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Abstract. The paper deals with a method for
determining a switching combination of several local
linear models using only the knowledge of the input-
output data. The method is a direct optimisation of the
sum of square errors between measured output and
predicted model output ; in this procedure, the
originality is based on the choice of an adapted
criterion with particularly weights.
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1. INTRODUCTION

For the identification of nonlinear systems, there has
been a large activity during the past years. In
particular many interesting results have been reported
in connection with multi-model [Gasso, 2001] and/or
multiple models [Murray-Smith, 1997], [Mihaylova,
2001], hybrid systems [Bemporad, 2001], hinging
hyperplanes [Pucar, 1998], [Breiman, 1993], hidden
Markov models [Ding, 1997].

In the following we focuse the attention on
PieceWise Auto Regressive Exogeneous models
(PWARX). As it will be pointed out latter, if the
partition of piecewise mapping is known, the
problem of identification can easily be solved by
using standard techniques of estimation. However,
when the partition is unknown the problem becomes
much more difficult (see for example  the works of
Gasso [Gasso, 2001] in the field of multi-models).
Thus, there are two possibilities. Either a
partitioning defining the local domains in which the
system is constant, is a priori defined or the
partitioning has to be estimated along with the local
models. In the first case, the number of local
domains has to be chosen very large. If the amount
of input-output data is sufficient in each domain, the
parameter estimation of local model is generally easy
; otherwize, problems of ill conditioning often
occurs. In the second case, a few number of local
domains are used, but the simultaneous estimation of
their number and of the parameters of the local

models generally leads to potentially many local
minima which may make it difficult to apply local
search routines.
This two difficulties have not received definitive
solutions. Our contribution is to illustrate this
problem in the case where the structure and the
number of local models are known. Thus, we restrict
the estimation problem to 1) the estimation of
switching between the local models, 2) the
estimation of the parameters of the local models.

To begin with, let us consider systems on the form :

yk = ϕk
Tθ j          j = 1. .s (1a)

if Hj
Tϕ t ≤ 0 (1b)

where ϕk ∈ℜ
p  is a regression vector and θ j ∈ℜ

p

the parameter vector associated with the jth local
model. The regression vector ϕ  could, e.g., consists
of old inputs and outputs :

ϕ t = yt−1... yt−n ,ut−1...ut −m ,  1[ ]T . (2)

The sets Sj = H j
Tϕ t ≤ 0{ },  j = 1. .s  are polyhedral

partition of the ϕ − space .
Our problem, when we are given yt  and ϕt ,
t = 1. .N , consists in finding the PWARX model
that best matches the given data. The model (1) can
be identified by solving the optimisation problem :

min yt − ϕtTθ j 2
2
ρ j ϕ t( ) 

 
 

 
 
 

t =1

N
∑ (3)

subject to :ρ j ϕ t( ) =
1 if  Hj

Tϕ t ≤ 0

0  otherwise  

 
 
 

  
(4)

where θ j  and Hj , j = 1. .s  , are the unknown.

In our case, we limit the estimation problem to those
of θ j  ; however, we need to simultaneously estimate
the values of the function ρ j (. ) in order to know the
time switching i.e. the data useful to estimate the
parameters of the jth local model. In fact we are not



involved with the explanation of the switching, i.e.
the estimation of the Hj  parameters.

This paper organised as follows : section 1 explains,
through a simple example what is the problem to
solve and the foregoing difficulties. Sections 3
constitutes the contribution of the paper. Some
simulation examples provide an illustration of the
proposed algorithms in section 4 and is followed by
a conclusion.

2. INTRODUCTIVE EXAMPLE

Let us consider a first order system with input u  and
output y . Looking at the time evolution of the two
signals (fig. 1) doesn't reveal an evident relationship
between the two variables u  and y . However it is
reasonable to think that the parameters of the system
have changed in respect to the time (see, for example,
the evolution of u  and y  between times 6 and 10).
To go further in this hypothesis, it would be
interesting to test if a hidden evolution of the
parameters exists.
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Figure 1. Input and output evolution

In fact considering the time varying model :

yk +1 = akyk + bk uk       k = 1. .N − 1 (5)

we try to analyse the consistency of the data in regard
to the structure of this model. For that purpose the
data gathered in fig. 1 are used.

First we plot yk / uk  versus yk +1 / uk  (fig. 2). It is
thus clear that there are two subsets of data each
being represented by a straight line. If we were able
to identify this two subsets, i.e. to classify the input-
output data, identifying the parameter models would
be easy. Considering the presence of only two
subsets, it is reasonable to hypothesis, that the
system may be represented with two local models

(with respective parameters a1,b1  and a2 ,b2 )
switching at particular instants :

yk +1 = µ k a1yk + b1uk( ) +
                  1− µk( ) a2yk + b2uk( )

(6)

µ k ∈ 0,1{ } .
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Figure 2. The two regimes of functioning

Now, we propose a systematic procedure to analyse
the input-output data of an hybrid system in order to
identify its parameters.

3. PROPOSED TECHNIQUE

Let yk  represents the output measurements of the
underlying system and yj ,k (θ j )  the output of the jth
local model parametrized by θ j . To fit the local
model to the data, we want to minimize the error
function :

Φ =
yj ,k (θ j ) − yk

pj ,k
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j=1

s
∑

k=1

N
∑ (7)

yj ,k (θ j ) = ϕk
Tθ j

where yj ,k θ j( )  is the jth local model output and
where the weights pj ,k   have to be design such that
the local model j  is adapted only with the input-
output data for which it is concerned. It can be seen
that the cost function (19) represents a trade-off
between local and global learning. Indeed, when the
model output y1,k  is closed to the measurement yk
then model j=1 matches the measurements and ρ1,k
is greater than ρ j ,k . when j ≠ 1
Obviously, the key point is the design of these
weights. In the following a non parametric
estimation is used because there is no need to
parameterize the weighting functions, only their
values being useful to separate the data according to
the s  local models. The ideal situation deals with
the knowledge of the partitioning of the data into s
groups, the first one gathering the data in accordance



with the first model, and similarly for the
othergroup. These two sets are noted Sj  :

Sj = xk , yk( ), k = 1. .N / xk , yk( )  satisfy model  j{ }
j = 1, 2

Thus, the optimal weights are defined by :

pj ,k =
∞  if  xk , yk( ) ∈Sj
0  if  xk , yk( ) ∉Sj

 
 
 

  
    k = 1. .N (8)

In fact our algorithm try to adapt the weights as
closed as possible to the optimal ones.

The complete iterative algorithm is now described.
Each iteration consists of two steps. The first one is
to determine an estimation ρ j ,k  of the weighting
functions pj ,k  given the local models. The second
step is to identify the local models given the
weights. Note that in [Verdult, 2001] a similar
algorithm is used in the context of weighted
combination of local linear state-space systems and
using a extended Kalman smoother ; however, in that
approach additional hypothesis is needed on the rate
evolution of the weights.

1. Select a set of initial parameters θ0, j  for the
s  local models
θ j = θ0, j , j = 1. .s

2. Define the weights

ρ j ,k =
1

τ + yj ,k θ j( ) − yk( )2 
 
 

 
 
 
r

j = 1. .s
k = 1. .N

j = arg max
p

ρ p,k( )
ρ j = 1

ρ p = 0,  p = 1. .s,  p ≠ j

Wj = diag ρ j ,1  ...  ρ j ,N( ), j =1,2

3. Compute the local model parameters

θ j = XTWj X( )−1XTWjy

X = ϕ1  …  ϕN[ ]T

y = y1  …  yN[ ]

4. Go to step 2 until the convergence has been
obtained

In step 1, the parameters of the s  local models must
have different initial values ; otherwise the
identifying of the regimes would be unsuccessful. In
step 2 the factor τ  is used to avoid the nullity of the

denominator of ρ  ; it must be chosen by the user as
small as possible. The coefficient r  enforced the
weight ; it must be chosen by the user, a "good"
value being r = 2 .

4. RESULTS

For the proposed example, the model is identified on
the data reported in figure 3, by solving the proposed
estimation algorithm. Table 1 gathers the results :
line 3 corresponds to the initialisation of the
parameters, line 4 shows the estimated parameters at
the first iteration, while line 5  gives the results at
iteration 7 (where convergence has been reached),
which may be compared to the true values at line 2.

Par. a1 b1 a2 b2 a3 b3 a4 b4
true 1 2 -1 3 2 8 -2 6
ini. 2 1 1 1 5 5 -5 4
Iter. 1 0.38 4.27 -0.26 3.1 1.70 7.36 -1.62 5.93
iter. 7 0.99 2.46 -0.96 3.15 1.98 8.40 -1.99 6.08

Table 1. Parameters of the model
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Figure 3. Measurement and  estimation

Figure 4 shows the classification results. The
weights for the 4 local models are represented for all
the data at figure 4a ; figure 4b displays boolean
classification derived for the comparison of the
weigths.

Although the results of the estimation are
satisfactorily, we have to keep in mind that this
approach suffers of some drawbacks : in particular
potentially local minima may be obtained. However,
if some knowledge about the domain in which lie the
parameters is available, then the algorithm reveals to
be powerful. In practice, we can often make some
educated guess of how to give initial values to the
local models.
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Figure 4a. Fuzzy classification
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Figure 4. Boolean classification

5 CONCLUSION

In this paper, we have proposed a method for the
identification of a linear combination of local linear
systems from input and output data. In fact this
combination is reduced to a switching between the
two systems, the switching time being unknown.

The parameters of the local systems have been
estimated by optimizing a cost function
which uses classical sum of squares of the deviation
between the output measurements and the output of
the model ; this has been performed with a judicious
choice of the weighting function allowing the
identification for each system with the appropriate set
of data.
Because of the preliminary date of the research, the
algorithm we proposed in this paper has only been
evaluated on a number of experiments.

However, the experiments clearly show the potential
of the two approaches and motivate for further

developments. In the future, most of the
developments will focuse on the determination of the
structure of the models. Moreover, the degree of
persistency of the exciting input signal remains an
open problem. Comparisons of the approach with
methods based on clustering will also be investigated
as well as methods based on interacting multiple
models (Mihaylova, 2001).
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