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Abstract: In this paper, afault detection procedure for linear MIMO models with respect
to the observations and the parameters is studied. The various undesirable phenomena
being able to affect any physical system (parameter fluctuations, noise,..) are taken into
account by describing them as uncertainties. Thus a fault detection procedure is
established by providing a more robust decision with respect to the various
imperfections. A more general case consists in using polytopes instead of the
parallelotope, is treated in order to bring a better precision, by exploiting the Fourier-
Motzkin elimination algorithm which is used to compute the projection of a polytope.
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1. INTRODUCTION

The purpose of a fault detection and isolation (F.D.l.)
procedure is to specify in which operating condition is
the studied physical system. More precisely, when a
fault is present, one should be able to detect it, then to
identify its naturei.e. to isolate the component that the
fault has affected. These two stages help to
reconfigure the considered system in order to make it
operational by realizing the adequate action.

A problem met in the field of F.D.I. schemes lies in
the fact that a model only defines an approximate
behavior of a physical system. This is caused by
modeling errors when a model is made linear or when
some physical phenomena are not taken into account.
However, a modeling error has not to be identified
with a fault. In order to prevent a significant number
of false alarms, the bounding approach consists in
considering that parameter fluctuations and noise are
represented by uncertain and bounded variables.
Indeed, every uncertain parameter 6; of the model is

considered bounded and timevariant variable
0 D[Gmini »Omaxi ] , which only its bounds are known.

This paper is organized as the follows. After
formulating the problem in section 2, an algorithm for
polytope projection is explained in section 3 and is
generalized in order to solve the Fault Detection
(F.D.) problem when the parameter domain is a
polytope. In the section 4, a fault detection method
using bounding approach is proposed as a binary
consistency test between measurements and their
estimations using the model. Then, a relative volume
providing a degree of consistency is defined in section
5, followed by an example in section 6.

2. PROBLEM FORMULATION

Fault detection procedure for a physical system using
a model is viewed as a comparison between an
observed behavior and an estimated one obtained by
using a model. When model parameters are uncertain,
the precision of the F.D. procedure is directly related



to the size of uncertainties: the more the size of the
uncertainties is large, the less the F.D. procedure is
precise. This is due to the fact that a fault may be
confused with a possible parameter deviation which
leads to a non-detection. Consequently, the more the
size of the parameter domain is large, the taler the
non-detected fault will be. Then, it is interesting to
carry out the F.D. procedure by taking the smallest
parameter domain containing all the real parameter
values. In fact, the real parameter domain is generally
unknown or not convex, that is why some parameter
edtimation techniqgues consist in finding an
approximation of the real parameter domain as an
elipsoidal form or a paralelotope. This is not
developed in this paper, the reader can refer to severa
works on parameter estimation field which have been
collected in a collective volume that represents the
main results (Milanese et al., 1996). Thus, the
precision of F.D. is related to the quality of the
parameter estimation procedure and to the
characteristics of the parameter domain.

In (Ploix et al., 2000) and (Janati-Idriss et al., 2001),
the parameter domain is considered as a parallelotope
in order to have its generating expression (1), then a
method based on interval analysis (Moore 1979, Mo
et al.,1988) is used to provide the estimated behavior.
Indeed, if 8 ORP isthe parameter vector belonging to
aparallelotope Prg, then its expression is:
0=0,+Tv (1)

where 8, ORP isthe center of Prg and T ORP*9 isa
matrix defining its form and its volume. The uncertain
and the bounded nature of the parameter vector 0 is
traduced by the normalized vector v ORY such that
[Vll, 1. Finaly, by injecting this expression in the
model lather defined by (2) in the section 2.1, it
becomes possible to provide the estimated behavior of
the system and then to compare it to measurements.
This techniqgue can not be extended in case the
parameter domain is considered as a polytope. But it
is easy to see that a polytope is more precise in
approximating the real parameter domain than a
parallelotope (see figure 1).
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Fig.l Parameter set approximation: difference
between a polytope and a parallel otpe.
Each one of these two domains defines a bounded

subset in RP, limited by hyperplanes. In other words,
a polytope (including the particular case of a

parallelotope) can be viewed as the intersection of

different half spaces which can be described by their

analytical expressions. In the parameter space, a half

space is described by the following linear inequality :
aie < bi

such that b; OR and aiT is a row vector in RP. The

intersection of a set of r half spacesis mathematically
represented by compacting all this single linear
inequalitiesin a matrix form as:

AB<b

where AOR"™P and bOR'. Thus, such linear
inequality describes a general form of a polytope.

2.1. System description

This paper focuses attention on a linear time-variant
system which is described by the following model:

Y (k) = X(k)8(k) + E(k) )
where Y OR", X OR™P ae the measurable
variables, their measurements are noticed respectively

Y and X. Although no uncertainty is considered in
the sensors, this notation of measurements is done
only in order to highlight the difference between the
estimation of variables (Y, X) and their

measurements (Y, X). It is supposed that the matrix
X isfull row rank, if it is not the case, an elimination
of some rows of X and the corresponding elements of
Y which are linearly dependent is done to have a

reduced model. 8(k) ORP defines model parameters

and k isthe time index. Noting that such a model can
describe aso a dynamic system (AR, ARMA) since
that can contain some components of Y shifted in the
time.

Uncertainties affecting the model are classified in two
categories. On the one hand, those acting directly on
the outputs are additive uncertainties, and on the other
hand, the multiplicative uncertainties (uncertainties
multiplied by measurement) describe parameter
variations:

¢ The multiplicative uncertainties represented by the
uncertain parameter vector 8 ORP fluctuate inside an
invariant polytope denoted Py, defined by some linear

inequalities as:

AB(k) < b where A OR"P and b OR"
¢ The additive uncertainties represented by the
uncertain vector E(k) OR", traduce the equation
error of the model (1). The it component of E(k),
denoted e; (k) is considered as a bounded variable:
-d; < ej(k)< 9, suchthat §; OR isknown.
Then the additive uncertainties can aso be described
by their analytical expressions as.
E(k) = Z(3)u(k) Z() = diag(dy,...,0,)
(5=[8; ... 8,]") and u(k) OR" is a bounded and
normalized vector: [|u(k)| , <1.

where



The global description of model (2) becomes:
Y (k) = X(k)B(k) +Z(d)u(k),
under the following linear conditions:
AB(k)< b and |Ju(k)| <1.
Let us denote:
O a(k)= [(9(k)T u(k)T]T: a new parameters
model vector.
O X(k)=[X(k) Z(3)] and Y(k)=Y(k) with
X(k) OR™P™ v (k) OR".
Then the parameter domain is defined by:

Ma(k) <N

A O b
wheree M =0 I, |, N=|1,|,
0 -1, 1,

M OR 20X gng N OR (27
such that 1, is a vector in R" of which al the
elements are equal to 1 and 1, is the identity matrix in
R™". Finally, the model (2) becomes:

Y(k) = X(k)a(k) ©)
under the linear conditions:

Ma(k) <N

The measurements of variables X(k) and Y(k) are:

X(K) =[X(k) Z(8)] and Y(k) = Y (k)

According to parameter values at a time k, the model
produces one behavior among several possible ones.
Consequently, in the F.D. operation, the consistency
test must take into account the uncertain nature of the
model. In the next section a method for treating the
collected data and for making a decision in the
presence of uncertaintiesis presented.

3. CONSISTENCY TEST

When the physical system described in th~e~ sectio~n 2.1
operates normally, the measurements (X(k), Y(k))

must be consistent with the model (3) i.e. at atimek,
it exists a parameter vector value oy such that:

Y(k) = X(K)ag with Mog <N 4

Then, finding the unknown variable o is a linear
programming (LP) problem widely treated in the
literature.(Nash, 1996). In generd, the value of ag is
not unique, consequently, a given solution at atime k
does not necessary correspond to exact parameter
values. Then, it can not reflect the real operating state
of the system. This is due on the one hand to the fact
that the model (3) is not injective (in general, even if
the parameters would have been invariant and certain,
there would be an infinity of solutions which would be
consistent with the model for a given data) and on the
other hand it is caused by the lack of the information
(uncertain model).

In the following, two methods for solving (4) are

proposed. The first one, called the parametric
approach, reasons in the parameter space. The second
method consists in considering the measurement space
using a set-membership approach.

3.1. Parametric approach

The system described by (3) operates normally if the
following condition holds:

Co ORP* such that Y (k) = X(K)a with Ma < N (5)

In order to simplify notations, the time index k is
omitted in the following. It means that al the
procedure is performed at each time k. Since the

matrix X is full row rank, then it exists at least one
matrix HOR™P*P and a vector g OR™P such
that:
a = HB+g, where p ORP

By injecting this expression of a in the inequality
Ma < N; thefinal form of the condition (5) is:

[(BORP/WB<T (6)

where W =MH and ' =N -Mg

Thus, the consistency test is easier to establish

because the number of variables occurring in the
inequality system to be treated is smaller: (p+n = p).

The F.D. procedure can be summarized by the
following set of rules:

O If the linear inequality WB<T is feasible then the
system described by (3) operates normally.

OIf WB<T isnot feasible then the system described
by (3) isin an abnormal operating state.

Several techniques can be used for solving the
feasibility of a set of linear inequalities. The obvious
one, consists in using the algorithms solving linear
meatrix inequality (LMI) problems (Boyd, et al. 1994)
by rewriting (6) as r +2n scalar LMIs:
quY1[31+...+L|Ji'ij +---+L|Ji,pl3p <l i= ].,...,(I' +2n)
such that the elements of the vector B (Bj, j=1,...,p)
are unknown matrices (scalar matrices).

3.2. Set member ship approach

Another alternative to test the consistency of the
measurements, is the set membership approach . It
consists in estimating the system output Y and to

compare it with its measurement Y . Since the model
(3) is uncertain due to the fact that the parameter
vector o has severa possible values, then the output
estimation is not a punctual vaue. If the system
described by (3) operates normally and the parameter
vector belongs to the domain D, defined by:

Dg = {a OR™P/Ma < N}

then the model output Y take several possible values
in thedomain Dy described as:

Dy ={Xa/a 0D }



Thus, the F.D. procedure can be based on a
consistency test of measurements which is completely
equivalent to that used in the previous subsection and
which is presented in the following way:

O1f Y ODy then the system described by (3) isin a
normal operating state.

O If Y ODy then the system described by (3) isin an
abnormal operating stete.

Therefore, this consistency test requires the
determination of the domains Dy . Severa works are
elaborated in this context (Ploix et al., 2000);
however, they treat only the case where the parameter
domain is a parallelotope. The methods used in these
works are based on interval analysis which can not be
applied to give an exact description of the domain Dy
when D, is a polytope. In this paper, the proposed
technique is based on another point of view. It
consists in computing the projection of the polytope
Dy on the measurement space in order to deduce the
exact description of Dy .

4. PROJECTION OF A POLYTOPE

In this section, an algorithm for polytope projection
using Fourier-Motzkin elimination appearing in the
book of (Ziegler, 1995) is presented. It starts from a
projection in a single direction and then is generalized
in this paper to compute the projection of a domain on
an affine space.

4.1. Projection in a direction

Considering a given polytope P defined by some
linear inequalities:
xOP & Qx<c / Q:(qij)]sism, cOR™ and
"1<jzn,
x OR™ x; and c¢; are respectively the i elements of
vectors x and c¢. The canonica basis in R™ is
(dg,+++,dp, ). The projection of P in the direction of
d;, isdefined as:
proj; (P) = {x OR™ /x; =0, OR:x +1d; DP}
Analyticaly, it consists in eliminating the component
Xj from the inequality: Qx<c and is the classical
perception of the projection. For more clearness,
considering an example of a polytope P defined by
the following linear inequalities:
-X1—4Xy -9 X1 <4

—2X1— Xp <-4 2X1+ Xp <11
X1—2X2SO —2X1+6X2 <17

The computation of the projection of P on the
subspace {x DIRZ/XZ = 0} requires the elimination
of x, from the previous linear inequalities by currying

out all possible linear combinations of two constraints,
such that in one of them x, is multiplied by a positive

scalar and in the second one, X, is multiplied by a

negative scalar. By applying this procedure, the
projection of P will be defined as:

proj(P) ={X OR?/x, =0,05<x; < 4}

Figure 2 shows the projection of P in the direction of
d,, which is an orthogona projection on the linear

space {x OR? /x5 = O}.
In the general case, let us consider that P is a polytope
definedin R"™ by: Ax < b, with

2 projy(P)

1 2 3 4
Fig. 2 Projection of P in the direction of x,

AOR™™ and bOR™, and choose s<ny. The
projection of P in the direction of dg is a polytope
defined by given linear inequalities: A’Sx <b’S such
that the matrix A’S and the vector b’S are defined by
the following algorithm:

Fourier-M otzkin elimination:
The rows of the matrix A’S are

+ therows a; of A, for all i witha; s =0, and

¢ the sums & qaj +(-ajs)a for al i,j with
3js>0andas<0.
The dlements of b/S are

. x 0P, for al i with a; s =0, and

¢ ajghj+(-ajs)bj foral i,j with a5 >0 and
ajs <0.
Finally the projection of P in the direction of dg is
described by:  projs(P) = {x OR™ /A/Sx < b’s}

4.2. Projection on an affine space

In this section, the Fourier-Motzkin elimination
algorithm is generalized to the case of a non
orthogonal projection of a polytope on an affine
space, in order to be able to construct the domain Dy .
Consider again the model (3):
Y (k) = X(k)a(k) / Ma(k) < N.

The domain Dy isthe projection of D, on the affine
subspace A\, spanned by the rows of the matrix X(k):

A ={a DR™P 1Y(k) = X(K)a}
the method proposed in this section is applied for al
k, then the temporal index is omitted in the following.

Since this projection is not orthogonal, it is necessary
to carry out a change of variable. Firstly, let us

consider the permutation matrix P OR("P*(M*+P)
such that: XPT =(X1 Xz)



where X; OR™™ is invertible and X, OR™P, and
X, —>~<1‘1>~<2J

let T beamatrix defined as: T:P( :

p
By noting a=T a, M =MT, a(k)=[a;" &,"]'
and M=[M; Mp| such that: My OR (200,
M, OR™*2V*P & OR" and @, ORP, model (3)
becomes:
Y(k)=(l,, 0)a where Ma <N
& Y =04 where M40 + M50, <N

It is easy to show that, after the change of variable
carried out by the matrix T, the two subvectors a4

and o, evolvein two different orthogonal subspaces.

Finaly, one can deduce the linear inequalities relating
the vector of outputs Y and the vector a,:

MY +M,0, <N 7)
Since Y and 0, evolve in two orthogonal subspaces,
the domain Dy is the orthogonal projection of the

polytope P (P ={a ORP*" /M < N}) defined in

R™P by inequalities (7), on the linear subspace
T

defined by : {z=[YT @ OR™P/a, =o}.

Conseguently the domain Dy iswell defined as:

;
Dy :{z:[YT "] OR™P /Gy =0,0y,....tp OR,

(Z _tlan+1_..._tlan+p) DE}
such that (dy,...,dnp) is the canonical basis of

R™P. By considering the previous notation, the
domain Dy isdescribed by:

Dy = projn+p(proj n+p_1(... (projn+1(5)) ) )

This consists in applying the projection procedure
explained in the section 4.1 in order to eliminate all
the components of the vector o,. Finaly, this

technique leads to an analytical expression of the
measurement domain containing the estimations of all
possible values of model outputs according to the
parameter domain and data, by providing a matrix

A OR"™" and avector b OR" such that:

Dy ={Y OR"/AY < b}, where T is the number of
the linear constraints describing D .

The consistency test becomes:

> If A\?(k) < b then the system operates normally.

» If not then the system is affected by afault.

5. NOTION OF RELATIVE VOLUME

The set-membership test of a point Y to a
parallelotope Dy by checking or not some linear

inequalities has a binary result. It allows to verify if

Y ODy or Y ODy. But, it can not give more
information about the degree of consistency (i.e. the
position of Y and the size of Dy ). Thefigure 3 shows
how it is possible to extract more information from the
measurements and the model.

The polytope D in the figure 3 is described by the
following linear inequalities:

“y1-2yp,<-6 —y, +3y,<4
y1-Yy2<3 e
4
3 g |
2
N
0 1
Y. OD
0 . yl
0
0 1 . | | | |

Fig 3 Relative volume

The relative volume of the polytope D; in R? with
respect to apoint Y is:
Vol(Dyg)
Vol(Dy)
where Vol(Dyg) is the volume of the polytope Dg. For
the point Yo OD4 (resp. Yo OD4) in the figure 3, the
relative volume is smaller (resp. bigger) than 1:
Vr(D1/Yg)<1; Vr(Dy/ Yg) 2 1.

Vr(Dy/Yg) = (seefigure 3)

In the genera case, the relative volume of a polytope
D in RY with respect to apoint Y, such that:

D={xORY/Ax<b} / AOR™ and b ORY are
known, is defined by making the following steps:
0 Normalization of the linear inequality Ax <b:

if a; isthe i™ row of A and b; isthe i dlement
of b, then the normalized form of the inequality
Ax<b is Ayx<by such that if ay; is the i
row of Ay and by is the i element of by
then:

Y _ b
ay = and by = .
N Tall, N Taill,

0 By taking o as the maximum of the components
of the vector AyYg—by and the polytope Dg
defined by:

Do = {x DR/ Ayx <by +0lq}
. . VOl(Do)
then the relative volume is: Vr(D/Yg)=———-.
Vol(D)

The volume of a polytope can be computed by using

the algorithm given by (Lasserre 1983).

The calculation of the relative volume of the domain

Dy (containing the estimation of all possible values

of the output model Y) with respect to the



measurement Y makes it possible to carry out the
consistency test as the following way:

If Vi(D,/Y)<1 then the system described by
z Sy

operates normaly, if not, it is in an abnormal
operating state. Moreover, if Vr(DZ /Y) tends to O,

the measurement Y is strongly consistent with the
model and the more the Vr(D z /Y) tends towards 1,

the closer the point Y gets to a border of Dy, in other
words, the more the limit between consistency and
inconsistency is dight.

6. EXAMPLE

In order to illustrate the method used herein for the
F.D. procedure, an example is tacked in this section.
Considering the following static model:
y(k) = x(k)6(k) where y(k) OR?, x(k) OR?*® and
0= (91,92,63)T. The parameter domain is defined by
the following linear inequalities:
_61—262 +63 < —6, 61—82 —63 S4, _63 <0
—91—293 <5 93 <1 —91+392 +93 <3
A variable fault is applied on the first output (10% of
the output value) in the interval [5,10], as illustrated
on the figure 4, this fault is detected along this
window (except at k=10), it is traduced by the fact that
the relative volume is big than 1 (figure 6). Another
variable fault affects the second output (20% of the
output value) in the interval [20,25]. This second fault
is not detected at k=20 and k=21. Note that a non
detection of afault is due to the uncertainties affecting
the model, in this case a small fault can be confused
with a possible parameter fluctuation.
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Faults non detected
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Fig. 5 Measuremestard its esimations

The figure 5 shows the domairs Dy ard the
measuremestY(k) for k=1..25. At a given time k
the measureménY (k) is represente by the synbol

'+ when Vr(Dz / Y(K)) <1 (or Y(k) ODy) ard by a

poirt ‘." if the measureméns nd consistent wh the
modd Vr(DZ /?(k))zl (or Y(k)ODy). The alarm

signd in the figure 4 is equato 1 f a falt is deected
ard 0O if not.

6 | ' ' ' ' 4
Faults non detected
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Fig. 6 Evolution of the relative volume

7. CONCLUSION

Fault detection of uncertain system when the
parameter domain is a polytope is studied in this paper
in order to give more precision. Two methods to test
the consistency of the measurements with the model
are proposed: the parametric approach gives a binary
result as opposed to the set-membership approach
which provides an additional information about the
degree of consistency via a the relative volume
defined while being based on polytope theory..

The result described only concerns one class of
uncertain systems, it would be also interesting to
extend these techniques to the case of state space
representation with uncertain parameters in which the
set-membership approach is more delicate to be
applied because of the uncertainty propagation.
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