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Abstract: A new observer design method is proposed for Takagi-Sugeno systems
with immeasurable premise variables. Since the state estimation error can be
written as a perturbed system, the proposed method is based on the L2 techniques
to minimize the effect of the perturbations on the state estimation error. The
convergence conditions of the observer are established by using the second method
of Lyapunov and a quadratic function. These conditions are expressed in terms
of Linear Matrix Inequalities (LMI). Finally, the performances of the proposed
observer are augmented by a pole placement in LMI region.
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1. INTRODUCTION

The problem of nonlinear state estimation is a
very vast field of research, having many applica-
tions, among them one can cite the use of the
observers to estimate the immeasurable states of
a system or to replace sensors which are expensive
and difficult to maintain; these observers are also
used for the state feedback control or for the
diagnosis of the system.

The diagnosis methods for linear systems cur-
rently have a certain maturity, however assuming
that the system to supervise can be correctly rep-
resented by a linear system is highly restrictive.
Moreover, the direct extension of the methods
developed in the linear case, to the nonlinear
case is delicate. Nevertheless, interesting results
have been obtained if the nonlinear systems are
represented by a multiple model. This structure
consists in a set of local linear models, each local

model describing the behavior of the system in a
particular region of the state-space.

In the context of the linear models, fault detec-
tion can be carried out by methods using state
observers and residual generation (Maquin and
Ragot, 2000). In general, fault isolation methods
use banks of observers where each observer is
driven by a subset of the inputs. The preceding
technique cannot be immediately extended to the
multiple model because of the couplings intro-
duced into the structure. Generally, the design of
an observer for a multiple model begins with the
design of local observers, then a weighted interpo-
lation is performed to obtain the estimated state.
This design allows the extension of the analysis
and synthesis tools developed for the linear sys-
tems, to the nonlinear systems.

(Tanaka et al., 1998) proposed a study concerning
the stability and the synthesis of regulators and



observers for multiple models. In (chadli, 2002),
(Tanaka et al., 1998) and (Guerra et al., 2006)
tools directly inspired from the study of the lin-
ear systems are adapted for the stability study
and stabilization of nonlinear systems. (Patton et

al., 1998) proposed a multiple observer based on
the use of Luenberger observers, which was then
used for the diagnosis. In (Akhenak, 2004) and
(Akhenak et al., 2006) observers with sliding mode
developed for the linear systems, were transposed
to the systems described by multiple model. The
principal interest of this type of observers is the
robustness with respect to the modeling uncer-
tainties. Moreover, the unknown inputs observers
designed for linear systems, were transposed, in
the same way, into the case of nonlinear systems
and application to fault diagnosis is envisaged in
(Marx et al., 2007).

However, in all these works, the authors supposed
that the weighting functions depend on measur-
able premise variables. In the field of diagnosis,
this assumption forces to design observers with
weighting functions depending on the input u(t),
for the detection of the sensors faults, and on the
output y(t), for the detection of actuator faults.
Indeed, if ξ(t) = u(t) is used, for example in
a bank of observers, even if the ith observer is
not controlled by the input ui, this input appears
indirectly in the weighting function and it cannot
be eliminated. For this reason, it is interesting to
consider the case of weighting functions depending
on immeasurable premise variables, like the state
of the system. This assumption makes it possible
to represent a large class of nonlinear systems.
Only few works are based on this approach, nev-
ertheless, one can cite (Bergsten and Palm, 2000),
(Palm and Driankov, 1999), (Bergsten et al., 2001)
and (Bergsten et al., 2002), in which a Luenberger
observer is proposed, by using Lipschitz weighting
functions. The stability conditions of the observer
are formulated in the form of linear matrix in-
equalities (LMI) (Boyd et al., 1994). Unfortu-
nately, the Lipschitz constant appears in LMIs
and reduces the applicability of the method if this
constant has an important value. In (Palm and
Driankov, 2000) and (Bergsten and Palm, 2000),
the observer with sliding mode compensates the
unknown terms of the system.

In this paper, observer error dynamics are written
as a perturbed system. So, with the use of L2 de-
sign (which is an extension of the H∞ design), the
influence of the immeasurable terms on the state
estimation error can be minimized. According to
this objective, we propose a new observer design
for multiple model with immeasurable premise
variables. The observer synthesis is carried out
by using the second method of Lyapunov with
a quadratic function and H∞ optimization. The
paper is organized as follows : section 2 introduces

some works on the context of state estimation of
multiple model with immeasurable premise vari-
ables. In section 3, the proposed observers are
presented, convergence conditions of the proposed
multiple observer are established. A design proce-
dure to satisfy pole clustering constraints is also
given. Simulation results are presented in section
4 and some conclusions and perspectives are given
in section 5.

2. BACKGROUND RESULTS AND
NOTATION

In this section we summarize some results on
observer design for Takagi-Sugeno systems of the
form:

ẋ(t) =
N

∑

i=1

µi(x(t)) (Aix(t) + Biu(t)) (1)

y(t) = Cx(t) (2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is
the input of the system, y(t) ∈ R

p is the output
of yhe system. Ai ∈ R

n×n, Bi ∈ R
n×m and

C ∈ R
p×n are real known constant matrices. The

weighting functions µi depend on immeasurable
premise variables (state of a system), and verify:











N
∑

i=1

µi(x(t)) = 1

0 6 µi(x(t)) 6 1 ∀i ∈ {1, ..., N}

(3)

Few works can be found concerning the class of
nonlinear system with the assumption of immea-
surable premise variables. The observer, proposed
in (Bergsten and Palm, 2000), is in the form of
Luenberger observer, namely:

˙̂x(t) =

N
∑

i=1

µi(x̂(t))(Aix̂(t) + Biu(t)

+ Gi(y(t) − ŷ(t))) (4)

ŷ(t) = Cx̂(t) (5)

The observer error is given by:

e(t) = x(t) − x̂(t) (6)

then the observer error dynamics are given by:

ė(t) =
N

∑

i=1

µi(x̂(t))(Ai − GiC)e + ∆(x, x̂, u) (7)

with:

∆(x, x̂, u) =
N

∑

i=1

(µi(x) − µi(x̂(t))(Aix + Biu)

(8)
where (8) satisfies a Lipschitz condition in x, i.e,

‖∆(x, x̂, u)‖ 6 α ‖x − x̂‖ (9)



Lemma 1. (Bergsten and Palm, 2000) The state
estimation error between the multiple model (1)
and the multiple observer (4) converges globally
asymptotically toward zero, if there exists matri-
ces P = PT > 0 and Q = QT > 0 such that the
following conditions hold for i = 1, . . . , N

AT
i P + PAi − CT KT

i − KiC <−Q (10)
[

−Q + α2 P

P −I

]

< 0 (11)

The observer gains are given by Gi = P−1Ki.

Lemma 1 recalls the design of the Thau-Luenberger
observer introduced in (Bergsten and Palm, 2000).
Unfortunately for an important value of the Lip-
schitz constant α, the set of LMI (10-11) may be
unfeasible. Another method for state estimation of
the system (1) is proposed in (Ichalal et al., 2007).
The contribution of (Ichalal et al., 2007) is to
obtain less restrictive existence condition for the
observer. In this approach, the matrices Ai are
decomposed into:

Ai = A0 + Ai (12)

where A0 is defined by:

A0 =
1

N

N
∑

i=1

Ai (13)

By substituting (12) in the equation of the multi-
ple model (1) we obtain:

ẋ(t) = A0x(t)+

N
∑

i=1

µi(x(t))(Aix(t)+Biu(t))(14)

y(t) = Cx(t) (15)

Based on this model, the following multiple ob-
server is proposed:

˙̂x(t) = A0x(t) +

N
∑

i=1

µi(x̂(t))(Aix̂(t) + Biu(t)

+ Gi(y(t) − ŷ(t))) (16)

ŷ(t) = Cx̂(t) (17)

Lemma 2. (Ichalal et al., 2007) The state estima-
tion error between the multiple model (1) and
the multiple observer (16) converges globally as-
ymptotically toward zero, if there exists matrices
P = PT > 0, Q = QT > 0 and positive scalars λ1,
λ2 and γ such that the following conditions hold
for i = 1, . . . , N

AT
0 P + PA0 − KT

i P − PKi < −Q (18)








−Q + λ1M
2
i I PAi PBi NiγI

A
T

i P −λ1I 0 0

BT
i P 0 −λ2 0

NiγI 0 0 −λ2I









< 0 (19)

γ − β1λ2 > 0 (20)

where β1 is the bound on the input u(t). The gains
of the observer are computed by Gi = P−1Ki.

The LMI (18-20) in lemma 2 may have solutions,
even for great values of the Lipschitz constant and
of the bound on the input β1. The drawback of this
method is that, if the bound β1 increases, then the
band-width of the observer increases and thus the
observer estimates the measurement noise.

The contribution of this paper is to obtain a
minimal influence of the unknown premise vari-
ables on the estimation quality, and moreover to
satisfy pole clustering in prescribed regions of the
complex plane. In order to quantify the influence
of an input signal on the output of a system, the
L2-norm of a system, based on the L2-norm of a
signal, is introduced.

Definition (L2-norm) The L2-norm of a signal
z(t), denoted ‖z(t)‖2 is defined by

‖z(t)‖
2
2 =

∞
∫

0

zT (t)z(t)dt (21)

It is supposed that all the signals studied in
this paper are measurable functions (or square
integrable) that is to say: of finite energy. The
space of measurable functions is denoted L2.

Definition (L2-norm) Consider a system of input
u(t) ∈ L2 and of output y(t) ∈ L2. The L2-norm
of the system is defined by

γ = sup
u(t)∈L2

‖y(t)‖2

‖u(t)‖2

(22)

It is well known that the L2-norm is a ex-
tension to the nonlinear systems, of the H∞-
norm of the linear systems (for a linear system
G(s), the L2-norm and the H∞-norm defined by
‖G(s)‖

∞
= supω∈R

σmax(G(jω)), where σmax de-
notes the maximal singular value, are equal).

In the remaining of the paper, the following as-
sumptions are made:

Hypothesis 3. The weighting functions µi are Lip-
schitz

‖µi(x) − µi(x̂)‖ 6 Ni ‖x − x̂‖ (23)

‖µi(x)x − µi(x̂)x̂‖ 6 Mi ‖x − x̂‖ (24)



3. MAIN RESULT

In this section the observer design is detailed. The
chosen structure of the observer used to estimate
the state variables of the multiple model presented
in (14) (or equivalently (1)), is a Luenberger
observer as follows :

˙̂x(t) = A0x(t) +

N
∑

i=1

µi(x̂(t))(Aix̂(t) + Biu(t)

+ Gi(y(t) − ŷ(t))) (25)

ŷ(t) = Cx̂(t) (26)

The observer error dynamics is given as :

ė(t) =

N
∑

i=1

(µi(x̂(t))Φie + Aiδi + ∆iBiu) (27)

where :






δi(t) = µi(x)x − µi(x̂)x̂
∆i(t) = µi(x) − µi(x̂)
Φi = A0 − GiC

(28)

The objective is to determine the gains of the
observer that minimize the L2-norm from the
unknown terms on the state estimation error and
such that the estimation error dynamics satisfy
pole clustering constraints.

3.1 Observer design

Theorem 4. The state estimation error between
the multiple model (14) and the multiple ob-
server (16) converges globally asymptotically to-
ward zero satisfying the H∞ constraint, if there
exists matrices P = PT > 0, Q = QT > 0 and
positive scalar λ1, λ2 and γ such that the following
conditions hold

AT
0 P + PA0 − KT

i P − PKi < −Q




−Q + λ1M
2
i I PAi PBi

A
T

i P −λ1I 0

BT
i P 0 −λ2



 < 0

λ2 − γ2 > 0

(29)

where Ki = PGi.

Proof.

To show the convergence of the estimation er-
ror toward zero, let us consider the following
quadratic function of Lyapunov :

V (e(t)) = e(t)T Pe(t), P = PT > 0 (30)

The convergence of the observer and the satisfac-
tion of the H∞ (??) constraint are given if

V̇ (e(t)) + e(t)T e(t) − γ2u(t)T u(t) < 0 (31)

Then, by using (27):

V̇ (e) =

n
∑

i=1

(δT
i A

T

i Pe + eT PAiδi + uT ∆T
i BT

i Pe

+ eT PBi∆iu + µi(x̂)(eT ΦT
i Pe + eT PΦie))

(32)

Taking into account the definition (??), definition
() and assumptions 2, one has then :

{

δT
i δi 6 M2

i eT e

∆T
i ∆i 6 1

(33)

Lemma 5. for all matrices X and Y of adapted
size, λ being a nonnull constant, the following
property holds :

XT Y + Y T X 6 λXT X + λ−1Y T Y λ > 0 (34)

By applying this lemma and (??), we have:

δT
i A

T

i Pe + eT PAiδi 6 λ1δ
T
i δi + λ−1

1 eT PAiA
T

i Pe

6 λ1M
2
i eT e + λ−1

1 eT PAiA
T

i Pe

(35)

and :

uT ∆T
i BT

i Pe + eT PBi∆iu 6 λ2u
T ∆T

i ∆iu

+ λ−1
2 eT PBiB

T
i Pe

6 λ2u
T u + λ−1

2 eT PBiB
T
i Pe

(36)

The derivative of Lyapunov function (??) can then
be written in the following way:

V̇ 6

n
∑

i=1

eT (µi(x̂)(ΦT
i P + PΦi) + (λ1M

2
i + 1)I

+λ−1
1 PAiA

T

i P + λ−1
2 PBiB

T
i P )e

+uT (λ2N
2
i − γ2)u

(37)

The negativity of (??) is assured if:

eT (µi(x̂)(ΦT
i P + PΦi) + (λ1M

2
i + 1)I +

λ−1
1 PAiA

T

i P + λ−1
2 PBiB

T
i P )e

+uT (λ2N
2
i − γ2)u < 0 (38)

what leads to the following conditions:

ΦT
i P + PΦi < Q (39)

Q + M2
i (λ1α

2 + 1)I + λ−1
1 PAiA

T

i P

+λ−1
2 PBiB

T
i P < 0 (40)



λ2N
2
i − γ2 < 0 (41)

With the change of variables Ki = PGi and by
applying the Schur complement, one obtains the
following linear matrices inequalities :

AT
0 P + PA0 − CT KT

i − KiC < −Q (42)





−Q + λ1M
2
i I PAi PBi

A
T

i P −λ1I 0

BT
i P 0 −λ2I



 < 0 (43)

λ2 − γ2 < 0 (44)

3.2 Pole placement

One notes in simulation that, if the value of (H∞

Attenuation γ) decreases, the poles of the matrices
(A0 − GiC) increase in absolute value. For that,
a pole placement makes it possible to solve this
problem. we propose then the following theorem
which makes it possible to place the eigenvalues of
the multiple observer in particular regions. In this
section we propose an extension of the previous
method of synthesis by placing the eigenvalues of
the observer in LMI region S (Fig. 1).

Fig. 1. LMI region

Theorem 6. The state estimation error between
the multiple model (14) and the multiple ob-
server (16) converges globally asymptotically to-
ward zero satisfying the H∞ constraint and the
poles of the matrix (A0 −GiC) are in the LMI re-
gion (Fig.1), if there exists matrices P = PT > 0,
Q = QT > 0, gain matrices Ki and positive scalar
λ1, λ2 and γ such that the following conditions
hold

[

βP P (A0 − GiC)

(A0 − GiC)T P βP

]

> 0 (45)

AT
0 P + PA0 − CT KT

i − KiC + 2αP < −Q (46)





−Q + λ1M
2
i I PAi PBi

Ai

T
P −λ1I 0

BT
i P 0 −λ2I



 < 0 (47)

λ2 − γ2 < 0 (48)

where Ki = PGi.

Proof. Using the concept of D-stability presented
in (Chilali, 1996) and (Bong-Jae and Sangchul,
2006), the constraint to place the poles of the
matrix (A0 − GiC) in the shaded region of Fig.
1 can be expressed in terms of LMIs as :

[

RP P (A0 − GiC)

(A0 − GiC)T P RP

]

> 0 (49)

(A0 − GiC)T P + P (A0 − GiC) + 2αP < 0 (50)

4. SIMULATION RESULTS

We consider the following example to show the
advantages of the using proposed H∞ observer.
This is an example of the form (1) with

A1 =





−2 1 1
1 −3 0
2 1 −6



 , A2 =





−3 2 −2
5 −3 0

0.5 0.5 −4





B1 =





1
0.5
0.5



 , B2 =





0.5
1

0.25



 , C =

[

1 1 1
1 0 1

]

The weight functions are










µ1(x) =
1 − tanh(x1)

2

µ2(x) = 1 − µ1(x) =
1 + tanh(x1)

2

(51)

The Lipschitz constants in hypothesis 1 are
M1 = M2 = 1.1. We choose an input signal in the
form (Fig.2)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
e1 

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0
e2 

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5
e3 

Fig. 2. Estimation error



5. CONCLUSION
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