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Abstract

In this paper, the design of a scheduled observer which
allows to estimate the state of an a�ne LPV1 system is
investigated. The state and the gain matrices of the ob-
server are scheduled by using an interpolation method
which is linear according to each parameter but which is
nonlinear according to the parameter vector. The sta-
bility of the estimation error is based on the existence
of an a�ne parameter-dependent Lyapunov function.
The problem of the observer design and the existence
of a such Lyapunov function is interpreted as an LMI
feasibility problem with a rank constraint. An example
is presented.

Keywords: scheduled observer, linear interpolation,
BMI stability conditions.

1 Introduction

To justify the synthesis of observers by an interpolation-
based approach, we point out the interest of the meth-
ods implementing the technique of gain scheduling.
These methods make it possible to construct a non-
linear control (estimation) law, by combining the fea-
tures of a family of linear time-invarying controllers
(observers). The gain scheduling is an attractive ap-
proach to increase performance and robustness for sys-
tems with nonlinearity, parameter variation, uncertain-
ties. Also, for important classes of LPV systems, the
gain-scheduling techniques o�er a good approach to get
a control (observer) structure. For a review of the main
theoretical results and design procedures relating to
gain-scheduling see [13].

In this paper, we study the design of observers for LPV
systems by the gain scheduling technique. In [11], Hyde
et al. proposed a state observer whose gain is obtained
by linear interpolation, by aiming to obtain a gain
scheduled robust observer-based controler. The inter-
polation algorithm requires a slow variation of the sys-
tem matrices A, B, C compared to the operating point,
which ensures a slow variation of the observer gain. Stil-
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well [14] developed a linear interpolation technique for
arbitrary state feedback gains and dynamic controllers
with observers state-feedback structure. In the case
of a scalar scheduling variable, a stability preserving
interpolation in terms of frozen values of the schedul-
ing variable has been proposed. When the scheduling
variable is time-varying, the stability is established by
imposing a bound on its rate of variation.

This paper is organised as follows. In Section 2, we
state the problem under consideration. In Section 3,
we present the interpolation algorithm and the struc-
ture of the observer according to this interpolation. In
Section 4, the design of the observer is formulated as
an LMI feasibility condition with a rank constraint or
as a BMI feasibility condition.

2 Problem formulation

We consider the class of linear parameter-varying
(LPV) systems of which state matrix depends a�nely
on the parameter vector. This class of systems can be
described by:

_x(t) = A(�)x(t) +B(�)u(t) (1)

y(t) = Cx(t) (2)

where A(�) = A0 +
Pi=K

i=1 �i(t)Ai, B(�) = B0 +Pi=K
i=1 �i(t)Bi and A0, A1, ..., AK , B0, B1, ..., BK

are known constant matrices, �1, �2, ..., �K are time-
varying parameters, x(t) 2 IRn is the state vector,
u(t) 2 IRm is the input vector and y(t) 2 IRp is the
output vector.

We assume that:

1. each parameter �i ranges between known ex-
tremal values �i(t) 2 [�i; �i] and �i < 0, �i > 0

2. the variation rate of each parameter _�i(t) is lim-
ited by known upper and lower bounds
_�i(t) 2 [ _�i; _�i].

Note that the assumptions 1. and 2. are not restrictive
for the class of models considered.



The parameter vector �(t) remains in an hyper-
rectangle called the parameter box of which 2K vertices
are de�ned by:

V = f(!1; !2; : : : ; !K)j !i 2 f�i; �igg:

Similarly, the rate of variation of the parameters be-
longs to the hyper-rectangle de�ned by the following
set of vertices:

S = f(�1; �2; : : : ; �K)j �i 2 f _�i; _�igg:

Our aim is to design a parameter varying observer for
the LPV system. To this end, linear observers are built
for extremal values of � and the gain scheduled observer
is built by interpolation of these observers, in real time,
according to the parameter �(t).

We look for a full order observer for the system (1)-(2)
with the following structure:

_z(t) = H(�)z(t) + L(�)y(t) + J(�)u(t) (3)

x̂(t) = z(t) +My(t): (4)

where z 2 IRn and x̂ 2 IRn is the estimated state.

The matrices H(�), L(�) and J(�) are obtained by in-
terpolation between extremal values. These extremal
values correspond to the observers estimating the state
of the system when � 2 V . The interpolation procedure
is linear according to each parameter.

The problem of the observer design is reduced to �nd
this extremal observers such that the reconstruction
error between the scheduled observer (3)-(4) and the
a�ne LPV system (1)-(2) is a�nely quadratically sta-
ble irrespective of the initialisations x(0) and z(0), the
control input u(t) and the law of variation of �(t).

By a�ne quadratic stability we mean the existence of
an a�ne parameter dependent Lyapunov function ac-
cording to the following de�nition (see [6]).

De�nition 2.1. The linear system _x(t) = A(�(t))x(t)
is a�nely quadratically stable (AQS) if there existK+1
symmetric matrices P0, P1,..., PK such that the follow-
ing inequalities

P (�) = P0 + �1P1 + : : :+ �KPK > 0

F(�; _�) = A(�)TP (�) + P (�)A(�) + P ( _�)� P0 < 0

hold for all admissible trajectories of the parameter vec-

tor � =
�
�1 �2 : : : �K

�T
.

Using the AQS concept, one looks for a parameter de-
pendent Lyapunov function for testing stability of the
error dynamic. Hence, the obtained conditions are less
conservative than those based on quadratic stability
where a single Lyapunov function is used for testing
stability over the whole parameter variation domain [2].

3 Interpolation method

In this section we describe the interpolation method
according to parameter vector. Note that the interpo-
lation procedure is linear according to each parameter
but, we will see bellow that globally, according to the
parameter vector, the interpolation procedure is a prod-
uct of these linear interpolations and thus it is nonlin-
ear.

The observer state matrix H(�) and observer gain ma-
trix L(�) are obtained by linear interpolation of each
parameter. Since the parameter vector � belongs to a
parameter box de�ned by the vertices set V , then H(�)
and L(�) are delimited by a polytope of IRn�n and re-
spectively IRn�p:

H = fH0; H1; : : : ; H2K�1g (5)

L = fL0; L1; : : : ; L2K�1g (6)

J = fJ0; J1; : : : ; J2K�1g: (7)

Each corner H i of H, Li of L and respectively J i of J ,
corresponds to a certain corner of V . The link between
these corners are given by the following:

Let (b0 b1 b2 : : : bK�1) be the binary repre-
sentation of the index i. Then the parame-
ter box corner corresponding to Hi, Li and
respectively J i is (e�1; e�2; : : : ; e�K)

H i

Li
J i

9=
;() (e�1; e�2; : : : ; e�K) where

e�j =
�

�j when bj = 0

�j when bj = 1
:

Thus, the interpolated observer matrices are:

H(�) = �0(�)H0 + : : :+ �2K�1(�)H2K�1 (8)

L(�) = �0(�)L0 + : : :+ �2K�1(�)L2K�1 (9)

J(�) = �0(�)J0 + : : :+ �2K�1(�)J2K�1 (10)

where �0(�), �1(�), ..., �2K�1(�) are nonlinear interpo-
lation functions. This functions are featured by:

� �0(�) + �1(�) + : : : + �2K�1(�) =
1; 0 � �i(�) � 1 for i = 0; : : : ; 2K � 1

� each interpolation function is given by

�i(�) =

K�1Y
j=0

i�(b0 b1 :::bK�1)

�j�j + �j

�
j
� �j

where �j =

�
1 when bj = 0
�1 when bj = 1

(11)



and �j =

�
��j when bj = 0
�j when bj = 1

with

(b0 b1 : : : bK�1) the binary representa-
tion of the index i .

From the equations (8), (9), (10), (11) we �nd for the
observer matrices the following structure:

H(�) =

2K�1X
i=0

(

K�1Y
j=0

i�(b0 b1 :::bK�1)

�
bj
j )Hi (12)

= H0 +

X
i

�iHi

| {z }
C1

K terms

+

X
i 6=j

�i�jHi+j+1

| {z }
C2

K terms

+ (13)

: : :+

Y
i

�iH2K�1| {z }
CKK terms

(14)

L(�) =

2K�1X
i=0

(

K�1Y
j=0

i�(b0 b1 :::bK�1)

�
bj
j )Li: (15)

J(�) =

2K�1X
i=0

(

K�1Y
j=0

i�(b0 b1 :::bK�1)

�
bj
j )Ji: (16)

With this structure of the interpolated observer, the
problem of the observer design is reduced to �nd the
matrices H0, H1,..., H2K�1, L0, L1,..., L2K�1 and J0,
J1,..., J2K�1 such that the reconstruction error dynamic
is a�nely quadratically stable.

4 Gain-scheduled observer design

In this section, the proposed results are based on the
AQS of the observation error dynamics, by the means
of a Lyapunov function with a�ne dependence on the
parameters. We give su�cient conditions for the ex-
istence of a full-order state observer, independently of
the initial conditions x0 and z0, the input u(t) and the
evolution of the parameter vector �(t).

De�ne the state reconstruction error as: e = x̂� x. By
introducing a matrix T of appropriate dimension, such
that T = In �MC, the estimation error is given by:
e = z � Tx.

The dynamic of the estimation error is then expressed
as :

_e = H(�)e+ (H(�)T + L(�)C � TA(�))x+

(J(�)� TB(�))u: (17)

Using the equation (17), we can state the following
proposition.

Proposition 4.1. The system (3)-(4) is an a�ne

quadratically stable observer for the LPV system (1)-
(2) if there exist matrices T , M , H0,..., H2K�1, L0,...,

L2K�1, J0,..., J2K�1 of appropriate dimensions such

that

H(�) is AQS (18)

H(�)T + L(�)C � TA(�) = 0 (19)

T = In �MC (20)

J(�) = TB(�) (21)

where H(�), L(�) and J(�) are given by the relations

(14), (15) and (16).

Proof: In the presence of the equations (19), (21)
the estimation error is :

_e = H(�)e: (22)

When the condition (18) is satis�ed, the observer is
AQS.

The equation (21) gives the solutions:�
Ji = TBi for i = 1; : : : ;K
Ji = 0 for i = K + 1; : : : ; 2K � 1

: (23)

The equation (19) is a Sylvester equation with noncon-
stant matrices. The resolution of this equation gives
the solutions:

H(�) = �K(�)C + TA(�) (24)

L(�) = K(�) +H(�)M (25)

where K(�) is an arbitrary matrix according to the pa-
rameters. We choose for this matrix the same structure
as the matrices H(�) and L(�) :

K(�) =

2K�1X
i=0

(

K�1Y
j=0

i�(b0 b1 :::bK�1)

�
bj
j )Ki: (26)

wich is a�ne according to each parameter but it is non-
linear according to the parameter vector �. It is this
choice of the structure of the matrix K(�) which allows
us to formulate the AQS condition (18) of the matrix
H(�) as an LMI feasibility condition with a rank con-
straint. From the relation (26) we �nd the equivalences:8<
:

Hi = �KiC + TAi for i = 0; :::;K
Hi = �KiC for i = K + 1; :::; 2K � 1
Li = Ki +HiM for i = 0; :::; 2K � 1

:

(27)

Thereafter, we give the su�cient conditions for the ex-
istence of the observer in terms of LMI feasibility con-
ditions with a rank-n constraint. This conditions are
deduced by using the Gahinet et al.'s approach wich



gives su�cient LMI conditions for a�ne quadratic sta-
bility (see [6]). Gahinet's approach relies on the concept
of multiconvexity, that is, convexity along each direc-
tion of the parameter space. The solution of the state
observer design problem is given by the following theo-
rem.

Theorem 4.2. The system (3)-(4) is an AQS observer

for the LPV system (1)-(2) if there exist matrices T ,

M , H0,..., H2K�1, L0,..., L2K�1, K0,..., K2K�1, J0,...,

J2K�1 and the K + 1 symmetric matrices P0, P1,...,

PK such that the equations (20), (21) are satis�ed and

the following LMI conditions with a rank-n constraint

admit a solution

P0 > 0 (28)

F(!; �) = �(!)R�(!) + �T (!)RT�T (!) +

�(�)P < 0; for all (!; �) 2 V � S (29)

G(!) = �iR	i(!) + 	T
i (!)R

T�T
i � 0;

for all i = 1; :::;K and ! 2 V (30)

rank
�
P R

�
= n (31)

where R = PK and

�(�) =
�
In �1In : : : �KIn

�
�(�) =

h
C �1C : : : (

QK

i=1 �i)C A(�)
iT

P =
�
P0 P1 : : : PK

�T
K =

�
�K0 �K1 : : : �K2K�1 T

�
�( _�) =

�
0n _�1In : : : _�KIn

�
and

�i =
@�(�)

@�i
, 	i(�) =

@�(�)

@�i
:

Proof: If the constraints (19), (20) and (21) are
satis�ed then the estimation error is given by (22).
We must ensure the AQS of this equation. With
the a�ne Lyapunov function V (e; �) = _eP (�)e where
P (�) = P0 + �1P1 + : : : + �KPK , we obtain the equa-
tion:

d P (�)

dt
= F(�; _�) = H(�)TP (�) + P (�)H(�)

+ P ( _�)� P0:

By replacing H(�) with the expression (24) we �nd:
F(�; _�) = �(�)R�(�) + �T (�)RT�T (�) + �( _�)P . The
constraint (29) expresses the condition that F(�; _�) be
negative de�nite to the corners of V � S. To garanty
that F(�; _�) is negative de�nite for all the polytope and
implicitly the AQS, we impose the condition of multi-
convexity:

@2F(�; �)

@�2i
= 2

@�(�)

@�i
R
@�(�)

@�i
+

2

�
@�(�)

@�i

�T
RT

�
@�(�)

@�i

�T
= 2G(�) � 0: (32)

The inequality (32) is depending on the parameter vec-
tor � and to satisfy this inequality we impose positive
de�nition at the corners, that gives the conditions (30).
The conditions (30) are su�cient to ensure the inequal-
ity (32) because it has the property of multiconvexity:

@2G

@�2i
=

@2�iR	i(!)

@�2i
+
@2(�iR	i(!))

T

@�2i
= 0:

The condition that the equalityR = PK has a solution,
is assured by the constraint (31).
As the point (0; 0; : : : ; 0) belongs to the parameter box
then P (0) = P0. Condition (28) and continuity of the
eigenvalues of P (�) ensure that P (�) is positive de�nite
in the entire parameter box.

Remark 4.1. 1. To design the observer we must
solve the LMI conditions (28), (29) and (30) with
the rank-n constraint (31). Solving an LMI with
rank constraint is a di�cult non-convex prob-
lem. In [9], Henrion et al. formulate the co-
stabilisation of a family of SISO linear systems
as a rank one constrained LMI problem. They
solve this rank one constrained LMI problem by
an LMI relaxation procedure and they propose
a heuristic design algorithm based on potential
reduction method. As an extension, it is possi-
ble to solve the rank-n constrained problem via a
heuristic based on convex relaxations (implemen-
tation of a cone-complementarity algorithm). For
more details on the cone-complementarity algo-
rithm and SDP2 relaxations see [5], [4], [10]. The
heuristic is not guaranteed to provide a solution,
even when one exists.

2. The rank constraint can be avoided by replacing
R by PK and resolving the BMI (29) with the
LMI (28) and (30). The BMI problems are not
convex and can have multiple local solutions. To
solve them locally one can use iterative schemes
which allow to reduce computational complexity
of BMI to the computational complexity of LMI.
In [8], Hassibi et al. propose a path-following (ho-
motopy) method for locally solving BMI. See [7],
[3] for global methods for solving BMI problems.

In the next section we give an example wich illustrates
the results of Theorem 4.2.

5 Numerical example

In this section we present a numerical example for an
a�ne LPV system dependent on two parameters. The
parameter vector ranges in a hyper-rectangle wich is
presented in Figure 1.

The system is described by the matrices:

2semide�nite programming



�1 �1 �1

�2

�2

�2

H0, L0, J0 H1, L1, J1

H2, L2, J2 H3, L3, J3

Figure 1: The parameter box.

A(�) =

�
1 + 0:4�1 + 1:5�2 0:4 + 1:5�1 + 0:1�2
3:7 + 1:1�1 + 0:2�2 1:4 + 0:9�1 + 0:44�2

�
,

and C =
�
1 0:5

�
.

The observer matrices are:

H(�) = H0 + �1H1 + �2H2 + �1�2H3

L(�) = L0 + �1L1 + �2L2 + �1�2L3

J(�) = J0 + �1J1 + �2J2 + �1�2J3

and the matrix K(�) has the same structure.

For the parameters, we choose the extremal values:
�1(t) 2 [�0:2; 0:2], �2(t) 2 [�0:1; 0:1],
_�1(t) 2 [�0:4; 0:4] and _�2 2 [�0:1571; 0:1571].

With the Lyapunov function
V (e; �) = _e(P0 + �1P1 + �2P2)e, the observer design
algorithm are given by the feasibility conditions of the
Theorem 4.2.

We have the folowing matrices:
�(�) =

�
In �1In �2In

�
,

�(�) =
�
C �1C �2C �1�2C A(�)

�T
,

�( _�) =
�
0n _�1In _�2In

�
,

�1 =
�
0n In 0n

�
, �2 =

�
0n 0n In

�
,

	1(�) =
�
0p�n C 0p�n �2C A1

�T
and 	2(�) =

�
0p�n 0p�n C �1C A2

�T
.

For solving the conditions of Theorem 4.2 we apply the
method described in [1] and we obtain the following
observer matrices:

H(�) = H0 + �1H1 + �2H2 + �1�2H3 with

H0 =

�
�5:1175 �1:3431
0:6913 �1:0631

�
, H1 =

�
�3:0710 �1:2516
3:1276 �0:5155

�
,

H2 =

�
�0:0369 �1:6667
�2:5895 1:6545

�
, H3 =

�
�0:0373 �0:0187
0:1074 0:0537

�
,

L(�) =

�
�11:9986 � 4:5681�1 � 0:7408�2 � 0:0247�1�2
10:1780 + 3:0436�1 � 1:9368�2 + 0:0712�1�2

�
,

M =

�
1:1653
0:9950

�
and

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

ro1
ro2

�1
�2

Figure 2: The parameters �1(t) and �2(t).
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−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

e1
e2

e1
e2

Figure 3: Estimation errors: e1, e2.

J(�) = TB(�) =

�
1:0058 �2:9249
�2:5978 3:7079

�
B(�).

In the case of variation of the parameters �1(t) and �2(t)
as in Figure 2 and with a nul command, this observer
gives the estimation errors presented in Figure 3.

6 Conclusion

In this paper, a parameter varying observer design
has been addressed. The method is based on gain-
scheduling of a full-order observer for estimation of the
state of an LPV system. Linear observers are designed
for extremal values of the parameter vector and the
scheduled observer is obtained by linear interpolation
according to each parameter. The design of this lin-
ear observers are based on the existence of an a�ne
parameter-dependent Lyapunov function and it is ex-
pressed as an LMI feasibility condition with rank-n con-
straint.
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