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Abstract. This paper deals with an original fault detection
and isolation method, allowing to take the structure and the
range of model uncertainties into account. We focus on
static and structured uncertain models, where each
parameter uncertainty is described by a bounded variable.
In order to de-couple residuals from unknown physical
variables, a parity space approach is proposed, where the
parity matrix depends on uncertain parameters. Because of
this membership approach, called bounding approach,
residuals represent a set of feasible behaviours and define
therefore the normal operating domain of the studied
physical system. To simplify its evaluation and work on a
simple domain such as a parallelotope, residuals are
linearised in the bounded variables and a reduction
procedure is applied to decrease their complexity. Once the
constraints defining this domain are determined,
consistency tests for fault detection and isolation are built.

1. Introduction

Fault Detection and Isolation (F.D.I.) schemes generally
use the concept of analytical redundancy based on a
mathematical model of the studied system. A major
drawback lies in the fact that a model only defines an
approximate description of the physical system behaviour
because of modelling errors occurring when it is linearised
or some physical phenomena are neglected. Thus, to avoid
confusing a modelling error with a fault, the inaccuracy of a
model, represented by structured uncertain parameters, has
to be taken into account.

This paper focuses on a F.D.I. method based on the
bounding approach [8], [3], [7], taking the structure and the
magnitude of each uncertain parameter into account. Thus,
the values of some parameters are inaccessible and
represented by a set of feasible values, which only the
bounds are known. A parity space approach [5], suited to
membership context, generates residuals allowing to
confront the behaviour of the physical system with the
reference model. Because of the inaccuracy of this model,
residuals may be different from zero. They describe a set of
feasible behaviours representing the normal operation field
of the system. Its frontiers, built by using interval arithmetic
[6] according to the ranges of uncertainties, naturally define
the adaptive thresholds of the F.D. procedure.

Thus, this paper has the following structure. At first, we
will limit ourselves to a class of static uncertain models and
search an uncertain parity matrix allowing to generate
residuals de-coupled from unknown physical variables. In
the section 3, we stress on the problems caused by
dependencies between bounded variables. A linearisation of

the residuals in the uncertain parameters is proposed; in this
way, the normal operation field is always a polytope [9],
which can be easily evaluated. The fault detection and
isolation procedures are respectively developed in section 4
and 5. At last, an example illustrates our method.

2. Parity space approach

2.a. Presentation of the model
We consider structured models, which allow to represent
the lack of knowledge on a physical system by indicating
which parameters are uncertain. These uncertainties are
described by normalised bounded variables θi, which
bounds are -1 and 1. We are interested in the following
class of static models composed at once of m measurement
equations and p constraints on the n physical variables:
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y is the sensor vector, while x and θ denote respectively the
vectors containing physical variables and bounded
variables. The distribution matrices Ci and vectors Ei are
assumed to be linear in uncertain parameters. To remain
general, a same uncertainty θi can affect several distribution
matrices. In practice, the term E1 represents bounded
sensory noises, whereas C1 describes the imperfection of
the measurement system as sensor tolerances. C2 and E2

define the redundancy between physical variables.

To simplify the symbols, we will omit references to the fact
that the previous relations depend on time, but notice that
uncertain parameters fluctuate inside their bounds.

2.b. Principle
In order to generate residuals using the redundancy of the
previous model (1), all the unknown physical variables x
have to be eliminated. In this way, a parity space approach
has been chosen, where an uncertain parity matrix W(θ),
such that W(θ)C(θ)=0, is searched. Notice that several
works have already dealt with this problem in the case of a
constant parity matrix for static systems [1] and dynamic
ones [2], [3]. Unfortunately, a de-coupling with respect to
physical (or state) variables is not always possible and
depends on the structure of uncertainties (additive,
multiplicative) and on the matrices of the state
representation that they affect. That is the reason why
another alternative is proposed in this paper.

The parity matrix W(θ) exists if the matrix C(θ) is not full
row rank, which is the case in practice for a static system



containing redundant information. Moreover, to evaluate
the rank of C(θ), we will assume that it is invariant and
independent of all the uncertainties. This assumption is
natural because we are interested in parameter
uncertainties, which cannot modify the structure of the
model. It is improbable that an uncertainty changes the sign
of a physical parameter or makes it equal to zero. Under
these conditions, it can modify neither the observability nor
the redundancy of the studied system. In fact, C(θ) has the
same rank than its nominal part C0=C(0), which is a certain
matrix. Then, to avoid the presence of redundant parity
relations, W(θ) has to be full row rank, and therefore, is
composed of s=(m+p)-rank(C0) independent rows.

Now, we will show that W(θ) is a polynomial matrix in the
uncertain parameters. The solution of the following
problem XA B= , where X is unknown, is given by

X BA K I AA= + −+ +� �  where K, I and A+  are respectively an

arbitrary matrix, the identity matrix and the pseusoinverse
of the matrix A verifying: AA A A+ = . By taking
respectively B=0, A=C(θ), and assuming C(θ) is full
column rank, the following expression is deduced:

W K I C C C Cm p
T Tθ θ θ θ θ� � � � � � � �� � � �= −


�
�
�+
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,

where K is a matrix allowing to select all the independent
rows. Since K is arbitrary, it can be replaced by

K C CTdet θ θ� � � �� � , where det(Z) is the determinant of Z. In

this way, the simplest form of W(θ) is a polynomial matrix
in θ. In case C(θ) is not full column rank, it can always be
broken down into C C C Tθ θ θ� � � � � �= ' "  where matrices C’
and C” are both full column rank. Therefore, the problem is
equivalent to find a matrix W(θ) orthogonal to C’(θ). In
practice, we find the parity matrix using the symbolic
computation software Mapple V.

Now, after multiplying the model (1) by W(θ), the
following expression of the residuals is deduced:
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In the next section, we will show how to reformulate this
system to determine the normal operation field.

3. Linearisation and reduction procedures

3.a. Linearisation procedure

At first, the notion of abstract space, denoted by $(), is
presented to tackle models containing uncertainties by
bounding approach. If Z is a vector of bounded variables, in
other words, if it is only known by the space to which it
may belong, then this space is given as $(Z).

Let us assume that Z is an uncertain vector, which
components depend on θ. If no bounded variable affects
several components at once, $(Z) leads to an axis-aligned
orthotope. Nevertheless, if at least one bounded variable,
called common variable, appears in several components zi

of Z, the shape of $(Z) is bent because of dependencies
between these zi [3]. In this case, the abstract space $(Z) is

included in its axis-aligned circumscribed orthotope, noted
�$(Z), built with the help of interval arithmetic by
assuming no variable is common (that is to say by treating
independently each zi). In practice, an orthotope is easier to
compute. But, in case $(Z) represents the normal operation
field of the studied system, the use of the domain �$(Z)
instead of $(Z) decreases the precision of the F.D.
procedure. An important part of the information is lost and
the no-detection rate may become important.

If Z(θ) is non linear in some common variables θi, the
associated abstract space $(Z) is generally non linear and
non convex, that is the reason why computing it remains
difficult. The solution developed in [3] is based on the
notion of paving. Thus, an overestimation of $(Z) is
defined by the union of axis-aligned orthotopes obtained by
the uniform subdivision of the hypercube $(θ). An
algorithm is proposed in order to limit time computing by
searching the part of $(Z) useful to scan. Unfortunately, the
precision of the method depends on the number of
subdivisions, and unfortunately, greater it is, more
important time consuming is.

By noticing that the expression (2) is non-linear in θ, we
deduced that $(R) is a complex domain. Under these
conditions, this paper proposed an alternative, which is a
compromise between precision and time consuming. The
method consists in a linearisation of all the residuals in
uncertain parameters, since, in this way, the approximate
normal operation field becomes a convex polytope, which
can be easily evaluated. By putting together the linear part
of (2), the following expression is obtained:
R R RL NLθ θ θ� � � � � �= +

≤ ≥terms of order 1 terms of order 2
	
� 	
� ��

, (3)

where the subscripts L and NL define respectively the
linear and non-linear parts of the residual vector R. Notice
that both matrices R(.) depend on measurements.

At first, for each component of RNL, all identical monomials
composed of bounded variables are put together. Then,
every monomial is replaced by a new normalised and
independent bounded variable. By noticing, with the help of
interval arithmetic, that the product θiθj belongs to the
interval −11,  if i and j are different, else 0 1, , the
following properties are deduced:

- if all powers intervening in the studied monomial
are even, this one is equal to 0 1, ,

- if at least one power is odd, it is equal to −11, .
Therefore, in the latter case, a monomial as m1=θi

2θj, i≠j,
for example, is straight replaced by a new normalised
independent bounded variable ν1 11∈ − , , whereas in the
former case, a monomial as m2=θi

4θj
2 is described by a non

centred interval: ν2 0 1∈ , . In order to lose the minimum
of information, a monomial is represented by the same
bounded variable in all the residuals.

Thus, the equality (3) becomes :
R R Rp L NLθ ν θ ν,� � � � � �= + , (4)

where ν is the bounded vector obtained during the
linearization and the matrix RNL is linear in ν.



This procedure leads to a loss of information since some
dependencies are eliminated. For example, the relationship
between both monomials m1 and m2 is not conserved
because they are replaced by two independent variables.
Therefore, the abstract space of Rp (4) is necessary an
overestimation of $(R) (3). In the former case, Rp is a
vector field F(θ,ν) where all bounded variables θi and νj are
independent. In the latter case, R corresponds to the same
vector field F(θ,θM), where θM contains every monomial of
order greater than one. The dependencies between θ and θM

generate some constraints, therefore, F(θ,θM) is a particular
case of F(θ,ν) and since $ $θ νM� � � �= , each point of

$ F Mθ θ,� �� � is necessary a point of $ F θ ν,� �� � .

By noticing that the interval 0 1,  is equal to 1
2

1
2 11− − , , it

is always possible to reformulate (4) as follows:
R R Rp L NLθ µ θ µ, '� � � � � �= + , (5)

where µ is a vector of normalised bounded variables

µ ∞ ≤ 1� �  and the matrix RNL
'  is linear in µ.

In conclusion, this procedure entertains a loss of precision,
but anyway, for the kind of studied systems, the exact
domain $(R) is often too much complicated to be used.
Therefore, $(R) is overestimated by a polytope $(Rp).
Nevertheless, the number of new bounded variables may be
important and some of them can be put together and
replaced by a unique term with adequate bounds without
modifying the studied abstract space.

3.b. Reduction procedure

By putting together θ and µ in (5), this equality is deduced:

R M y N yp
T T Tυ υ υ θ µ υ� � � � � �= + = ≤∞, ,    1, (6)

where the matrices M and N depend on measurements. The
purpose of this procedure is the decreasing of the number of
bounded variables in order to simplify the evaluation of the
polytope $(Rp). Consider this example:

Rp = −
−
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By defining a new independent variable υ’ belonging to the
interval −3 3, , the previous expression can be written as:

Rp
' '

'= −
�
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υ
υ υ2 2

.

Since υ’ is considered as independent from υ2, some

information is lost and $(Rp) is included in $ R p
'� �  [3]. The

reduction procedure must not modify $(Rp), therefore every
dependence has to be conserved. In fact, every bounded
variable appearing in the form of a same linear combination
in all components of Rp, can be put together and replaced
by another one, independent of the remaining variables.

The alone difficulty is due to interval arithmetic for which
the sum and the subtraction give the same interval:

$ ± = − ∀α ∈∑ ∑α υ αi i i� � � � 11, ,    i  .

Suppose that the symbol mij denotes the (i,j)th element of
the certain matrix M (6), whereas the set INC,i defines all the
indexes of non common variables (that is to say the

variables appearing at the most in one residual) intervening
in the ith component of Rp. In a general manner, all υj,
j∈ INC,i can be collected and replaced by:

mij
j INC i∈
∑ ≤

,

' , ' ,υ υ 1

where υ’ is an independent normalised bounded variable.
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The same principle has to be applied on common variables.
The procedure is a little more complicated because the sign
with which the linear combination appears in the different
rows of M(y)υ has to be taken into account. Let us consider
a combination, depending on some bounded variables υj,
which indexes define the set J, and appearing in the rows of
M(y)υ, which indexes correspond to the set I. Let i0 be an
arbitrary element of I and j1 the first element of J taken as
reference. A solution consists in determining the signs of
every element mi j0

, j∈ J. Then, for each row of index i

belonging to I, the combination is replaced by:

sign m m mi j i j
j J

ij0 01
1� �

∈
∑ ≤υ υ' , '  with sign x� � �= −

1
1
 if x>0
 if x<0.
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In this way, all summed terms have always the same sign in
order to respect interval arithmetic. Thus, the alternation of
the signs in a given column of M is taken into account. The
multiplication of a whole column by –1 does not modify the
abstract space $(Rp) since all the bounded variables are
centred. Thus, the previous result is equivalent to
−�

��
�
	

�
��

�
	


3 2
6 1 3

υ
υ

'  but differs from 3 2
6 1 3

�
��

�
	

�
��

�
	


υ
υ

' .

To do this work, a systematic numeric technique consists in
testing two by two if the column vectors mj1  and mj2  of the

matrix M are collinear. When the rank of the matrix
m mj j1 2

 is equal to 1, mj1  and mj2  are eliminated and

replaced using the method explained above. The principle
of the algorithm is detailed below:

(1) Determine the list L containing all the combinations of
2 elements among the number q of columns of M.

(2) Take successively each element lk of L, until the rank of
the matrix composed of the columns mj1  and mj2 ,

which indexes (j1,j2) are imposed by lk, is 1. If there is
no collinear column, go to the step (5).

(3) By assuming that the column of index j1 is the
reference, search one of its non-null elements, which
will be noted mi j0 1

. A new column m is added to M as

follows. If mi j0 1
 and mi j0 2

 (the latter is necessary non-

null too) have the same signs, then m corresponds to the

sum m mj j1 2
+ , else the difference m mj j1 2

+ −� � . At last,

the columns mj1  and mj2  are suppressed.

(4) Do q=q-1; if q is different from 1, return to the step (1).

(5) Give the new matrix M.



This procedure can be extended for symbolic expressions.
In this case, the difficulty is caused by the measurements,
which signs are unknown in advance and may change,
whereas those of mi j0 1

 and mi j0 2
 have to be known. In fact,

testing the collinearity of two columns is not more difficult
than for the numeric case, since a symbolic expression
common to both studied columns is simply searched.
Moreover, the signs of mi j0 1

 and mi j0 2
 are not important,

knowing whether they are different is enough.

Assume that an alone symbolic expression f exists in at
least one of both collinear columns. f has to appear
necessary in factor either in all elements of one column or
in the elements of both columns having the same row
indices. In the first case, since multiplying a column by ±1
does not modify the abstract space, f can be replaced by its
absolute value before putting together both columns:
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In the second case, the absolute value of f cannot be
generally used since modifying all signs of a column in the
same manner is impossible. However, if the sign of f is
unknown, it is trivial to notice that f and –f are opposite. In
this way, if mi j0 1

 and mi j0 2
 have the same signs, both

columns can be summed, else subtracted.
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All other situations can be deduced from these both
elementary cases. Therefore, the reduction procedure can be
always applied to symbolic expressions after replacing
every expression appearing in factor in one column and
having an unknown sign by its absolute value.

4. Fault detection method

After using the reduction procedure on the relation (6), the
following expression of residuals is obtained:
R M y N yp p

sυ υ υ' ' ' , ' ,� � � � � �= + = ≤ ∈∞0 1    R  (7)

When no fault is present, a particular value υ0’ of υ’,
element of  q, exists such that:
- the model is consistent with measurements, entertaining

the nullity of the residual vector Rp(υ0’)
- υ0’ is a feasible value in the sense that υ0’ belongs to the

hypercube $(υ’).

The consistency test can be proceeded by searching υ0’ at
each time such that it belongs to $(υ’) and Rp(υ0’) is equal
to 0. In fact, this test can be favourably replaced by the
following one. The abstract space $(Rp) defines all the
feasible values of the parity vector Rp, which are consistent
with the chosen model according to $(υ’). Therefore, $(Rp)
represents the normal operation field of the physical
system. A fault is detected if Rp(υ0’), that is to say 0, does
not belong to $(Rp).

Notice that if the model is initially complete [4]
(representative of every normal behaviour of the physical
system), an inconsistency necessary guarantees the

presence of a fault since the linearisation procedure leads to
an overestimation $(Rp) (7) of $(R) (3). On the contrary, a
consistency does not assure the absence of a fault, which
may be masked by some uncertainties.

The construction of the polytope $(Rp) uses the algorithm
presented in [7], which is easy to implement. More
precisely, $(Rp) is a parallelotope centred in N(y), in other
words a convex domain delimited by two by two parallel
hyperplans (strip constraints). In fact, $(Rp) is the
intersection of strip constraints, written in a general manner

R A y R b yp
s

p∈ ≤ / � � � �� � [9]. This algorithm allows to

generate the matrix A(y) and the vector b(y), which proceed
from the constraints associated with the axis-aligned
circumscribed orthotope �$(Rp) and from the elimination
of common variables influencing the shape of $(Rp).

Therefore, testing whether the origin O belongs to $(Rp) is
trivial by verifying whether the inequality 0≤b(y) is true.
However, the dichotomous nature of this test may appear
somewhat poor according to all the information at our
disposal. Instead of only testing whether O is inside $(Rp),
it is possible to calculate the distance, as proposed in [7],
separating O to the nearest border of the parallelotope. This
result is then divided by the distance separating the centre
N of $(Rp) and the same border. In a sense, this distance is
normalised since the “size” of $(Rp) is taken into account.
At last, when the measurements are consistent, the obtained
distance is multiplied by –1. In this way, a distance of –1
means that the origin is merged with the centre N, whereas
the value 1 means that O is outside $(Rp) and as far from
the border as N is from this border. Thus, the more this
distance tends to zero, the more we find ourselves at the
limit between consistency and inconsistency.

5. Fault isolation method

We will limit ourselves to the study of a single fault, which
may appear on a sensor. Once a fault is detected, a F.I.
procedure is applied to determine the faulty sensor. Since
the objective is the use of the whole information at our
disposal, it is natural to integrate strip constraints in this
procedure. A table of signatures St is created, which is not
associated with residuals Rp themselves, but with the
inequality constraints defining the shape of $(Rp). In fact,
there are always at least s strip constraints (these associated
with each residual of Rp and defining �$(Rp)). As
explained in the previous section, this number may increase
with the presence of common variables since their
elimination generates new strip constraints. In a general
manner, $(Rp) leads always to more constraints than
�$(Rp) and allows to isolate more different faults. Of
course, it is possible to only use the former s strip
constraints; but, in this case, a part of the information is lost
since we work on �$(Rp), which is less precise than $(Rp).
Thus, a fault may be detected, but not isolated if the origin
is outside $(Rp) but inside �$(Rp).

A fault is detected when the point O is outside $(Rp), in
other words, when at least one constraint is not verified. In



this way, the F.I. procedure consists in determining which
strip constraints are not satisfied. By coding respectively
with 0 and 1 the verified strip constraints and those, which
are not satisfied, the signature Sf of the fault is determined,
which can be compared with the table of theoretic
signatures St. Generally, the major difficulty to generate St

is due to the non-linear nature of Rp (7) in measurements
(this problem is caused by the elimination procedure of
common variables). A bit 1 indicates that a strip constraint
is theoretically sensitive to a given fault. But, this
sensibility, which is usually deduced from a structural study
of residuals linear in measurements, depends here on the
numerical values of measurements. Consider the following
static model leading to residuals Rp:
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By eliminating analytically the common variable θ1 [8], we
deduced this expression:
r y r y r y y y3 3 1 2 2 1 3 2 2 31 0 1 1 0 1= − = + − +. .θ θ� � � �� � .

Since only a single fault is possible, when the first sensor is
faulty, we can write:
r y x x3 1 3 21 01 1 01 0= + + − =. .θ θ� �� �� � .

Notice that for determining the table of theoretic signatures,
it is not necessary to calculate both constraints associated
with a strip constraint by evaluating the lower and upper
bounds of the residuals ri, i∈ {1,2,3}; the previous equalities
are sufficient to indicate on which measurements each ri

depends. For example, r3 structurally depends on y1, but is
insensible to a fault on this measurement. In a more general
manner, this difficulty is increased by the linearisation
procedure, which modifies initial relations.

r1 r2 r3

y1 1 1 0
y2 1 0 1
y3 0 1 1

Table 1. Table St of theoretic signatures

In fact, theoretic signatures, based on a structural study of
Rp, allow to obtain a basic table, which can be improved by
an experimental study. The model, which “sensors” are
successively affected by an important bias, is simulated and
the obtained signatures allow to correct the theoretic ones.
Thus, because of the non linear nature of Rp, some bits 1 of
St may be incorrect and thus replaced by 0.

As for the F.D. procedure, a fault on the ith sensor may be
partially masked by uncertainties in the sense that its
signature Sf contains at least a bit 0 where its theoretic
signature indicates a bit 1. Notice that if the model is
initially complete, the reverse is impossible since a
constraint, which does not depend on the faulty
measurement, is necessary satisfied. In order to compensate
at best this problem, the signature Sf is corrected as follows.
Let pt be the minimal number of bits 1 present in all the
theoretic signatures. If the number pf of bits 1 in Sf is lower
than pt, the constraint corresponding to the maximal
negative normalised distance (as defined in the previous
section) is searched. Against the F.D. procedure, the

distances relative to all facets of $(Rp) have to be
calculated. In this way, the objective is to find the
constraint, which is satisfied with the smallest margin.
Then, its representative bit 0 in Sf is replaced by 1 and the
strip constraint associated with the found constraint is
eliminated. This procedure is repeated until pf is equal to pt.
This technique limits the number of signatures Sf which
correspond to no theoretic ones and is particularly efficient
when all theoretic signatures have the same number of bits
1. Notice that this correction does not guarantee the result: a
fault may be confused with another one.

6. Example

To illustrate the previous developments, we use the
example described in [7], that is the reason why we do not
detail all equations. The uncertain model derives from the
classic static model of the direct current machine:
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+ − + =
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ρ θ ρ θ γ
γ
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γ
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i

with γ = 0 25.  and where the physical variables [i], [ω] and
[u] corresponds to the current, the speed and the voltage
supply, normalized according to their nominal values. The
bounded variables θi, i∈ {1,2,3} describe uncertainties
respectively on the resistance, on the coefficient of viscous
friction and on the electromagnetic constant. In the
following, the symbol “~” indicates that a variable is a
measurement. Then, the power supply is assumed to be a
perfectly known quantity, whereas, the measurements of
current and speed are presumed to be imperfect:

u t u t� � � �= ~ ,
~

~
i i= + +

= + +

�
��
��

1

1
4 4 6 6

5 5 7 7

ρ θ ρ θ
ω ρ θ ω ρ θ

� �
� �

.

θ4 and θ5 define uncertainties of a multiplicative nature
allowing to take into consideration the non-linearities of
sensors. θ6 and θ7 are additive terms representing bounded
sensor noises. All the bounded variables are normalized and
the different coefficients ρi define the range of the different
uncertainties. The scalar ρ1 equals 0.5, which means that
the resistance may vary by ±50% around its nominal value.
The value 0.2 is given to ρ2 and ρ3, while 0.05 represents
the range of the four uncertainties ρi, i∈ {4,…7} of sensors.

We note θi,j the vector which contains, in increasing order
of indices, the abstract variables θk, k∈ {i, i+1,…,j}. By
putting together the previous relations, we obtain the
following static model of the direct current machine (1):
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A parity matrix W(θ1,5) such that W(θ1,5)C(θ1,5)=0 is:

W θ

ρ υ ρ υ γ ρ υ ρ υ
ρ υ ρ υ γ γ ρ υ ρ υ

γ ρ υ ρ υ
γ ρ υ ρ υ

ρ υ ρ υ

1 5

3 3 5 5
2

1 1 5 5

2 2 4 4 3 3 4 4

4 4 5 5
2

4 4 5 5

4 4 5 5

1 1 1 1

1 1 1 1 1

0 1 1

0 1 1

1 1 0

,

T

� �

� �� � � �� �
� �� � � �� �� �

� �� �
� �� �

� �� �

=

+ + + +
− + + − + +

− + +
+ +

+ +

�

�

�
�
�
�
�
�

�

	














After multiplying (8) on the left-hand side by W(θ1,5), the
linearisation procedure is applied. Thus, 15 new
independent bounded variables are created in addition to
θ1,7. Owing to the reduction procedure, the number of
bounded variables is reduced to 7. Using symbolic calculus,
the expression of residuals (7) is obtained with:
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where the coefficient ρijk defines the product ρiρjρk.

Due to the presence of 5 common variables, the previous
system leads to 7 strip constraints giving 7 residuals ri,
i∈ {1,…,7}. At first, at each given moment, every strip
constraints is evaluated and the distance separating the
origin from the obtained parallelotope is assessed. A plus
sign indicates that the origin O is situated outside $(Rp),
and thus that the behavior of the system is not akin to the
reference model (middle chart of figure 1). In the second
phase, when an inconsistency is found, the F.I. procedure is
used, where only the four strip constraints depending on a
single measurement, are used. In this way, both theoretic
signatures contain the same number of bits 1.
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Figure 1. Results of the F.D.I. procedure

The system is simulated by adding two sensor biases and
100 observations are generated. For the observations, which

index belongs to [10,40], a bias of magnitude 0.9 affects the
current. For indices comprised between 60 and 90, a bias of
magnitude 0.4 affects the speed. These faults may appear
important, but the sum of uncertainty magnitudes rises to
±110%. As shown in the figure 1, the results of this
approach are guaranteed: an inconsistency necessarily
reveals a behavioral anomaly. Both faults are well detected:
88% of the faulty measurements are detected. Moreover,
only 11% of the faults are isolated, but this percentage rises
to 70% when the signatures Sf of the fault are corrected.
While Sf does not contain two 1, the strip constraint
satisfied with the smallest margin is searched and then Sf is
completed with another 1. In the lower chart of the figure 1,
1 indicates that the fault is isolated, whereas 0 is the sign of
a signature, which corresponds to no theoretic signature.

7. Conclusion

This paper deals with a F.D.I. method suited to structured
uncertain and static models. A parity space approach has
been chosen to de-couple residuals from unknown physical
variables. Then, consistency tests are based on the
bounding approach, where parameter uncertainties are
described by bounded variables. For allowing to evaluate
the normal operating domain, residuals are linearised in the
bounded variables and reduced to decrease their
complexity. Once the constraints defining this domain are
determined, consistency tests for the fault detection are
trivial. The fault isolation uses the same principle and is
improved by a correction based on the notion of distance.
As extension, the use of a static form would allow to apply
this method to uncertain dynamic systems.
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