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Abstract: In this paper, a fault detection procedure for linear MIMO models with respect
to the observations and the parameters is studied. The various undesirable phenomena
being able to affect any physical system (parameter fluctuations, noise,..) are taken into
account by describing them as uncertainties. Thus a fault detection procedure is
established by providing a more robust decision with respect to the various
imperfections. A more general case consists in using polytopes instead of the
parallelotope, is treated in order to bring a better precision, by exploiting the Fourier-
Motzkin elimination algorithm which is used to compute the projection of a polytope.
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1. INTRODUCTION

The purpose of a fault detection and isolation (F.D.I.)
procedure is to specify in which operating condition is
the studied physical system. More precisely, when a
fault is present, one should be able to detect it, then to
identify its nature i.e. to isolate the component that the
fault has affected. These two stages help to
reconfigure the considered system in order to make it
operational by realizing the adequate action.

A problem met in the field of F.D.I. schemes lies in
the fact that a model only defines an approximate
behavior of a physical system. This is caused by
modeling errors when a model is made linear or when
some physical phenomena are not taken into account.
However, a modeling error has not to be identified
with a fault. In order to prevent a significant number
of false alarms, the bounding approach consists in
considering that parameter fluctuations and noise are
represented by uncertain and bounded variables.
Indeed, every uncertain parameter θi  of the model is

considered bounded and time-variant variable
θ θ θi i i∈ min max; , which only its bounds are known.

This paper is organized as the follows. After
formulating the problem in section 2, an algorithm for
polytope projection is explained in section 3 and is
generalized in order to solve the Fault Detection
(F.D.) problem when the parameter domain is a
polytope. In the section 4, a fault detection method
using bounding approach is proposed as a binary
consistency test between measurements and their
estimations using the model. Then, a relative volume
providing a degree of consistency is defined in section
5, followed by an example in section 6.

2. PROBLEM FORMULATION

Fault detection procedure for a physical system using
a model is viewed as a comparison between an
observed behavior and an estimated one obtained by
using a model. When model parameters are uncertain,
the precision of the F.D. procedure is directly related
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to the size of uncertainties: the more the size of the
uncertainties is large, the less the F.D. procedure is
precise. This is due to the fact that a fault may be
confused with a possible parameter deviation which
leads to a non-detection. Consequently, the more the
size of the parameter domain is large, the taller the
non-detected fault will be. Then, it is interesting to
carry out the F.D. procedure by taking the smallest
parameter domain containing all the real parameter
values. In fact, the real parameter domain is generally
unknown or not convex, that is why some parameter
estimation techniques consist in finding an
approximation of the real parameter domain as an
ellipsoidal form or a parallelotope. This is not
developed in this paper, the reader can refer to several
works on parameter estimation field which have been
collected in a collective volume that represents the
main results (Milanese et al., 1996). Thus, the
precision of F.D. is related to the quality of the
parameter estimation procedure and to the
characteristics of the parameter domain.

In (Ploix et al., 2000) and (Janati-Idrissi et al., 2001),
the parameter domain is considered as a parallelotope
in order to have its generating expression (1), then a
method based on interval analysis (Moore 1979, Mo
et al.,1988) is used to provide the estimated behavior.
Indeed, if θ ∈

� p  is the parameter vector belonging to
a parallelotope Ρrθ , then its expression is:

θ θ= +c Tv (1)

where θc
p∈

�
 is the center of Ρrθ  and T p q∈ ×�

 is a
matrix defining its form and its volume. The uncertain
and the bounded nature of the parameter vector θ  is
traduced by the normalized vector v q∈

�
 such that

v ∞ ≤ 1. Finally, by injecting this expression in the

model lather defined by (2) in the section 2.1, it
becomes possible to provide the estimated behavior of
the system and then to compare it to measurements.
This technique can not be extended in case the
parameter domain is considered as a polytope. But it
is easy to see that a polytope is more precise in
approximating the real parameter domain than a
parallelotope (see figure 1).

θ2

θ1

Real parameter set

Polytope: more precise approximation of the
real parameter set

Parallelotope approximating the real parameter set

Fig.1 Parameter set approximation: difference
between a polytope and a parallelotpe.

Each one of these two domains defines a bounded
subset in 

� p , limited by hyperplanes. In other words,
a polytope (including the particular case of a

parallelotope) can be viewed as the intersection of
different half spaces which can be described by their
analytical expressions. In the parameter space, a half
space is described by the following linear inequality :

a bi iθ ≤
such that bi ∈

�
 and a i

T is a row vector in 
� p . The

intersection of a set of r  half spaces is mathematically
represented by compacting all this single linear
inequalities in a matrix form as:

A bθ ≤
where A r p∈ ×�

 and b r∈
�

. Thus, such linear
inequality describes a general form of a polytope.

2.1. System description

This paper focuses attention on a linear time-variant
system which is described by the following model:

Y k X k k E k0 5 0 5 0 5 0 5= +θ (2)

where Y n∈ � , X ∈ ×� n p  are the measurable
variables, their measurements are noticed respectively
~
Y and 

~
X. Although no uncertainty is considered in

the sensors, this notation of measurements is done
only in order to highlight the difference between the
estimation of variables (Y, X) and their
measurements (

~
Y, 

~
X). It is supposed that the matrix

X is full row rank, if it is not the case, an elimination
of some rows of X and the corresponding elements of
Y which are linearly dependent is done to have a
reduced model. θ k p0 5 ∈ �  defines model parameters
and k  is the time index. Noting that such a model can
describe also a dynamic system (AR, ARMA) since
that can contain some components of Y shifted in the
time.

Uncertainties affecting the model are classified in two
categories. On the one hand, those acting directly on
the outputs are additive uncertainties, and on the other
hand, the multiplicative uncertainties (uncertainties
multiplied by measurement) describe parameter
variations:

♦ The multiplicative uncertainties represented by the
uncertain parameter vector θ ∈ � p  fluctuate inside an
invariant polytope denoted Ρθ , defined by some linear
inequalities as:

A k bθ0 5 ≤  where A r p∈ ×�  and b r∈ �
♦The additive uncertainties represented by the
uncertain vector E k0 5 ∈ � n , traduce the equation

error of the model (1). The ith  component of E k0 5 ,
denoted e ki 0 5  is considered as a bounded variable:

− ≤ ≤δ δi i ie k0 5 , such that δ i ∈ �  is known.

Then the additive uncertainties can also be described
by their analytical expressions as:

E k Z u k0 5 1 6 0 5= δ  where Z diag nδ δ δ1 6 1 6= 1,...,

(δ δ δ= 1 � n
T

) and u k n0 5 ∈ �  is a bounded and

normalized vector: u k0 5 ∞ ≤ 1.



The global description of model (2) becomes:

Y k X k k Z u k0 5 0 5 0 5 1 6 0 5= +θ δ ,

under the following linear conditions:

A k bθ0 5 ≤  and u k0 5 ∞ ≤ 1.

Let us denote:

        ➣ α θk k u kT T T0 5 0 5 0 5= : a new parameters

model vector.

        ➣ X k X k Z0 5 0 5 1 6= δ  and Y k Y k0 5 0 5=  with

X k n p n0 5 0 5∈ × +�
, Y k n0 5 ∈ � .

Then the parameter domain is defined by:

M k Nα0 5 ≤

where: M
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such that 1n  is a vector in � n  of which all the
elements are equal to 1 and In is the identity matrix in

� n n× . Finally, the model (2) becomes:

Y Xk k k0 5 0 5 0 5= α (3)
under the linear conditions:

M k Nα0 5 ≤
The measurements of variables X k0 5  and Y k0 5  are:

~ ~
X k X k Z0 5 0 5 1 6= δ  and 

~ ~
Y k Y k0 5 0 5=

According to parameter values at a time k, the model
produces one behavior among several possible ones.
Consequently, in the F.D. operation, the consistency
test must take into account the uncertain nature of the
model. In the next section a method for treating the
collected data and for making a decision in the
presence of uncertainties is presented.

3. CONSISTENCY TEST

When the physical system described in the section 2.1

operates normally, the measurements (
~
X k0 5 , 

~
Y k0 5)

must be consistent with the model (3) i.e. at a time k,
it exists a parameter vector value α0  such that:

~ ~
Y Xk k0 5 0 5= α0     with M Nα0 ≤ (4)

Then, finding the unknown variable α0  is a linear
programming (LP) problem widely treated in the
literature.(Nash, 1996). In general, the value of α0  is
not unique, consequently, a given solution at a time k
does not necessary correspond to exact parameter
values. Then, it can not reflect the real operating state
of the system. This is due on the one hand to the fact
that the model (3) is not injective (in general, even if
the parameters would have been invariant and certain,
there would be an infinity of solutions which would be
consistent with the model for a given data) and on the
other hand it is caused by the lack of the information
(uncertain model).

In the following, two methods for solving (4) are

proposed. The first one, called the parametric
approach, reasons in the parameter space. The second
method consists in considering the measurement space
using a set-membership approach.

3.1. Parametric approach

The system described by (3) operates normally if the
following condition holds:

∃α ∈ +� p n such that 
~ ~
Y Xk k0 5 0 5= α  with M Nα ≤ (5)

In order to simplify notations, the time index k  is
omitted in the following. It means that all the
procedure is performed at each time k. Since the

matrix 
~
X  is full row rank, then it exists at least one

matrix H n p p∈ + ×� 0 5  and a vector g n p∈ +�  such
that:

α β= +H g , where β ∈ � p

By injecting this expression of α  in the inequality
M Nα ≤ ; the final form of the condition (5) is:

∃β ∈ � p  / Ψβ Γ≤ (6)
where Ψ = MH and Γ = −N Mg

Thus, the consistency test is easier to establish
because the number of variables occurring in the
inequality system to be treated is smaller: (p+n �  p).

The F.D. procedure can be summarized by the
following set of rules:

➣If the linear inequality Ψβ Γ≤  is feasible then the
system described by (3) operates normally.

➣If Ψβ Γ≤  is not feasible then the system described
by (3) is in an abnormal operating state.

Several techniques can be used for solving the
feasibility of a set of linear inequalities. The obvious
one, consists in using the algorithms solving linear
matrix inequality (LMI) problems (Boyd, et al. 1994)
by rewriting (6) as r n+ 2  scalar LMIs:

 Ψ Ψ Ψ Γi i j j i p p i, , ,1 1β β β+ + + + ≤	 	 , i r n= +1 2,...,0 5
such that the elements of the vector β  (β j, j p= 1,..., )

are unknown matrices (scalar matrices).

3.2. Set membership approach

Another alternative to test the consistency of the
measurements, is the set membership approach . It
consists in estimating the system output Y and to

compare it with its measurement 
~
Y . Since the model

(3) is uncertain due to the fact that the parameter
vector α  has several possible values, then the output
estimation is not a punctual value. If the system
described by (3) operates normally and the parameter
vector belongs to the domain Dα  defined by:

D M Nn p
α α α= ∈ ≤+


/> C
then the model output Y take several possible values
in the domain DY  described as:

D DY = ∈
~

/Xα α αJ L



Thus, the F.D. procedure can be based on a
consistency test of measurements which is completely
equivalent to that used in the previous subsection and
which is presented in the following way:

➣If 
~
Y ∈DY  then the system described by (3) is in a

normal operating state.

➣ If 
~
Y ∉DY  then the system described by (3) is in an

abnormal operating state.

Therefore, this consistency test requires the
determination of the domains DY . Several works are
elaborated in this context (Ploix et al., 2000);
however, they treat only the case where the parameter
domain is a parallelotope. The methods used in these
works are based on interval analysis which can not be
applied to give an exact description of the domain DY
when Dα  is a polytope. In this paper, the proposed
technique is based on another point of view. It
consists in computing the projection of the polytope
Dα  on the measurement space in order to deduce the
exact description of DY .

4. PROJECTION OF A POLYTOPE

In this section, an algorithm for polytope projection
using Fourier-Motzkin elimination appearing in the
book of (Ziegler, 1995) is presented. It starts from a
projection in a single direction and then is generalized
in this paper to compute the projection of a domain on
an affine space.

4.1. Projection in a direction

Considering a given polytope P  defined by some
linear inequalities:

x ∈P  �  Qx c≤  / Q qi j i m
j nx

= ≤ ≤
≤ ≤

,3 81
1

, c m∈ �  and

x nx∈ �  xi  and ci  are respectively the ith  elements of

vectors x  and c. The canonical basis in � nx  is

d dnx1, ,4 9 . The projection of P  in the direction of

di , is defined as:

proj x x t x tdi
n

i i
x

� �0 5 J L= ∈ = ∃ ∈ + ∈
� �

/ , :0

Analytically, it consists in eliminating the component
xi  from the inequality: Qx c≤  and is the classical
perception of the projection. For more clearness,
considering an example of a polytope 

�
 defined by

the following linear inequalities:
− − ≤ − ≤

− − ≤ − + ≤
− ≤ − + ≤

x x x
x x x x
x x x x

1 2 1
1 2 1 2
1 2 1 2

4 9 4
2 4 2 11

2 0 2 6 17
The computation of the projection of 

�
 on the

subspace x x∈ =
� 2

2 0/> C requires the elimination

of x2  from the previous linear inequalities by currying
out all possible linear combinations of two constraints,
such that in one of them x2  is multiplied by a positive
scalar and in the second one, x2  is multiplied by a

negative scalar. By applying this procedure, the
projection of 

�
 will be defined as:

proj x x x2
2

2 10 0 5 4
�0 5 > C= ∈ = ≤ ≤

�
/ , .

Figure 2 shows the projection of 
�

 in the direction of
d2 , which is an orthogonal projection on the linear

space x x∈ =
� 2

2 0/> C.

In the general case, let us consider that 
�

 is a polytope

defined in 
� nx  by: Ax b≤ , with

 1 2 3 4

2

3

x1

x2

P

proj2 P0 5

Fig. 2 Projection of 
�

 in the direction of x2

A m nx∈ ×�
 and b m∈

�
, and choose s nx≤ . The

projection of 
�

 in the direction of ds  is a polytope

defined by given linear inequalities: A x bs s/ /≤  such
that the matrix A s/  and the vector b s/  are defined by
the following algorithm:

Fourier-Motzkin elimination:
The rows of the matrix A s/  are

   ♦ the rows a i  of A, for all i  with a i s, = 0, and

   ♦ the sums a a a ai s j j s i, ,+ −3 8  for all i , j with

a i s, > 0 and a j s, < 0.

The elements of b s/  are
   ♦ x ∈P , for all i  with a i s, = 0, and

   ♦ a b a bi s j j s i, ,+ −3 8  for all i , j with a i s, > 0 and

a j s, < 0.

Finally the projection of P  in the direction of ds  is

described by: proj x A x bs
n s sxP0 5 J L= ∈ ≤

�
/ / /

4.2. Projection on an affine space

In this section, the Fourier-Motzkin elimination
algorithm is generalized to the case of a non
orthogonal projection of a polytope on an affine
space, in order to be able to construct the domain DY .
Consider again the model (3):

Y Xk k k0 5 0 5 0 5= α  / M k Nα0 5 ≤ .
The domain DY  is the projection of Dα  on the affine
subspace Λk  spanned by the rows of the matrix X k0 5 :

Λk
n p k k= ∈ =+α α

�
/ Y X0 5 0 5> C

the method proposed in this section is applied for all
k, then the temporal index is omitted in the following.

Since this projection is not orthogonal, it is necessary
to carry out a change of variable. Firstly, let us

consider the permutation matrix P n p n p∈ + × +� 0 5 0 5

such that:
~ ~ ~
X X XPT = 1 24 9



where 
~
X1 ∈ ×� n n  is invertible and 

~
X2 ∈ ×� n p , and

let T  be a matrix defined as: T P
Ip

=
−�

��
�
��

− −~ ~ ~
X X X1

1
1

1
2

0
.

By noting α α= −T 1 , M MT= , α α αk T T T0 5 = 1 2

and M M M= 1 2  such that: M r n n
1

2∈ + ×� 0 5 ,

M r n p
2

2∈ + ×� 0 5 , α1 ∈ � n  and α2 ∈ � p , model (3)
becomes:

Y k In0 5 1 6= 0 α  where M Nα ≤
�  Y = α1 where M M N1 1 2 2α α+ ≤

It is easy to show that, after the change of variable
carried out by the matrix T , the two subvectors α1
and α2  evolve in two different orthogonal subspaces.

Finally, one can deduce the linear inequalities relating
the vector of outputs Y  and the vector α2 :

M M N1 2 2Y + ≤α (7)
Since Y  and α2  evolve in two orthogonal subspaces,
the domain DY  is the orthogonal projection of the

polytope P  (P = ∈ ≤+α α
� p n M N/> C) defined in

� n p+  by inequalities (7), on the linear subspace

defined by : z T T T n p= ∈ =%&'
()*

+Y α α2 2 0
�

/ .

Consequently the domain DY  is well defined as:

D z t t

z t d t d

Y
T T T n p

p

n n p

= = ∈ = ∃ ∈%&'
− − − ∈

+

+ +

Y

P

α α2 2 1

1 1 1

0
� �

/ , ,..., ,

...3 8 L
such that d dn p1,..., +3 8  is the canonical basis of
� n p+ . By considering the previous notation, the
domain DY  is described by:

D proj proj projY n p n p n= �
�

�
�+ + − +1 1... ... ...P4 94 94 9

This consists in applying the projection procedure
explained in the section 4.1 in order to eliminate all
the components of the vector α2 . Finally, this
technique leads to an analytical expression of the
measurement domain containing the estimations of all
possible values of model outputs according to the
parameter domain and data, by providing a matrix
A ∈ ×� r n  and a vector b ∈

� r  such that:

D Y YY
n= ∈ ≤

�
/ A b> C, where r  is the number of

the linear constraints describing DY .

The consistency test becomes:
�

 If AY b
~

k0 5 ≤  then the system operates normally.�
 If not then the system is affected by a fault.

5. NOTION OF RELATIVE VOLUME

The set-membership test of a point 
~
Y  to a

parallelotope DY  by checking or not some linear
inequalities has a binary result. It allows to verify if

~
Y ∈DY  or 

~
Y ∉DY . But, it can not give more

information about the degree of consistency (i.e. the

position of 
~
Y  and the size of DY ). The figure 3 shows

how it is possible to extract more information from the
measurements and the model.

The polytope D1 in the figure 3 is described by the
following linear inequalities:

− − ≤ − − + ≤
− ≤ ≤

y y y y

y y y
1 2 1 2

1 2 1

2 6 3 4

3 5

� � � � � � ��

 

!

"

#

D 1

Y 0

Y 0

D 0

D 0

Y D0 1∈
Y D0 1∉

y 1

y 2

Fig 3 Relative volume

The relative volume of the polytope D1 in $ 2  with
respect to a point Y0  is:

Vr D Y
Vol D

Vol D1 0
0

1
/1 6 1 6

1 6=  (see figure 3)

where Vol D01 6  is the volume of the polytope D0 . For

the point Y D0 1∈  (resp. Y D0 1∉ ) in the figure 3, the
relative volume is smaller (resp. bigger) than 1:

Vr D Y1 0 1/1 6 ≤ ; Vr D Y1 0 1/3 8 ≥ .

In the general case, the relative volume of a polytope
D in $ q  with respect to a point Y0  such that:

D x xq= ∈ ≤$ / A b> C  / A ∈ ×$ q q  and b ∈ $ q  are

known, is defined by making the following steps:

➣ Normalization of the linear inequality A bx ≤ :

if a i  is the ith  row of A  and bi  is the ith  element
of b , then the normalized form of the inequality
A bx ≤  is A bN Nx ≤  such that if aNi  is the ith

row of AN  and bNi  is the ith  element of bN
then:

a
a

aNi
i

i
=

2

 and b
b
aNi

i

i
=

2

.

➣ By taking σ  as the maximum of the components
of the vector A bN NY0 −  and the polytope D0
defined by:

D x xq
q0 = ∈ ≤ +$ / A b 1N N σ> C

then the relative volume is: Vr D Y
Vol D

Vol D
/ 0

01 6 1 6
0 5= .

The volume of a polytope can be computed by using
the algorithm given by (Lasserre 1983).
The calculation of the relative volume of the domain
DY  (containing the estimation of all possible values
of the output model Y) with respect to the



measurement 
~
Y  makes it possible to carry out the

consistency test as the following way:

If Vr DZ /
~
Y4 9 ≤ 1 then the system described by

operates normally, if not, it is in an abnormal

operating state. Moreover, if Vr DZ /
~
Y4 9  tends to 0,

the measurement 
~
Y  is strongly consistent with the

model and the more the Vr DZ /
~
Y4 9  tends towards 1,

the closer the point 
~
Y  gets to a border of DY , in other

words, the more the limit between consistency and
inconsistency is slight.

6. EXAMPLE

In order to illustrate the method used herein for the
F.D. procedure, an example is tacked in this section.
Considering the following static model:

y k x k k0 5 0 5 0 5= θ  where y k0 5 ∈ % 2 , x k0 5 ∈ ×% 2 3  and

θ θ θ θ= 1 2 3, ,1 6T
. The parameter domain is defined by

the following linear inequalities:

− − + ≤ − − − ≤ − ≤
− − ≤ ≤ − + + ≤

θ θ θ θ θ θ θ
θ θ θ θ θ θ

1 2 3 1 2 3 3

1 3 3 1 2 3

2 6 4 0

2 5 1 3 3

; ;

; ;

A variable fault is applied on the first output (10% of
the output value) in the interval [5,10], as illustrated
on the figure 4, this fault is detected along this
window (except at k=10), it is traduced by the fact that
the relative volume is big than 1 (figure 6). Another
variable fault affects the second output (20% of the
output value) in the interval [20,25]. This second fault
is not detected at k=20 and k=21. Note that a non
detection of a fault is due to the uncertainties affecting
the model, in this case a small fault can be confused
with a possible parameter fluctuation.

& ')( ')* +-, +-.,

/10 2
3

Faults non detected

Fig. 4 Alarme signal

4 5 4 6 4 7 4
8:9<;=;

8 >=;
;

>?;@

A B?C
C

B=C
Faults non detected 

~
Y k DY0 5 ∈

Faults detected
     

~
Y k DY0 5 ∉

Faults detected
     

~
Y k DY0 5 ∉  DY

~
Y k0 5

k

y2

y1

Fig. 5 Measurements and its estimations

The figure 5 shows the domains DY  and the

measurements 
~
Y k0 5  for k=1..25. At  a given time k

the measurement 
~
Y k0 5  is represented by the symbol

’+’ when Vr D kZ /
~
Y0 54 9 ≤ 1 (or 

~
Y k DY0 5 ∈ ) and by a

point ‘.’ if the measurement is not consistent with the

model Vr D kZ /
~
Y0 54 9 ≥ 1 (or 

~
Y k DY0 5 ∉ ). The alarm

signal in the figure 4, is equal to 1 if a fault is detected
and 0 if not.

B DEC DEB FGC FGBC
F

H
I

J

Faults non detected

Fig. 6 Evolution of the relative volume

7. CONCLUSION

Fault detection of uncertain system when the
parameter domain is a polytope is studied in this paper
in order to give more precision. Two methods to test
the consistency of the measurements with the model
are proposed: the parametric approach gives a binary
result as opposed to the set-membership approach
which provides an additional information about the
degree of consistency via a the relative volume
defined while being based on polytope theory..

The result described only concerns one class of
uncertain systems, it would be also interesting to
extend these techniques to the case of state space
representation with uncertain parameters in which the
set-membership approach is more delicate to be
applied because of the uncertainty propagation.

REFERENCES

Boyd S. et al., Linear Matrix Inequalities in systems and
control theory, Philadelphia, PA: SIAM, 1994

Janati-Idrissi H., Adrot O., Ragot J., Multi-Fault detection
of systems with bounded uncertainties, 40th IEEE
Conference on Decision and Control, CDC'01,
Orlando (USA), December 7-10, 2001.

Lasserre J.B., 1983, An analytical expression and an
algorithm for the volume of a convex polyhedron inK n. Journal of Optimization Theory and Applications,
Vol 39, No 3, pp 363-377, 1983

Milanese M.; J. Norton, H. Piet-Lahanier and E. Walter
(ed.) (1996). Bounding approach to system
identification, Plenum Press, New-York and London.

Moore R.E. (1979). Methods and application of interval
analysis, SIAM Philadelphia, Pennsylvania.

Mo S. H., J.P. Norton (1988). Recursive parameter
bounding algorithms which compute polytope
bounds, 12th IMACS World Congress, 2, 477-480.

Nash, S., and Sofer, A., Linear and Nonlinear
Programming, McGraw-Hill, 1996.

Ploix S., O. Adrot, J. Ragot (2000) Bounding approach to
the diagnosis of a class of uncertain static systems,
Safeprocess2000

Ziegler G. M., Lectures on Polytopes Graduate texts in
mathematics; Vol 152 Springer-Verlag, New York
1995.


