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Abstract: Recently, fault detection and process monitoring using principal component
analysis (PCA) were studied intensively and largely applied to industrial process. PCA is
the optimal linear transformation with respect to minimizing the mean squared prediction
error. If the data have nonlinear dependencies, an important issue is to develop a technique
which can take into account this kind of dependencies. Recognizing the shortcomings of
PCA, a nonlinear extension of PCA is developed. This paper proposes an application
for sensor failure detection and isolation (FDI) to an air quality monitoring network via
nonlinear principal component analysis (NLPCA). The NLPCA model is obtained by
using two cascade three layer RBF-Networks. For training these two networks separately,
the outputs of the first network are estimated using principal curve algorithm [7] and the
problem is transformed as two nonlinear regression problems.Copyright©2005 IFAC
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1. INTRODUCTION

Many human activities produce primary pollutants
like nitrogen oxides (NO2 and NO), sulfur dioxide and
volatile organic compounds which formed in the lower
atmosphere by chemical or photochemical reactions
secondary pollutants like ozone. Air quality monitor-
ing networks have the following missions: data record-
ing (pollutant concentration and a range of meteoro-
logical parameters related to pollution events) includ-
ing the measurement network management, the diffu-
sion of data for permanent information of population
and public authorities, and surveillance in reference to
norms. Therefore, the data validity of the delivered in-

formation is essential. Sensor data validation is there-
fore an issue of great importance for the development
of reliable environmental monitoring and management
systems.

In collaboration with air quality monitoring network
AIRLOR, (France), the aim of this work is to de-
velop a method to perform sensor failure detection
and isolation. By way of their interaction, the dif-
ferent pollutants constitute a dynamic chemical sys-
tem that is strongly influenced by atmospheric condi-
tions. The physico-chemical mechanisms taking place
are poorly understood, but it clearly appears that this
process is multivariable and strongly nonlinear. Fur-



thermore, most existing models take into account the
atmospheric chemistry of one hundred reactions, also
the emissions of primary pollutants, as well as vertical
and horizontal exchanges linked to movements of the
atmosphere. These models therefore combine a large
number of equations with numerous parameters which
are inaccessible and unknown. These models then are
very complex, computationally costly and, above all,
need measurements that are seldom available in air
quality monitoring network.

Model-based diagnosis relies on information redun-
dancy concepts [3]. Its principle is generally based on
consistency checking between an observed behavior
of the process provided by sensors and an expected
behavior provided by a mathematical representation
of the process. This mathematical representation may
take the forms of analytical redundancy [4] which
is an explicit input-output relationship, but in many
situations it may be difficult to obtain (owing to com-
plexity of the process and high process dimension-
ality). As an alternative, methods based on principal
component analysis (PCA), that is data-driven, could
be very attractive for failure detection. Because of
the nice features of PCA, this method can handle
high dimensional and correlated process variables. In
recent years, PCA has been used in the statistical
process control area such as process monitoring [10],
gross error detection [15], sensor fault identification
[2]. However, Principal component analysis is a linear
method, and most engineering problems are nonlinear.
To overcome this problem, we use a nonlinear model
to generate residuals for fault detection and isolation.

Hastie and Stuetzle [8] proposed a principal curve
methodology to provide a nonlinear summary of am-
dimensional data set. However, this approach is non-
parametric and can not be used for continuous map-
ping of new data. To overcome this parametrization
problem, an auto-associative neural network has been
used [1, 9, 14]. For such networks, however, the train-
ing problem becomes a complicated nonlinear opti-
mization task, defined in a multidimensional space.
For this reason, Webb [16] proposed an approach to
nonlinear principal component analysis using radial
basis function (RBF) networks. In this approach, the
NLPCA model consists of two three layer RBF- net-
works where the nonlinear principal components are
the outputs of the first network. The second network
tries to perform the inverse transformation by repro-
ducing the original data from the nonlinear principal
components. However, the training of these two net-
works remains complicated.

A new training procedure of the RBF-NLPCA model
is presented in [7]. In this paper we propose an appli-
cation of the RBF-NLPCA model [7] for sensor fault
detection and isolation of an air quality monitoring
network.

The proposed paper will be organized as follows.
The section 2 presents a description of RBF-NLPCA

model. The proposed training procedure of this RBF-
NLPCA model is given in section 3. Based on the
RBF-NLPCA model, the test for detection of faulty
sensor and the isolation approach based on the contri-
bution plot are presented and successfully applied to
an air quality monitoring network in Lorraine (France)
in the section 4. The last section gives conclusions.

2. RBF-NLPCA MODEL

2.1 Problem settings

Nonlinear PCA is an extension of linear PCA. Whilst
PCA identifies linear relationships between process
variables, the objective of nonlinear PCA is to extract
both linear and nonlinear relationships. This gener-
alization is achieved by projecting the process vari-
ables down onto curves or surfaces instead of lines or
planes. Fig. 1 illustrates the concept of linear PCA.
The first principal component minimizes the sum of
squared orthogonal deviations between the straight
line and all variables. The concept of nonlinear PCA
is illustrated in Fig. 2. The nonlinear approach is
like linear PCA, except it represents the data by one
dimensional smooth curve which is determined by
the nonlinear relationship between the variables. The
curve is defined to minimize the orthogonal deviations
between the data and the curve. The NLPCA model
can be represented by two sub-models (Mapping and
Demapping model).

The mapping model gives from a data matrixX the
nonlinear principal componentT and the demapping
model gives estimation. In this case, the nonlinear
mapping has the following form

t = G (x) (1)

where x and t are rows ofX and T respectively,
G is the mapping function. The demapping model
gives estimation̂x of x from the nonlinear principal
componentt and has the form

x̂ = F (t) (2)

whereF represents the demapping function.

Therefore a data setX includingmvariables can be ex-
pressed in terms of̀nonlinear principal components

X = X̂ +E = F (T)+E (3)

whereT = [T1, ..., T̀ ] is the matrix of nonlinear prin-
cipal componentsT = G (X), andE is the matrix of
residuals. The problem is now to identify the non-
linear projection functionsG andF . To do this, the
objective function to minimize is the sum of squared
orthogonal deviations:

min
N

∑
i=1

‖xi − x̂i‖2 = min
N

∑
i=1

‖xi −F (G (xi))‖2 (4)



wherexi is the ith row of X andx̂i is its estimation by
the RBF-NLPCA model.

x1

x2

Fig. 1. The linear principal component minimizes the
sum of squared orthogonal deviations using a
straight line.

2.2 RBF-NLPCA model

The proposed nonlinear principal component analysis
model can be obtained by using two RBF-Networks
for mapping and demapping data. Firstly, a three layer
RBF-network is used (Fig. 3), the hidden layer was
composed of radial basis neurons performing a nonlin-
ear mapping of the input space onto a lower dimension
space, such that the nonlinear features are captured.
The aim is to use this network to define a transforma-
tion G : ℜm→ℜ`.

G (x) =
r

∑
i=1

wiφi(x) (5)

where{φi , i = 1, . . . , r} are radial basis functions of
x∈ℜm, r is the number of kernels and{wi , i = 1, ..., r}
denotes a set of weight parameters of the output layer
to be determined. The gaussian basis functionsφi are
gaussian and defined as:

φi(x) = exp

(
−‖x−ci‖2

2σ2
i

)
(6)

whereci and σi respectively denote center and dis-
persion. In the first step, the centersci are initialized
with K-means clustering and the dispersionsσ2

i are
determined as the distance betweenci and the closest
c j ( j 6= i, j ∈ {1, ..., r}).
By preserving the original dimension of the data, the
second network tries to perform the inverse transfor-
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Fig. 2. The nonlinear principal component minimizes
the sum of squared orthogonal deviations using a
smooth curve.

mation from the reduced data (Fig. 4). We define the
inverse transformationF : ℜ` →ℜm :

x̂ = F (t) =
k

∑
j=1

v jψ j(t)+v0 (7)

for some kernelsψ j , ( j = 1, ...,k), weights V =
(v0, ...,vk), wherek is the number of kernels andvi ∈
ℜ`, (i = 0, . . . ,k).
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Fig. 3. RBF-Network for mapping fromℜm→ℜ`.
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Fig. 4. RBF-Network for mapping fromℜ` →ℜm

To identify the RBF-NLPCA model, we have to deter-
minate the parameters of radial basis functions (cen-
ters and dispersions) and the weight parameters for
the two RBF-networks. The number of principal com-
ponent analysis to retain in the NLPCA model can
be determined by the reconstruction approach [6]. It
should be noted that the nonlinear principal compo-
nent matrixT being unknown, the training of the two
RBF-networks separately is then impossible.

To overcoming this problem we suggest to estimate
this nonlinear component matrixT by using the prin-
cipal curve algorithm [8]. When the matrixT is esti-
mated, each RBF network can be trained separately.
So, the training problem is transformed into two clas-
sical nonlinear regression problems.

3. RBF-NLPCA TRAINING

The proposed training procedure involves three steps :



(1) Find principal curves by successively applying
the principal curve algorithm [8] to observed data
and residuals. Then in the first stepT1 denotes
the first nonlinear principal component, so:X =
F1(T1) + E1, where E1 is the residual. When
more than one nonlinear principal component
is needed we do the same calculation from the
residual data [11].

(2) Train an RBF network that maps the original
data onto the nonlinear principal components
(obtained by the principal curves algorithm).

(3) Train the second RBF network that maps the
nonlinear principal components onto the original
data.

The training of the two RBF-Networks (mapping and
demapping network) is presented in detail in [7].

4. APPLICATION FOR FDI OF AIR QUALITY
MONITORING NETWORK

4.1 Description of air quality monitoring network

The air quality monitoring network AIRLOR working
in Lorraine, (France), will be described. The monitor-
ing network consist of twenty stations placed in rural,
peri-urban and urban sites. Each monitoring station
consists of a set of sensors, dedicated to the acqui-
sition of the following pollutants: carbon monoxide
CO, nitrogen oxides NO and NO2, sulfur dioxide SO2
and ozone O3. Moreover, seven stations are dedicated
to the recording of additional meteorological parame-
ters. The measures are averages calculated over fifteen
minutes in order to limit spatial and temporal sampling
problems. In this work, only six stations are consid-
ered.

The purpose is to to detect sensor failures mainly those
which record ozone concentration (O3) and primary
pollutants like nitrogen oxides (NO and NO2).

The matrix X contains 18 variables,v1 to v18, corre-
sponding, respectively, with ozone O3 and nitrogen
dioxide (NO2 and NO) of each station. Data set is
chosen to have different concentration levels to show
the performance of the proposed method.

4.2 Sensor Fault detection and isolation

Abnormal situations that occur due to sensor drifts
induce changes in sensor measurements. Nonlinear
Principal components analysis is used to model nor-
mal process behavior and faults are then detected by
checking the observed behavior against this model.

Our approach for PCA process monitoring involves
a Squared Prediction Error (SPE) chart. TheSPE is
given by

SPEk =
m

∑
j=1

(x j(k)− x̂ j(k))
2 (8)

with x j is a process variable andx̂ j is the estimation of
x j from the NLPCA model. Analysis ofSPEk provides

a way to detect abnormalities in data [2,12]. To reduce
false alarms, exponentially weighted moving average
(EWMA) filter can be applied to the residuals but
it introduce a delay in detecting faults. The general
EWMA expression for residual is [2]:

ēk = (I −Λ)ēk−1 +Λek (9)

SPEk = ‖ēk‖2 (10)

whereēk andSPEk are the filtered residuals andSPE
respectively.Λ = γI denotes a diagonal matrix whose
diagonal elements are forgetting factors for the resid-
uals.

If SPE is above the confidence limits, a new event
is found in the data, which is not described by the
process model. In this case, to identify faulty sensor,
contributions of each process variable toSPEshould
be examined [13]. The contribution of the jth variable
to SPEis given by

Cont(SPE)
j (k) = (x̄ j(k)− ˆ̄x j(k))2, ( j = 1, ...,m) (11)

wherex̄ j is the filtered variablex j and ˆ̄x j is its esti-
mate.

The sensor having the biggest contribution toSPE is
considered as the faulty sensor.

For this application, the linear PCA model has been
firstly used [5] and theSPE index is calculated. In
addition to the measurement noise, theSPE index is
affected by modeling errors. When no fault is present,
many false alarms can occur. To overcome this prob-
lem a nonlinear PCA model is used.

By applying the principal curve algorithm we can
calculate the nonlinear principal componentst. Table
1 presents the variance explained by each principal
component. Then, the two RBF networks are trained
separately and the RBF-NLPCA model is identified.

The three following figures present, respectively, mea-
surements and estimation of O3, NO2 and NO levels.
The estimations are given by the RBF-NLPCA model
(7). For our application, six components was retained
in the model which explain95% of the variance of
data.

By taking into account the nature of the modeled
process, the results obtained are very satisfactory, with
the RBF-NLPCA model obtained, even the peaks of
NO, O3 and NO2 are well estimated (Figure 5 to 7)
which are essential for the alarm procedures. In the
case of the nitrogen oxides that are more localized
pollutants, and more difficult to model, the estimation
of these two variables remains correct for weak values
as well as for high values.

Based on the obtained NLPCA model, the indices for
detecting sensor faults and isolating faulty sensor can



Table 1. Percent Variance Captured by lin-
ear and nonlinear PCA

PC Linear PC Total Nonlinear PC Total
1 40.52 40.52 58.46 58.46
2 18.35 58.88 15.29 73.76
3 10.09 68.97 10.00 83.76
4 7.02 76.00 6.18 89.94
5 6.75 82.75 3.77 93.72
6 5.17 87.93 2.09 95.81
7 3.56 91.50 1.50 97.32
8 2.59 94.09 0.84 98.16
9 1.47 95.57 0.61 98.77
10 1.25 96.82 0.43 99.21
11 0.96 97.78 0.31 99.52
12 0.90 98.69 0.22 99.74
13 0.46 99.16 0.10 99.85
14 0.37 99.54 0.06 99.92
15 0.17 99.71 0.03 99.96
16 0.16 99.87 0.02 99.98
17 0.09 99.97 0.01 99.99
18 0.02 100.00 0.00 100.00
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Fig. 5. Measurements and estimations of the Ozone
concentrations
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Fig. 6. Measurements and estimations of the NO2
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Fig. 7. Measurements and estimations of the NO con-
centrations

be calculated on line. To apply the sensor validation
method, a bias fault is introduced for the sensor 1
between sample800and1080(O3). The magnitude of
the fault amounts to 20% of the range of variation of
variablev1. SPE in Fig. 8 almost immediately allows
to detecting the fault. To identify the faulty sensor

is faulty, contribution of all sensors to theSPE is
examined and Fig. 9 shows that the sensor 1 has the
largest contribution which indicates that sensor 1 is
the faulty one.
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Fig. 8. Squared prediction error with a fault onv1
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Fig. 9. Contribution plot with a fault onv1

Another fault is simulated on the sensor 2 (NO2)
between sample800 and1080. The fault is detected
on theSPE (Fig. 10). Contribution plot for theSPE
(Fig. 11) shows that the sensor 2 is the faulty one.
Fig. 12 showsSPEwith a fault on variablev3 (NO).
Contribution plot is depicted in Fig. 13, the biggest
contribution indicates that the variablev3 is the faulty
one.
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Fig. 10. Squared prediction error with a fault onv2
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Fig. 11. Contribution plot with a fault onv2
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Fig. 12. Squared prediction error with a fault onv3
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Fig. 13. Contribution plot with a fault onv3

In this paper, only three sensor fault detection and iso-
lation cases are represented. Faults on other variables
are also detected and successfully isolated.

5. CONCLUSION

This paper proposes the application of a fault detection
and isolation (FDI) based NLPCA method to an air
quality monitoring network. An algorithm for deter-
mining the NLPCA model is proposed. The first step
of this algorithm consists of using the principal curve
algorithm [8] to find nonlinear principal components.
Then, two cascade RBF-networks are trained with a
three phase procedure. A NLPCA model is built, us-
ing data obtained when the process is under normal
condition. The proposed approach for fault detection
and isolation is presented and successfully applied to
air monitoring networks in Lorraine, (France). Future
work will include using the reconstruction approach
[6] for the determination of the number of nonlinear
principal components to keep in the NLPCA model
and also to give replacement values of faulty measure-
ments.
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