dimension,
and for any real positive definite matrix M the following
inequality holds

XT Y + Y T X ≤ XT MX + Y T M−1Y (13)

The free positive definite matrix M is used to limit the
conservatism if the matrices X and Y are numerically far
(e.g. M may be set to the ratio of the condition number
of Y to the one of X).

Proof: The inequality (13) is equivalent to

(XT M1/2 − Y T M−1/2)(M1/2X − M−1/2Y ) ≥ 0 (14)

which is obvious for any positive definite matrix M . �

Lemma 2. The condition (15) is satisfied if there exist
symmetric matrices Tij satisfying (16) and (17).

N
∑

i=1

N
∑

j=1

hi(z(t))hj(z(t))xT (t)Gijx(t) < 0 (15)

1

2
(Gij + Gji) < Tij , for 1 ≤ i ≤ j ≤ N (16)









T11 T12 . . . T1N

T12 T22 . . . T2N

...
...

. . .
...

T1N T2N . . . TNN









≤ 0 (17)

Proof: See Tanaka and Wang (2001) (chap. 12). �

A classical method to satisfy condition (15) is to impose
Gij < 0. The relaxation introduced by lemma 2 is obvious
since the solution Tij = 0 leads to impose Gij < 0.

Notation 2. In the remaining of the paper, the activating
functions hi(z(t)) are shortened to hi(t), and hij(t) de-
notes hij(t) = hi(t)hj(t).

3. STABILITY ANALYSIS OF TSDS

In this section, a stability condition is proposed, in terms
of LMI. The major benefit of the proposed method is
that different Ei matrices are handled simultaneously,
then the previously discussed state augmentation can be
avoided, and consequently no impulsive term is artificially
introduced. We first establish a basic result obtained
by differentiating a quadratic Lyapunov function, then
a less restrictive LMI condition will be stated, based on
properties of the activating functions.

3.1 LMI stability condition

Consider the input-free T-S descriptor system defined by

N
∑

i=1

hi(t)Eiẋ(t) =
N
∑

i=1

hi(t)Aix(t) (18)

The following theorem gives a sufficient strict LMI condi-
tion for the stability of a TS fuzzy singular system.

Theorem 1. The TSDS (18) is quadratically stable if there
exist positive definite matrices P ∈ R

n×n, Xij ∈ R
n×n

and matrices Qj ∈ R
(n−r)×n verifying the LMI (19) for

1 ≤ i ≤ j ≤ Nand (20) for 1 ≤ i ≤ j ≤ N .

















Φi,j + Φj,i

2
ET

1 PE1 ET
2 PE1 . . . ET

NPEN

ET
1 PE1 −2X11 0 . . . 0

ET
1 PE2 0 −2X12 0 0

...
... 0

. . . 0
ET

NPEN 0 0 0 −2XNN

















< 0 (19)

ET
i PEj + ET

j PEi ≥ 0 (20)

where Φi,j is defined by (21), and where the full column

rank matrix E0 ∈ R
n×(n−r) is a base of the intersection of

the null spaces of ET
i defined by (22)

Φi,j =

N
∑

u=1

N
∑

v=1

(νu+νv)2

2
Xuv+S(AT

i (PEj+E0Qj)) (21)

[E1 E2 . . . EN ]
T

E0 = 0 (22)

Remark: If the intersection of the null spaces of Ei is
empty, then E0 = 0.

Proof: Consider the following Lyapunov function of
quadratic form

V (x, t) =

N
∑

i=1

N
∑

j=1

hi(t)hj(t)x
T (t)ET

i PEjx(t) (23)

Obviously, V (0, t) = 0 and (20) implies that V (x, t) is
nonnegative for x 6= 0. The time derivate of V (x, t), along
the trajectory of the system (18), is given by the following
relation.

V̇ (x, t) =

N
∑

i=1

N
∑

j=1

(

ḣij(t)x
T (t)ET

i PEjx(t)

+hij(t)
(

ẋT (t)ET
i PEjx(t)+xT (t)ET

i PEj ẋ(t)
))

Since, for i = 1, . . . , N , we have ET
i E0 = 0, the previous

equation is equivalent to

V̇ (x, t) =

N
∑

i=1

N
∑

j=1

ḣij(t)x
T (t)ET

i PEjx(t)

+

N
∑

i=1

N
∑

j=1

hij(t)
(

ẋT (t)ET
i (PEj + E0Qj)x(t)

+xT (t)(PEi + E0Qi)
T Ej ẋ(t)

)

(24)

According to the definition of the system (18), and permut-
ing the subscripts i and j in the last term, the previous
equality becomes

V̇ (x, t) =

N
∑

i=1

N
∑

j=1

ḣij(t)x
T (t)ET

i PEjx(t)

+

N
∑

i=1

N
∑

j=1

hij(t)x
T (t)

(

AT
i (PEj + E0Qj)

+(PEj + E0Qj)
T Ai

)

x(t) (25)

With the use of lemma 1, the following inequality holds
for positive definite matrices Xij



ḣij(t)x
T (t)ET

i PEjx(t) ≤

(

ḣij(t)
)2

2
xT (t)Xijx(t)

+
1

2
xT (t)ET

j PEiX
−1
ij ET

i PEjx(t) (26)

Substituting (26) in (25), we obtain the following inequal-
ity

V̇ (x, t)≤
N
∑

i=1

N
∑

j=1

(

ḣij(t)
)2

2
xT (t)Xijx(t)

+
N
∑

i=1

N
∑

j=1

hij(t)x
T (t)S

(

AT
i (PEj + E0Qj)

)

x(t)

+
1

2
xT (t)ET

j PEiX
−1
ij ET

i PEjx(t) (27)

Taking the assumption 1 into account, and since hi(t) ≤ 1,

it is possible to bound ḣij(t), by

|ḣij(t)| = |ḣi(t)hj(t) + hi(t)ḣj(t)| ≤ νi + νj (28)

Substituting (28) in (27) and factorizing by hij(t), we have

V̇ (x, t) ≤
N
∑

i=1

N
∑

j=1

hij(t)x
T (t)

[

N
∑

u=1

N
∑

v=1

(νu + νv)
2

2
Xuv

+
1

2
ET

v PEuX−1
uv ET

u PEv+S
(

AT
i (PEj +E0Qj)

)

]

x(t)(29)

and with N2 Schur complements the LMI (19) is obtained.
Note that this LMI implies that the Xij are positive
definite. Due to the positiveness of hij(t), if the LMI

(19) are satisfied, then V̇ (x, t) < 0, and consequently the
quadratic stability of the system (18) is proved. �

3.2 Relaxed stability condition

In this section a relaxed stability condition for TSDS is
proposed. In order to avoid the conservatism introduced
by the extensive use of lemma 1 in the previous results,
an interesting property of the activating functions hi(t) is

exploited. Since
∑N

i=1 hi(t) = 1, we have

N
∑

i=1

ḣi(t) = 0 ⇔ ḣN (t) = −
N−1
∑

i=1

ḣi(t) (30)

Taking benefit of (30), the relaxed stability condition is
established.

Theorem 2. The TSDS (18) is quadratically stable if there
exist positive definite matrices P ∈ R

n×n, symmetric ma-
trices Tij ∈ R

n×n and matrices Qj ∈ R
(n−r)×n verifying

the LMI (31-32) for 1 ≤ i ≤ j ≤ N , (32), (34) and (34) for
1 ≤ i ≤ j ≤ N − 1.

1

2
(Ψij + Ψji) < Tij (31)

ET
i PEj + ET

j PEi ≥ 0 (32)








T11 T12 . . . T1N

T12 T22 . . . T2N

...
...

. . .
...

T1N T2N . . . TNN









≤ 0 (33)

(Ei−EN )T P (Ej−EN )+(Ej−EN )T P (Ei−EN )≥0 (34)

where the full column rank matrix E0 ∈ R
n×(n−r) is a base

of the intersection of the null spaces of ET
i defined by (22),

and where Ψij is defined by

Ψij =

N−1
∑

u=1

N−1
∑

v=1

νuνv(Eu − EN )T P (Ev − EN )

+
1

2
S(ET

i PEj) + S
(

AT
i (PEj + E0Qj)

)

(35)

Proof: The Lyapunov function V (x, t) is defined by (23),
obviously (32) implies V (x, t) ≥ 0. The function V (x, t) is
derivated along the trajectory of the system (18). Let us
denote the first term of the right-hand side of (25) by

f(t) =
N
∑

i=1

N
∑

j=1

ḣij(t)x
T (t)ET

i PEjx(t) (36)

With (30), f(x, t) can be developed in

f(t) =xT (t)





N
∑

i=1

N
∑

j=1

ḣi(t)hj(t)E
T
i PEj

+

N
∑

i=1

N
∑

j=1

hi(t)ḣj(t)E
T
i PEj



x(t) (37)

=xT (t)





N−1
∑

i=1

N
∑

j=1

ḣi(t)hj(t)(Ei − EN )T PEj

+

N
∑

i=1

N−1
∑

j=1

hi(t)ḣj(t)E
T
i P (Ej − EN )



x(t) (38)

Permuting the subscripts i and j in the second term, and
noticing that f(x, t) is a scalar function, we have

f(t) =2xT (t)

(

N−1
∑

i=1

ḣi(t)(Ei−EN )T

)

P





N
∑

j=1

hj(t)Ejx(t)





≤xT (t)





N−1
∑

i=1

N−1
∑

j=1

ḣi(t)ḣj(t)(Ei − EN )T P (Ej − EN )

+

N
∑

i=1

N
∑

j=1

hij(t)E
T
i PEj



x(t) (39)

with (4), (12), (34) and lemma 1, we have

f(t) ≤xT (t)

(

N−1
∑

u=1

N−1
∑

v=1

νuνv(Eu − EN )T P (Ev − EN )

+

N
∑

i=1

N
∑

j=1

hij(t)E
T
i PEj



x(t) (40)

Substituting (40) in (25), and factorizing by hij(t) we have
(41), where Ψij is defined by (35).

V̇ (x, t) ≤

N
∑

i=1

N
∑

j=1

hi(t)hj(t)x
T (t)Ψijx(t) (41)

With lemma 2, it is clear that (31-33) are sufficient condi-

tions for (41). Consequently, (31-34) implies V̇ (x, t) < 0,
and thus the stability of the TSDS (18) is proved. �

The stability condition given by theorem 2 is less restric-
tive than in theorem 1 since the number of positive definite



or semi positive definite terms on the left hand side of
(31) is (N − 1)2, whereas in (29) it is N2. Moreover, if
the different matrices Ei are defined by different operating
point, then different matrices Ei may have several entries
in common, and thus (EN −Ei) may be sparse matrices or
at least with entries close to zero. Then the positive semi
definite terms (EN − Ei)

T P (EN − Ei) appearing in the
negative definite part of the LMI are sparse and are not
restrictive. A numerical example will illustrate the benefit
of the relaxed stability condition.

3.3 Relaxed α-stability condition

The vocable α-stability denotes the property of stability
with a prescribed decay rate α of the state variable x(t).
In fact, in most control applications, stability is not a
satisfying objective since it is important to also consider
the time of response to reach performance objectives. This
criteria is related to the decay rate of x(t), i.e. to the
largest α, such that limt→∞ eαt||x(t)|| = 0. A sufficient
condition to ensure a decay rate of x(t) larger or equal
to α is that there exists a Lyapunov function verifying
V̇ (x, t) + 2αV (x, t) ≤ 0, see Boyd et al. (1994).

Theorem 3. The TSDS (18) is quadratically α-stable if
there exist a positive definite matrix P ∈ R

n×n, symmetric
matrices Tij ∈ R

n×n and matrices Qj ∈ R
(n−r)×n verify-

ing the LMI (31-34), where the full column rank matrix
E0 ∈ R

n×(n−r) is a base of the intersection of the null
spaces of ET

i defined by (22), and where Ψij is defined by

Ψij =

N−1
∑

u=1

N−1
∑

v=1

νuνv(Eu − EN )T P (Ev − EN )

+

(

1 + 2α

2

)

S(ET
i PEj) + S

(

AT
i (PEj + E0Qj)

)

Proof: The proof is derived of the proof of theorem 2, by

verifying V̇ (x, t) + 2αV (x, t) ≤ 0, with V (x, t) defined by
(23). �

4. L2-NORM BOUND CONDITION

The L2-gain of a nonlinear system is a useful performance
criterion to quantify disturbance attenuation, control or
filtering performance (for linear time invariant system
it coincides with the H∞-norm). It is defined by the
maximum of the ratio of the L2-norm of the output signal
and the L2-norm of the input signal, where the L2-norm
of a signal w(t) is defined by ||w(t)||22 =

∫

∞

0
wT (t)w(t)dt.

The L2-gain of a system of input u(t) and output y(t) is
said to be bounded by a positive real γ if the following
condition is true

∫

∞

0

(yT (t)y(t) − γ2uT (t)u(t))dt < 0 (42)

Considering the TSDS defined by
N
∑

i=1

hi(t)Eiẋ(t) =

N
∑

i=1

hi(t)(Aix(t) + Biu(t)) (43)

y(t) =
N
∑

i=1

hi(t)(Cix(t) + Diu(t)) (44)

the objective of this section is to give a condition enabling
to test if the L2-gain of (43-44) is lower than a prescribed

γ ∈ R
+. Usually, L2-norm bound condition are used in

disturbance rejection or filtering.

Theorem 4. The L2-gain of the TSDS (43-44) is bounded
by γ if there exist positive definite matrices P ∈ R

n×n,
symmetric matrices Tij ∈ R

(n+p)×(n+p) and matrices Qj ∈

R
(n−r)×n verifying the LMI (45), (46-47), for 1 ≤ i ≤ j ≤

N and (48), for 1 ≤ i ≤ j ≤ N − 1.








T11 T12 . . . T1N

T12 T22 . . . T2N

...
...

. . .
...

T1N T2N . . . TNN









≤ 0 (45)







Ψij +Ψji+S(CT
i Cj)

2

CT
i Dj + CT

j Di

2
DT

i Cj +DT
j Ci

2

S(DT
i Dj)

2
− γ2Ip






<Tij (46)

S(ET
i PEj) ≥ 0 (47)

S
(

(Ei − EN )T P (Ej − EN )
)

≥ 0 (48)

where the full column rank matrix E0 ∈ R
n×(n−r) is a base

of the intersection of the null spaces of ET
i defined by (22),

and where Ψij is defined by (35).

Proof: As mentioned in Boyd et al. (1994), the L2-gain of a
system is bounded by γ if there exist a Lyapunov function
V (x, t) verifying the following constraint

dV (x, t)

dt
+ yT (t)y(t) − γ2uT (t)u(t) < 0 (49)

Let consider the function V (x, t) defined by (23). Obvi-
ously, from (44) we have

yT (t)y(t) − γ2uT (t)u(t) =
N
∑

i=1

N
∑

j=1

hij(t)

[

x(t)
u(t)

]T [
CT

i Cj CT
i Dj

DT
i Cj DT

i Dj − γ2Ip

] [

x(t)
u(t)

]

(50)

With (41), we have

V̇ (x, t) + yT (t)y(t) − γ2uT (t)u(t) ≤
N
∑

i=1

N
∑

j=1

hij(t)

[

x(t)
u(t)

]T[
Ψij +CT

i Cj CT
i Dj

DT
i Cj DT

i Dj−γ2Ip

][

x(t)
u(t)

]

(51)

With lemma 2 and similarly to the proof of theorem 2, (45-

48) are sufficient conditions to ensure V̇ (x, t)+yT (t)y(t)−
γ2uT (t)u(t) < 0, and then to ensure that the L2-norm of
the system (43-44) is bounded by γ. �

5. NUMERICAL EXAMPLE

A simple numerical example is computed with the Mat-

lab LMI toolbox to compare the results obtained with
theorem 1 and 2. Consider the system (18) defined by

E1 =

(

1 0
0 0

)

A1 =

(

−6 −a
16 −9

)

E2 =

(

2 1
0 0

)

A2 =

(

−5 −2
b −7

)

Figure 1 displays the comparison of the feasible areas
of theorem 1 and 2. For ν1 = ν2 = 0.35, the stability
conditions of theorem 1 are satisfied for a ≥ 0 and
14 ≥ b ≥ −10, whereas the stability conditions of theorem
2 are satisfied for 25 ≥ a ≥ −25 and 35 ≥ b ≥ −25.
For ν1 = ν2 = 1, the stability conditions of theorem
1 are not satisfied for any values of the pair (a, b) in
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Fig. 1. Comparison of the feasible areas of theorem 1 (left
column) and theorem 2 (right column), for ν1 = ν2 =
0.35 (first row) and ν1 = ν2 = 1 (second row).

({−25, 25}, {−25, 35}), whereas the stability conditions of
theorem 2 are satisfied for all values of (a, b) in these
intervals.

The state augmentation made in Taniguchi et al. (1999,
2000) and Wang et al. (2001), would have lead to the
system defined by E∗ = diag(1, 1, 0, 0) and

A∗

1 =







0 0 1 0
0 0 0 1
−6 −a −1 0
16 −9 0 0






A∗

2 =







0 0 1 0
0 0 0 1
−5 −2 −2 −1
b −7 0 0







Obviously, (E∗, A∗

1) and (E∗, A∗

2) are not impulse free,
thus the basic requirement of admissibility of the local
systems is not verified. In other words, the analysis based
on this state augmentation would lead to conclude that
the system is not admissible, whereas we have shown
it is. This simple example illustrates that the systems
(E1, E2, A1, A2) and (E∗, A∗

1, A
∗

2) are not equivalent, and
shows the contribution of the proposed approach which
allows to avoid the state augmentation.

6. CONCLUSION

In this paper a solution to characterize the stability of
Takagi-Sugeno descriptor systems (TSDS) is presented.
The major contribution of the proposed approach is that
it was shown that the existing results in Takagi-Sugeno
descriptor systems are based on a state augmentation
which is very conservative, whereas the results obtained
in this note do not need any state augmentation. Stabil-
ity, α-stability and L2-norm bound sufficient conditions
are derived from a quadratic Lyapunov function. In this
note, only stability constraints or prescribed decay rate
constraints where envisaged, but future works may explore
the stability submitted to pole clustering constraints. This
lead to the concept of D admissibility of descriptor systems
Marx et al. (2003), which is also of interest. The controller
and observer designs derived from the stability condition
are also under study.
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