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Abstract— This paper addresses the analysis and design of
a sliding mode observer on the basis of a Takagi-Sugeno (T-
S) model subject both to unknown inputs and uncertainties.
The main contribution of the paper is the development of a
robust observer with respect to the uncertainties as well as
the synthesis of sufficient stability conditions of this observer.
The stabilization of the observer is performed by the search
of suitable Lyapunov matrices. It is shown how to determine
the gains of the local observers, these gains being solutions
of a set of linear matrix inequalities (LMI). The validity
of the proposed methodology is illustrated by an academic
example.

I. I NTRODUCTION

State estimation of linear time-invariant dynamical sys-
tem driven by both known and unknown inputs has been
the subject of many research works [1], [2], [3]. Indeed,
in practice, there are many situations where some of the
inputs to the system are inaccessible. The recourse to the
use of an unknown input observer is then necessary in
order to be able to estimate the state of the considered sys-
tem. This state estimate can be useful either for designing
a control law and/or for supervision task. Indeed, in the
context of instrument fault detection and isolation, most
actuator failures can be generally modelled as unknown
inputs to the system [2].

In parallel, sliding mode observers (SMO) have re-
ceived large attention since it offers robustness properties
with regard uncertainties [4], [5], [6]. Using an additive
nonlinear discontinuous term, SMO constraints the trajec-
tory of the estimation error to remain on a specific surface
after finite time such that error is completely insensitive
to the disturbances. This interesting property has been
utilized either for state estimation [7], [8], [9] and fault
detection and isolation [10].

All that relates to the linear models was largely devel-
oped in the literature. However, this assumption of lin-
earity is checked only in a limited vicinity of a particular
operating point. The T-S model approach can apprehend
the nonlinear behaviour of a system, while keeping the
simplicity of the linear models.

Indeed, the real physical systems are often nonlinear.
As it is delicate to synthesize an observer for an unspec-
ified nonlinear system, it is preferable to represent this
system with a T-S model. The idea of the T-S model

approach is to apprehend the global behaviour of a system
by a set of local models (linear or affine), each local model
characterizing the behaviour of the system in a particular
zone of operation. The local models are then aggregated
by means of an interpolation mechanism. This approach
has been extensively considered (see among others [11],
[12], [13], [14] and references therein).

Since the study of stability of the T-S models [15], [16],
[17], [18], the researchers accentuated their work on the
T-S observer design [13], [19], [20], [21]. Tanakaet al.
[13], Ma et al. [19] and Yoneyamaet al. [22] studied
observer design for T-S fuzzy control systems, and they
proved that a state feedback controller and an observer
always yields a stabilizing output feedback controller
provided that the stabilizing property of the control and
asymptotic convergence of the observer are guaranteed by
the Lyapunov method.

In recent papers, Parket al. [23] have presented the
design of a robust adaptive fuzzy observer for uncer-
tain nonlinear dynamic systems. The Lyapunov synthesis
approach is used to guarantee a uniformly ultimately
bounded property of the state observation error, as well
as of all other signals in the closed-loop system. Tonget
al. [24] have studied the robust fuzzy control problem for
fuzzy model system in the presence of parametric uncer-
tainties and unavailable state variables. A state observer
was designed and sufficient conditions derived for robust
stabilization in the sense of Lyapunov asymptotic stabil-
ity. They are formulated using linear matrix inequalities
(LMIs).

Recently, the notion of the sliding mode was introduced
into the fuzzy observer synthesis. In [25] a sliding mode
observer for Takagi-Sugeno models with matched and
unmatched uncertainties is designed. Bergstenet al. [20]
designed a sliding mode observer for a Takagi-Sugeno
model in the difficult case when the weighting function
depend on the estimated state. Changet al. [26] present
the design of a new type of fuzzy controller for complex
single-input single-output systems. That paper presents a
systematic design procedure of fuzzy model-based con-
trollers with guaranteed stability and improved tracking
performances.



In this paper, the problem of the state estimation
of an uncertain Takagi-Sugeno model subjected to the
influence of the unknown inputs is addressed. The main
contribution of this paper is the development of a robust
sliding mode observer with the presence of unknown
inputs and parametric uncertainties. New convergence
conditions of the sliding mode observer are established
while being based on the work presented in [27]. By
using a quadratic Lyapunov function, the convergence
conditions are expressed in the form of a set of linear
matrix inequalities (LMI) [28].

The paper is organized as follows. In Section II, the
general structure of the considered uncertain Takagi-
Sugeno model is presented. In Section III, the proposed
structure of a sliding mode observer is described and
the main results are presented. The derived conditions
ensuring the global asymptotic convergence of the
estimation error are given as a set of LMI terms. The
last section gives a numerical example to illustrate the
effectiveness of the proposed approach.

Notation: Throughout the paper, the following useful
notation is used:XT denotes the transpose of the matrix
X , X > 0 means thatX is a symmetric positive
definite matrix,IM = {1, 2, ..., M} and ‖.‖ represents
the Euclidean norm for vectors and the spectral norm for
matrices.

II. TAKAGI -SUGENO MODEL REPRESENTATION

Many physical systems are very complex in practice
so that rigorous mathematical model can be very difficult
to obtain, if not impossible. However, their nonlinear
behaviour can always be captured in a limited vicinity of
particular operating points by linear models. So the global
model describing such systems in all of its functioning
range can be expressed on the basis of such linear local
models. It is however necessary to ensure the connexion
of these models. This modelling technique is known as
multiple model approach [29]. In this context, Takagi and
Sugeno have proposed a model to describe complex sys-
tems [11]. Here, the following uncertain dynamic model
representing a complex nonlinear system with unknown
inputs is considered:























ẋ =

M
∑

i=1

µi

(

(Ai + ∆Ai)x + Biu + Riū
)

y =

M
∑

i=1

µiCix

(1)

with
∑M

i=1 µi(ξ(t)) = 1 and0 ≤ µi(ξ(t)) ≤ 1, ∀i ∈ IM ,
where x(t) ∈ R

n is the state vector,u(t) ∈ R
m the

input vector,ū(t) ∈ R
q, q < n, contains the unknown

inputs andy(t) ∈ R
p the measured outputs. Matrices

Ai ∈ R
n×n and Bi ∈ R

n×m denote the state matrix
and the input matrix associated with theith local model.
Matrices Ri ∈ R

n×q are the distribution matrices of
unknown inputs. At last,ξ(t) is the so-called decision
vector which may depend on some subset of the known

inputs and/or measured variables to define the operating
regimes.

The matrices∆Ai(t) are unknown time-varying matri-
ces with appropriate dimensions, which represent para-
metric uncertainties in the plant model. This kind of
uncertainties is known as unmatched uncertainties. The
unknown inputū(t) is also assumed to be bounded.

‖∆Ai(t)‖ ≤ δi (2a)

‖ū(t)‖ ≤ ρ (2b)

Whenµi(ξ(t)) = 1, which impliesµj(ξ(t)) = 0, ∀ j 6= i,
model i is active. In fact, the value of the functions
µi(ξ(t)) are not Boolean and the state of the multiple
model can be viewed as a weighted sum of the “local
states”. Notice however that, as this explanation helps to
understand the structure of the considered model, it is
not really exact as only one state vector exists: those of
the multiple model, and local states don’t really exist.
When membership functionsµi(ξ(t)) are not Boolean
ones, several local models are active at each time and
the coefficientsµi(ξ(t)) i ∈ IM} quantify the relative
contribution of each local model to the global model.
The choice of the numberM of local models describing
the multiple model may be intuitively done by taking
into account a certain number of operating regimes.
MatricesAi, Bi, Ri andCi can be obtained by using the
direct linearization of an a priori nonlinear model around
operating points, or alternatively by using an identification
procedure [30], [31], [32]. From a practical point of view,
matricesAi, Bi, Ri and Ci describe the system’s local
behaviour around theith regime.

III. SLIDING MODE OBSERVER

This section is dedicated to the state estimation of
the model (1). The proposed sliding mode unknown
input fuzzy observer (SMUIFO) is based on a nonlinear
combination of local unknown input observers involving
sliding terms allowing to compensate the uncertainties and
the unknown inputs. The proposed sliding mode observer
of the Takagi-Sugeno model has the following form:






















˙̂x =

M
∑

i=1

µi

(

Aix̂ + Biu + Gi (y − Cx̂) + νi + αi

)

ŷ =

M
∑

i=1

µiCix̂

(3)
The aim of the design is to determine gain matrices

Gi and variablesνi(t) ∈ R
n and αi(t) ∈ R

n, that
guarantee the asymptotic convergence ofx̂(t) towards
x(t). Let us note thatνi(t) andαi(t) can be considered
as variables which compensate respectively the errors due
to the unknown inputs and the model uncertainties. Their
specific structures will be described further.

A. Stability conditions

In order to establish the conditions for the asymptotic
convergence of the observer (3), let us define the state
and output estimation errors:

e = x − x̂ (4)



r = y − ŷ =
M
∑

i=1

µiCie (5)

The dynamic of the state estimation error can be
evaluated using the equations (1) and (3):

ė =

M
∑

i=1

M
∑

j=1

µi

(

Āije + ∆Aix + Riū − νi − αi

)

(6)

with:
Āij = Ai − GiCj (7)

Theorem 1: the state of the observer (3) converges
globally asymptotically to the state of the Takagi-Sugeno
model (1), if there exists a symmetric positive definite
matrix P ∈ R

n×n, matricesWi ∈ R
n×p and positive

scalarsβ1, β2 andβ3 checking the following conditions
for all i, j ∈ IM :
[

AT
i P + PAi − CT

j WT
i − WiCj + γI P

P −β1I

]

< 0

(8)

with γ = β2δ
2
i + β3.

The gainsGi and the termsνi(t) and αi(t) of the
observer (3) are given by the following equations:

If r 6= 0























νi = ρ2β−1
3

‖PRi‖
2

2 rT r
P−1

M
∑

j=1

µjC
T
j r

αi = β1 (1 + β4) δ2
i

x̂T x̂

2 rT r
P−1

M
∑

j=1

µjC
T
j r

If r = 0

{

νi = 0
αi = 0

(9)
with: β4 = β1

β2−β1

Gi = P−1Wi. (10)

The proof of the asymptotic convergence of this ob-
server (3) rests on the following lemma 1.

Lemma 1: for any matricesX and Y with appropriate
dimensions, the following property holds for any positive
scalarβ:

XT Y + Y T X ≤ βXT X + β−1Y T Y

Proof: in order to demonstrate the asymptotic conver-
gence of the observer (3), let us consider the following
Lyapunov quadratic function:

V = eT Pe (11)

Using equations (4) and (6), the derivativėV (e(t))
along the trajectory of the system is given by:

V̇ =
M
∑

i=1

M
∑

j=1

µiµj

(

eT (ĀT
ijP + PĀij)e + xT ∆AT

i Pe+

eT P∆Aix − 2αT
i Pe + 2eT PRiū − 2eT Pνi

)

(12)

Lemma 1 allows to write:

V̇ ≤

M
∑

i=1

M
∑

j=1

µiµj

(

eT (ĀT
ijP + PĀij)e + β−1

1 eT P 2e+

β1x
T ∆AT

i ∆Aix − 2αT
i Pe + 2eT PRiū − 2eT Pνi

)

(13)

Using the expression of the state estimation error (4),
the inequality (13) becomes:

V̇ ≤

M
X

i=1

M
X

j=1

µiµj

“

eT (ĀT
ijP + PĀij + β−1

1
P 2)e + 2eT PRiū+

β1δ2

i (x̂ + e)T (x̂ + e) − 2αT
i Pe − 2eT Pνi

”

V̇ ≤

M
X

i=1

M
X

j=1

µiµj

“

eT (ĀT
ijP + PĀij + β−1

1
P 2)e + 2eT PRiū+

β1δ2

i

`

x̂T x̂ + eT e
´

+ β1δ2

i

`

x̂T e + eT x̂
´

− 2αT
i Pe − 2eT Pνi

”

Using again lemma (1), this last expression can be
rewritten as follows:

V̇ ≤

M
X

i=1

M
X

j=1

µiµj

“

eT
`

ĀT
ijP + PĀij + β−1

1
P 2 + β2δ2

i I
´

e+

β1(1 + β4)δ
2

i x̂T x̂ − 2αT
i Pe + 2eT PRiū − 2eT Pνi

”

with β2 = β1(1 + β−1

4
).

Two cases can therefore be distinguished according to
the value of the output residual:

Case 1:r 6= 0.
In this case, it is easy to notice from relation (9) that:

2αT
i Pe = β1(1 + β4)δ

2
i

x̂T x̂

rT r
rT

M
∑

j=1

µjCjP
−1Pe

2αT
i Pe = β1(1 + β4)δ

2
i

x̂T x̂

rT r
rT r

2αT
i Pe = β1(1 + β4)δ

2
i x̂T x̂ (14)

2eT PRiū = eT PRiū + ūT RT
i Pe

2eT PRiū ≤ β3e
T e + β−1

3 ‖PRiū‖
2

2eT PRiū ≤ β3e
T e + ρ2β−1

3 ‖PRi‖
2 (15)

2eT Pνi = ρ2β−1
3

‖PRi‖
2

rT r
eT PP−1

M
∑

j=1

µjC
T
j r

2eT Pνi = ρ2β−1
3 ‖PRi‖

2 (16)

From (14), (15) and (16) one can easily deduce:

V̇ ≤

M
∑

i=1

M
∑

j=1

µiµje
T Uije (17)

with: Uij = ĀT
ijP + PĀij + β−1

1 P 2 + β2δ
2
i I + β3I.



Case 2:r(t) = 0.
In the general case, the errore(t) is not orthogonal

to the term
∑M

i=1 µi (ξ (t))Ci, therefore the nullity of
r(t) implies that ofe(t). In this case, from the equations
(11) and (12), one can easily notice that the Lyapunov
function and its derivative are null. In the particular case
where, for somet, the errore(t) is orthogonal to the term
∑M

i=1 µi (ξ (t)) Ci, we cannot conclude about the negativ-
ity of the derivative of the Lyapunov function. However,
clearly, this situation is necessary “instantaneous” and
cannot last a long time ase(t) evolves. Therefore, that
case has no impact on the proposed analysis.

The analysis of these two cases has shown that the
derivative of the considered Lyapunov function is sys-
tematically negative if the following inequalities hold:

(Ai − GiCj)
T P + P (Ai − GiCj)+β−1

1 P 2+

β2δ
2
i I + β3I < 0

Notice that these latter are nonlinear inP , Gi, β1. To
linearize them and to obtain the constraints (8), one can
proceed to the following change of variable:

Wi = PGi (18)

After that, the use of the Schur complement [28] leads
to the obtention of linear matrix inequalities inP , Wi,
β1, β2 andβ3 that can be easily solved by the means of
LMI methods.

If equation (8) holds, the RHS of inequality (17)
is clearly negative and the asymptotic convergence of
the observer (3) is guaranteed. In conclusion, the state
estimation error converges asymptotically towards zero,
if the conditions (9) and the inequalities (8) are checked.

B. Relaxed stability conditions

In order to reduce the conservatism of the inequalities
(8), the result proposed in [18] is exploited.

Theorem 2: the state estimation error between the model
(1) and the sliding mode observer (3) converges globally
asymptotically towards zero, if there exists symmetric
positive definite matricesP and Qii, matricesQij and
positive scalarsβ1, β2 and β3 satisfying the following
inequalities for alli, j ∈ IM :
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>
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>

>

>
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»

AT
i P + PAi − CT

i W T
i − WiCi + Qii + γI P
P −β1I

–

< 0

»

T + γI P
P −β1I

–

< 0

0

B

B

B

B

B

@

Q11 Q12 · · · Q1M

QT
12

Q22 · · ·
...

...
...

. . .
...

QT
1M

· · · · · · QMM

1

C

C

C

C

C

A

> 0

(19)

with:

T = T1 − T2 + T3

T1 =
(Ai+Aj)

T

2 P + P
(Ai+Aj)

2

T2 = CT
j WT

i + WiCj + CT
i WT

j + WjCi

T3 = Qij + QT
ij

γ = β2δ
2
i + β3

The gainsGi and the termsνi(t) and αi(t) of the
observer (3) are already given by the equations (9) and
(10).

Proof: the proof of this theorem is performed following
the same steps as in theorem 1 and exploiting the result
developed in [18].

It should be noted that the introduction of matricesQij

leads to relaxed stability conditions. These matrices are
not necessary positive definite. It is then possible to relax
the constraints using the cross terms (i 6= j). Let us note
that these matrices are not also necessary symmetrical
and this fact constitutes additional degrees of freedom, in
comparison with what was done in [33].

IV. SIMULATION EXAMPLE

Consider the model (20), made up of two local models
and involving two outputs and three states. The output
vector of the modely(t) is a nonlinear combination of
the states.























ẋ =

2
∑

i=1

µi

(

(Ai + ∆Ai)x + Biu + Riū
)

y =
2

∑

i=1

µiCix

(20)

Here, the membership functions depend on the input of
the system. The numerical values of the matricesAi, Bi,
Ci andRi are as follows:

A1 =

2

4

−2 1 1
1 −3 0
2 1 −6

3

5 A2 =

2

4

−3 2 2
5 −8 0

0.5 0.5 −4

3

5

B1 =

2

4

1
0.5
0.5

3

5 B2 =

2

4

0.5
1

0.25

3

5 R1 =

2

4

1
1
1

3

5 R2 =

2

4

1
0.5
2

3

5

C1 =

»

1 1 1
1 0 1

–

C2 =

»

1 2 1
1 1 0

–

The model uncertainties are such that:

∆Ai,(j,k)(t) = θAi,(j,k)η(t) j, k ∈ {1, 3} andi ∈ {1, 2}

whereAi,(j,k) denotes the(j, k)th element ofAi andθ =
0.2. The functionη(t) is a piece-wise constant function
which magnitude is uniformly distributed on the interval
[0 1]. Its time evolution is depicted on Fig. 1.
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Fig. 1. The piece-wise constant functionη(t)

The considered sliding mode observer that estimates
the state vector of the uncertain model is described by:






















˙̂x =

2
∑

i=1

µi

(

Aix̂(t) + Biu(t) + Gi (y − ŷ) + νi + αi

)

ŷ =
2

∑

i=1

µiCix̂

(21)
It is important to note that the implementation of

this sliding mode observer induces a practical problem:
when the estimation errorr(t) tends towards zero, the
magnitude ofνi(t) andαi(t) may increase without bound.
This problem is overcame as follows:

If ‖r‖ ≥ ε























νi = ρ2β−1
3

‖PRi‖
2

2rT r
P−1

2
∑

j=1

µjC
T
j r

αi = β1 (1 + β4) δ2
i

x̂T x̂

2 rT r
P−1

2
∑

j=1

µjC
T
j r

If ‖r‖ < ε

{

νi = 0
αi = 0

The termsνi(t) and αi(t) are fixed to zero when the
output estimation error is such that‖r(t)‖ ≤ ε, whereε is
a threshold chosen by the user. In this case, the estimation
error cannot converge to zero asymptotically but to a small
neighborhood of zero depending on the choice ofε. For
this example,ε is chosen equal to10−3.

The resolution of inequalities (19), using classical LMI
solver, leads to the following matricesGi, P , Q11, Q12

andQ22:

G1 =

2

4

0.55 2.18
1.58 −0.67
0.18 −0.93

3

5 G2 =

2

4

2.62 1.04
−1.34 1.29
2.22 −2.19

3

5

P =

2

4

1 0 0
0 1 0
0 0 1

3

5 Q11 =

2

4

1.66 −0.13 −0.44
−0.13 1.44 −0.12
−0.44 −0.12 2.16

3

5

Q22 =

2

4

1.87 −0.27 0.18
−0.27 1.66 0.12
0.18 0.12 1.39

3

5

Q12 =

2

4

1.16 0.14 0.22
0.34 0.17 0.66
−0.33 0.87 −0.69

3

5

Remark: Let us note that forθ = 0.2, the conditions (8)
of theorem 1 (and the developed conditions in [27]) fail

to synthesize a sliding mode observer for the model (20).
This fact illustrates the real contribution of the relaxed
stability conditions.

The system (20) was simulated using the known and
unknown inputs depicted in Fig. 2 and 3. Fig. 4 shows the
form of the membership functionsµ1(u(t)) andµ2(u(t)).

Fig. 5 presents the comparison between one of the
state of the model and its estimate from the sliding mode
observer. The two layouts are superimposed except in the
vicinity of the origin (due to the choice of the initial
conditions of the multiple observer).
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Fig. 2. Known inputu(t)
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Fig. 3. Unnown input̄u(t)
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Fig. 4. Membership functions

V. CONCLUSION

In this paper, based on a Takagi-Sugeno uncertain
model representation, the design of a sliding mode ob-
server using the principle of interpolation of several local
observers has been proposed in the case where some
inputs of the system are unknown. The stability of the
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Fig. 5. x3(t) and its estimatêx3(t)

observer requires the consideration of coupling constraints
between these local observers; these constraints lead to
the resolution of a LMI problem. The calculation of the
gains of the observer is then returned to a simultaneous
calculation of the gains of the local observers. Assuming
the existence of suitable matrices, we showed that the
reconstruction of the state vector of the uncertain Takagi-
Sugeno model is possible. The stability conditions (con-
vergence) are relaxed by using the results obtained in [18].
An academic example illustrates the effectiveness of the
derived conditions.
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