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Abstract: Fault detection is usually achieved within residuals generation (based on 
analytical redundancy) and evaluation. Such methods need the knowledge of a system 
model and therefore have to be robust to disturbances such as model uncertainties and 
measurement errors. In order to free oneself from the drawbacks of classic methods, as the 
observer performance degradation, the concept of finite memory observer has been 
introduced. This paper gives a short summary of the observer structure and some of its 
properties to further focus on the choice of the residual. In general the estimation error is 
taken as the residual but another residual is defined here. This residual is the difference of 
two state estimations at the same instant but based on two overlapping observation horizons. 
The relevance of this paper is to prove that this special residual is 'more' robust with respect 
to some model uncertainties than the estimation error if the fault detection problem is 
tackled. Finally, the proposed method is applied to detect sensor faults for time-delay 
systems. The relevance of this paper is that the observer is based on a simplified model of 
the time-delay system that does not take into account the delayed states. The example given 
is a simulated one. 

Key words: Time-delay systems, finite memory observer, robustness, fault detection, sliding 
window. 

 
 

1. INTRODUCTION 
 

This paper deals with a problem of huge interest for 
process control: fault detection and isolation (FDI) 
(Willsky, 1976) (Frank, 1990) (Patton, 1994). The 
diagnostic procedure has to be robust with respect to 
system uncertainties such as measurement noise and 
parameter variations. This paper only considers 
robust residuals generation based on observers. As all 
the process history is taken into account to compute 
the estimation (i.e. infinite memory), the model errors 
can be accumulated in the estimation error (the 
residual) that might then diverges. The finite memory 
observer (Medvedev and Toivonen, 1991a, 1991b) is 
designed to prevent such effect on the estimation 
error thanks to an estimation based only on a minimal 
number of measured data (Darouach,  

et al., 1994). The residual proposed in this paper is 
defined as the difference between two estimations at 
the same instant but based on two overlapping 
horizons so that a detection window is defined 
(Kratz, et al., 1997) (Nuninger, 1997). The relevance 
of this paper is to demonstrate that this special 
residual is better for fault detection as it is more 
robust with respect to model uncertainties as 
parameter variations for instance than the estimation 
error. In addition a criterion is given to chose the 
optimal sizes of the overlapping horizons. Therefore, 
no further hypothesis is required to prove the 
existence of the detection window. It is stressed that 
in this paper, time-delay systems are considered but 
the finite memory observers are based on simplified 
models (not taking into account the delayed states). 
As a consequence, these states stand for the model 
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uncertainties to which ones the generated residual has 
to be robust. 
 
This paper is organised as follows. First, the problem 
formulation and the finite memory observer structure 
are given. Second, the observer properties are 
summarised. Then, the special residual is defined and 
the residual sensitivity to additive sensor faults and to 
model uncertainties are studied. Finally, the residual 
generator is applied to a simulated time-delay system 
when only a simplified model is used to design the 
observer. A conclusion is also presented. 
 
 

2. PROBLEM FORMULATION 
 
2.1. System models 
 
This paper considers the following state-space model 
of time-delay systems in continuous-time 
representation: 

Ý x (t) = A s x(t − ts )
s =0

S

∑ + Biu(t − t j)
j =0

J

∑  (1.a) 

y(t) = Cx(t) + v(t ) (1.b) 

where x is the state vector of dimension n, y the 
output measurement vector of dimension p, u the 
control input vector of dimension m and v the 
measurement noise vector (zero-mean with known 
covariance matrix V). Matrices As (  s = 0,K,S ), Bj 
(  j = 0,K, J ) and C are constant with appropriate 
dimensions. Integers s and j denote the number of 
time-delays in the state and control vectors 
respectively. Further, the design of the finite memory 
observer is based on the following simplified model 
of system (1) that does not take into account the 
influence of the delayed state and control vectors: 

Ý x (t) = Ax(t) + Bu(t ) (2.a) 
y(t) = Cx(t ) + v(t)  (2.b) 

where A = A0 and B = B0. The sensibility of the 
proposed residual with respect to additive sensor 
faults and to model uncertainties will be studied 
further.  
 
 
2.2. Static form of the system model (2) 
 
At the instant t, a sliding observation window is 
considered defined by k+1 time-delay output 
measurements: y i = y(t − τ i ) ,   i = 0,K, k . First x(t) is 
deduced from x(t-τi) by integration of equation (2.a) 
on the interval [t-τi, t]. This expression is further 
replaced in the expression of yi deduced from (2.b) so 
that the following relation is obtained: 

y t w x t u t t v ti i i i( ) ( ) ( , ) ( )− = − − + −τ τ τ  (3.a) 

with: 

w Cei
A i= − τ  (3.b) 

u t t Ce Bu di
A t

t

t
i

i

( , ) ( )( )− = ∫ − −

−
τ δ δτ δ

τ
 (3.c) 

Note that the expression (3.c) requires the knowledge 
of an analytical form of the input but in practice, this 
expression is computed numerically within the 
assumption that the input is constant over the 
considered time interval. Thanks to equation (3) 
which is true for each data of the sliding observation 
window, system (2) can be described by the following 
« static » form already used by Chow and Willsky 
(1984): 

Z k (t) = Wkx(t) + N k (t ) (4.a)  

where Zk of dimension p(k+1) and the matrix Wk of 
dimension p(k+1)xn are defined by:  
Z k(t) = Yk (t) + U k (t ) (4.b) 

[ ]W wk i=  with i from 1 to k  

  

Yk( t) =
y0

M
yk

 

 
 

 

 
 , 

  

U k (t) =
u ( t − τ 0, t)

M
u (t − τ k, t)

 

 
 

 

 
 , 

  

N k (t) =
v(t − τ0 )

M
v(t − τk )

 

 
 

 

 
  

Note that Nk is the extended vector of the noise which 
variance is defined by: 

  R k (t) = diag V(t − τ0 ),K,V(t − τ k )( )= Q k
TQ k( )−1

 (5) 
 
 
2.3. Finite memory observer 
 
Within the use of the "static" form (4) of system (2), 
the state estimation is given in term of maximum 
likelihood by minimisation of the weighted square 
output estimation error other the defined observation 
window, i.e. the minimisation of the following 
criterion: 

φ k =
1
2

Z k (t) − ˆ Z k (t)
R

k
−1

2

 (6.a) 

under the constraint: 

$ ( ) $ ( ) ( ) $ ( )Z t Y t U t W x tk k k k k= + =  (6.b) 

The classical solution in the least square sense is 
obtained: 

ˆ x k (t) = Ω k
−1Wk

TR k
−1Z k (t)  (7) 

where the square matrix of dimension nxn: 

Ω k k
T

k kt W R t W( ) ( )= −1  (8) 

is assumed to be invertible. Note that the designed 
estimation is the product of a gain with a linear 
combination of the measurement zi. It is therefore 
intrinsically of finite memory which size is equal to 
the number of data taken into account, i.e. k+1 and 
relies on the horizon definition [t-τk, t-τ0]. The 
extended output estimation ˆ Y k  is deduced from (6.b), 
whose p first components stand for the estimation of 
the output at the instant t, i.e.: 

$ ( ) $ ( ) $ ( ), ( )y t S Y t Cx tk p p k k k= =+1  (9.a) 



with:  

[ ]S Ip p k p p pk, ( ) ,+ =1 0  (9.b) 

Only the properties of the state estimation error (10.a) 
are given below as the ones of the output estimation 
error (10.b) can be easily deduced thanks to (9). 

e k(t) = ˆ x k(t) − x(t ) (10.a) 

ε k(t) = ˆ y k(t) − y(t ) = Sp,p(k+1)
ˆ Y k (t ) − Yk (t)( ) (10.b) 

3. PROPRIETIES OF THE FINITE MEMORY 
ESTIMATION 

 
3.1. Necessary and sufficient condition 
 
The finite memory observer exists if and only if the 
matrix Ωk is invertible which is equivalent to matrix 
Ωk of full column rank. As it is a symmetric matrix 
depending on Wk and the regular matrix Rk, a 
sufficient condition is that Wk is full column rank. As 
Wk is defined by the static form (4) of the system, it 
can easily be proved that this condition is equivalent 
to the observability condition of the model (4). 
Therefore, the minimal number of measurements to 
take into account so that the observer exists is given 
by the observability gramian (11) condition taking 
into account the k+1 data of the observation horizon 
(static form). 

Γk (t) = Wk
T (t)Q k

T (t )Q k (t)Wk(t)  (11) 
 
 
3.2. Optimal number of measurements 
 
The optimal number is given by the evolution of the 
norm of the state estimation error variance. Basing 
the proof on a sequential form (12) of the estimation 
(7) of x(t) expressed at a frozen instant t by adding 
one more data (zk+1), it can be shown that matrix Ωk is 
the solution of an algebraic Riccati equation 
depending on parameter k (Nuninger, 1997). Thanks 
to the proprieties of such equation, there exists an 
integer kopt so that the inverse of matrix Ωk does not 
change significantly for k > kopt. This means that the 
new estimation of x(t), ˆ x k+1 , based on one more data 
(zk+1) does not differ significantly from the previous 
estimation ˆ x k ; the adjunction of more data is 
therefore useless (no disturbances assumed). 

ˆ x k+1 (t) = ˆ x k (t) +G k+1 (t) z k+1 (t) −w k+1 ˆ x k ( t){ } (12.a) 
G k+1 (t) = Ω k

−1w k
T rk+1 + wk+1Ω k

−1wk+1
T{ } (12.b) 

As a consequence, in practice, the optimal number of 
data to take into account is given by the evolution of 
the Euclidean matrix norm (for instance) of the 
estimation error variance Ω k

−1  or of the observability 
gramian Γk when k increases. Note that the optimal 
number of measurement does not rely on the τi that 
should nevertheless represent a proper virtual 
sampling of the data (Shannon criterion). 
 
 

3.3. Estimation error proprieties 
 
Consider additive deterministic faults d(t) on the 
output measurement in spite of the noise (i.e. 
D k (t ) = d(t − τ i)[ ] for the considered horizon). Then, 
the output measurement of the static model is 
rewritten as (13) and the estimation error is (14). 

Z k (t) = Z k (t ) + D k (t)  (13) 
e k (t ) = ek (t) + ∆ek (t)  (14.a) 

where: 

e k (t ) = Ωk
−1Wk

TR k
−1N k t( )   (14.b) 

( )∆ ∆ Ωe t x t W R D tk k k k
T

k k( ) $ ( )= = − −1 1  (14.c)  

Note that ek(t) stands for the error when no fault 
occurs whereas the error differs from this value by 
the quantity ∆ek(t) while faults appear. As a 
consequence, the estimation error is unbiased when 
there is no disturbances as it is proved within the 
estimation error mean and variance: 

Esp e k (t){ }= 0 + Esp ∆ek{ }= Ωk
−1Wk

T Rk
−1D k  (15.a) 

Var e k (t ){ }= Var ek (t ){ }= Ωk
−1  (15.b) 

Unfortunately, because of model uncertainties the 
estimation error is not a good residual to detect 
incipient faults. Indeed, as the real system is 
described by (1), the real output measurement is in 
fact (16.a) where ∆Z k  stands for the influence of the 
model uncertainties (16.b) not taken into account in 
the static model (3) of the system. 

Z k(t) = Z k (t) + D k (t) + ∆Z k (f)  (16.a) 

f x, u, t( ) = A sx(t − t s )
s =1

S

∑ + Biu(t − t j )
j =1

J

∑  (16.b) 

As a consequence, the estimation error is rewritten as 
(14.a) where ek(t) is still given by (14.b) but with the 
variation from this value, ∆ek(t), now defined by: 

∆ek (t) = Ω k
−1Wk

TRk
−1 D k (t) + ∆Z k (f ){ } (17) 

It is obvious that both influence of faults and model 
uncertainties can not be distinguished as the 
corresponding sensitivities of the error, defined by 
the Jacobean matrices, are equal: 

∂e k
∂D k

T =
∂e k(i)
∂D k

T (j)
 

 
 

 

 
 

n,(k+1)p

= Ωk
−1Wk

TRk
−1 =

∂e k
∂∆Z k

T  (18) 

 
 

4. NEW RESIDUAL 
 
4.1. Definition 
 
The finite memory estimation can be computed  
on-line on a fixed horizon within the recursive 
formulation (12). This formula (similar to the Kalman 
filter innovation equation) brings up the expression of 
the new residual. Indeed, assume a fault on the more 
recent data (zk+1) then, from (12) it is obvious that 



only ˆ x k+1  will be wrong as it depends on the faulty 
zk+1 which is not the case of ˆ x k . Therefore, the 
difference between ˆ x k+1  and ˆ x k  is not equal to zero 
and the fault can be detected. On the contrary, model 
uncertainties influence any estimation quite the same 
way; making the difference can eliminate some of 
them so that it is less sensitive to model uncertainties. 
So, in order to detect incipient faults despite of model 
uncertainties, a robust residual (19) is defined by 
extension as the difference of two estimations ˆ x 0, k (t) 
and ˆ x r, k (t) of the  
same state x(t).  

e k/ r (t) = ˆ x 0 /k (t) − ˆ x r / k (t)  (19) 
The estimations ˆ x 0, k  and ˆ x r, k  are computed on two 

overlapping data-sets   y t − τk( ),K,y t − τ0( ){ } and 

  y t − τk( ),K,y t − τ r( ){ } as shown in Figure 1.  

t-τ0t-τk t-τr-1

t-τ0t-τr

t-τ0t-τk

time

time

time

x0,k(t)  ^

xr,k(t)^

ek/r(t)

t-τr

t-τr

t-τk

t
 

Fig. 1. Definition of the residual 
 
It can be proved that the data of the detection 
window, i.e.   y t − τ r−1( ),K,y t − τ0( ){ }, have not the 

same influence than the data of the smallest horizon 
which is included in the largest one (these data are 
used for the computation of the two estimations ; this 
is not the case for the data of the detection window). 
Then, thanks to a special choice of (k,r), it is possible 
to give a greater sensitivity of the residual to the data 
of the detection window (i.e. the ones containing the 
information about the incipient fault) than the other 
data. Therefore, it is possible to design a residual 
which is less sensitive to some model uncertainties. 
 
 
4.2. Residual formulation and statistical proprieties 
 
Consider each estimation ˆ x 0, k (t) and ˆ x r, k (t) deduced 
from (7) with the proper definitions of vectors and 
matrices on the given horizons denoted by the sub-
indices ‘0,k’ and ‘r,k’ respectively (see Figure 1). 
ˆ x 0, k (t) is given by (20) and ˆ x r, k (t) satisfies the same 
equation with the proper notations. 

ˆ x 0,k (t) = ˆ x 0, k (t ) + ∆ˆ x 0,k (t)  (20.a) 
ˆ x 0,k (t) = x(t ) + Ω0,k

−1 W0,k
T R0, k

−1 N0, k(t)  (20.b) 

∆ˆ x 0, k (t ) = Ω0,k
−1 W0,k

T R0, k
−1 D 0,k + ∆Z 0, k{ } (20.c) 

Note that ˆ x 0, k  (20.a) stands for the estimation while 
there is no faults and no model uncertainties, 

otherwise the estimation differs from this value by the 
quantity ∆ˆ x 0, k  (20.c). Thanks to the vectors and 
matrices bloc-proprieties, the estimation ˆ x 0, k  on the 
bigger horizon can be expressed with respect to the 
vectors and matrices defining the estimation ˆ x r, k  
based on the smaller horizon. Indeed, the following 
relations are satisfied (the sub-indices ‘0,r-1’ denotes 
the data defined inside the detection window): 

Y0,k =
Y0, r−1

Yr,k

 
  

 
  , and so on for U0,k, Z0,k, N0,k and D0,k 

R 0,k
−1 =

R0, r−1
−1 0 r, k−r+1

0 k−r+1,r R r,k
−1

 
  

 
  ,W0, k =

W0, r−1

Wr,k

 
  

 
   

Ω 0, k = Ωr, k + Ω0,r −1   
First assume that the model uncertainties are additive 
deterministic and constant parameter variations (∆A, 
∆B and ∆C) on the matrices defining the real system 
which is therefore given by (A+∆A, B+∆B, C+∆C). 
The not exact model is kept as (A,B,C). As a 
consequence, the output measurement Zk can be 
rewritten with ∆Zk now defined by (21) where the 
matrix ∆Wk and the vector ∆Uk stand for the additive 
and deterministic parameter variations of the matrices 
and vectors defining the static form of the real 
system. Basing the demonstration on the way Wk and 
Uk are designed when the indicated parameter 
variations occur, it is easily proved that ∆Z0,k can also 
be rewritten with respect to ∆Zo,r-1 and ∆Zr,k the same 
way Z0,k is expressed. 

∆Z k(t) = ∆Wk x(t ) − ∆U k (t)  (21) 

Because of the limited number of pages required for 
this paper, only the final expression of the residual 
(22) is given (Nuninger, 1997) that leads to the 
statistical proprieties (23). From (22) and the further 
sensitivity study, it is obvious that both influence of 
faults and parameter variations (additive and 
deterministic) can be split apart thanks to the choice 
of the pair (k, r). 

e k / r (t) = ek/ r (t )+ ∆ek / r (t )  (22.a) 
e k/ r (t ) = Ω0, k

−1 W0,r −1
T R 0,r−1

−1 N 0,r−1(t) +

Ω 0, k
−1 − Ωr, k

−1( )W r,k
T Rr, k

−1 N r,k (t)
 (22.b) 

∆ek/ r (t) = Ω0,k
−1 W0,r−1

T R0, r−1
−1 ∆Z 0, r−1(t) + D0,r−1(t)[ ]+

Ω 0, k
−1 − Ωr, k

−1( )W r,k
T Rr, k

−1 ∆Z r, k (t ) + D r, k(t)[ ]
 (22.c) 
Esp e k / r (t){ }= Esp ∆ek / r (t){ }= ∆ek / r (t)  (23.a) 

Var e k / r (t){ }= Ωr, k
−1 − Ω0,k

−1  (23.b) 
 
Second, the model uncertainties are due to not 
modelled time-delay in the real system. Therefore, 
∆Z0,k must be rewritten like (24) that leads to the new 
expression (25) of ∆ek/ r (t) . 

∆Z 0, k (t ) =
∆Z 0, k 0,r − 1[ ]

∆Z 0,k r, k[ ]
 
  

 
   (24) 



∆ek/ r (t) = −Ωr, k
−1 Wr, k

T R r, k
−1 ∆Z r, k + D r, k{ }+

Ω0, k
−1 W0, r−1

T R 0,r−1
−1 ∆Z 0,k 0,r −1[ ]+ D0, r−1{ }+

Ω0, k
−1 Wr, k

T R r, k
−1 ∆Z 0, k r,k[ ]+ D r, k{ }

 (25) 

However, the proof is omitted in this paper, it can be 
shown that ∆Z0,k[r,k] rely on ∆Zr,k because of the way 
the static form of the real system is designed. This is 
quite clear for discrete time representation. 
Therefore, a slightly similar result as (22) can be 
written but in a more complex way because of 
coupling terms but a close conclusion could be 
brought out anyway. The extension for the statistical 
proprieties is not direct. 
 
 
4.4. Residual sensitivity to parameter variations 
 
Because of the previous remark, only the residual 
sensitivity to additive deterministic parameter 
variations is studied and compared to the residual 
sensitivity to additive faults. Within the previous 
definition of sensitivity, the following results can be 
easily proved from the expression (22) of the 
residual: 

∂

∂

∂

∂∆

e t

D t

e t

Y t
W Rk r

r
T

k r

r
T k r

T
r

/

,

/

,
* , , ,

( )

( )

( )

( )0 1 0 1
0

1
0 1 0 1

1

− −

−
− −

−= = Ω  (25.a) 

( )∂

∂

∂

∂∆

e t

D t

e t

Y t
W Rk r

r k
T

k r

r k
T k r k r k

T
r k

/

,

/

,
* , , , ,

( )

( )

( )

( )
= = −− − −Ω Ω0

1 1 1  (25.b) 

From theses results it is concluded that for a given 
horizon, the influence of faults and uncertainties can 
not be distinguished. Note that the same result 
applied for the state estimation error e k(t)  based on 
the biggest horizon. The residual sensitivity to the 
faults D0,r-1 appearing on the data of the detection 
window (25.a) is compared to the residual sensitivity 
to the fault Dr,k appearing on the data from the 
non-common horizon (25.b). It is obvious that both 
sensitivities are different (the same result applied for 
∆Z0,r-1 and ∆zr,k). This remark leads to a tool for the 
choice of the pair (k, r). Note that in comparison with 
the estimation error e k(t) , the proposed residual 
e r/ k (t ) has not the same sensitivity with respect to 
incipient faults whereas the sensitivities are equal 
outside the detection window: 

∂e k
∂D r, k

T = Ω0,k
−1 Wr, k

T R r,k
−1 =

∂e k /r

∂D r, k
T + Ωr, k

−1 Wr ,k
T Rr, k

−1  (26.a) 

∂

∂

∂

∂∆

∂

∂

e t

D t

e t

Y t
W R

e t

D t
k

r
T

k

r
T k r

T
r

kr

r
T

()

()

()

()

()

(), ,
* , , ,

/

,0 1 0 1
0
1

0 1 0 1
1

0 1− −

−
− −

−

−

= = =Ω  (26.b)  

 
4.3. Optimal choice of the detection window 
 
Thanks to the previous results, it is proved that the 
residual er/k(t) sensitivity can be improved with 
respect to incipient faults within a proper choice of 
the pair (k, r). This pair is chosen so that more 
influence is given to the data of the detection window 
with respect to the measurements outside this 

window. The aim is that the residual is more sensitive 
to incipient faults D0,r-1 and less sensitive to some 
parameter variations ∆Zr,k (note that the influence 
with respect to ∆Z0,r-1 can not be changed in 
comparison to the influence of D0,r-1). First, the 
integer k is chosen so that the state estimation error is 
of minimal variance (the inverse of Ωk is the solution 
of an algebraic Riccati equation). Second, for a fixed 
optimal k, integer r < k is chosen so that the 
sensitivity of the residual with respect to the data 
from the detection window is greater than the 
sensitivity with respect to the data from the smallest 
horizon. In practice, such a consideration leads to the 
study of the following sensitivity performance index 
ratio ρD r k

r
,
,0 1−  (27)  when r increases. The result is a 

compromise between having enough data to compute 
the estimation and an optimal sensitivity to the 
incipient faults. The choice remains an heuristic one 
as the evolution is not simple to study in theory 
(especially if model uncertainties are considered 
instead of additive deterministic parameter 
variations). Anyway, the proposed residual (19) is 
more effective for fault detection than the classical 
estimation error. 

ρ
∂

∂

∂

∂
D

e

D

e

Dr k
r k r

r
T

k r

r k
T,

, /

,

/

,

0 1

0 1 2 2

−

−

=  (27) 

 
 
5. APPLICATION ON A SIMULATED EXAMPLE 

Coolant

FA

FB

FP

FW2FW1

coolant

Distillation
column

reactor

coolant

heat
exchanger decanter∞

 

Fig. 2. Flowsheet of the chemical process 
 (Williams et Otto, 1960). 
 
The proposed example is a chemical process 
presented by (Williams and Otto, 1960). This system 
is a model of a refining plant (with separation and 
reaction involved) whose flow-sheet is shown in 
Figure 2 (Schoen, 1995). Sub-indices 'A' and 'B' 
denote the raw materials (feed rates FA and FB 
respectively), 'P' is the valuable product (FP) whereas 
'W1' stands for the by-product which is undesirable 
(FW1) and 'W2' for the column purge lead off (FW2). 
Note that the raw materials and by-product are 
recycled to the chemical reactor when reprocessed 
within the recycle loop that represents a significant 
transport lag. As a consequence, the equations of the 
process are non linear ones but a linearized model 
can be given anyway for a chosen operating point. In 
that case, for a recycling time of 10 minutes, the 



linearized model is the following (one time unit 
stands for 10 minutes) (Ross, 1971): 
Ý x (t) = A 0x(t) + A 1x(t − 1) + Bu(t)  
y(t) = Cx(t)  

A 0 =

−4.93 −1.01 0 0
−3.20 −5.30 −12.8 0
6.40 0.387 −32.5 −1.04

0 0.833 11.0 −3.96

 

 

 
 
 

 

 

 
 
 

,B =

1 0
0 1
0 0
0 0

 

 

 
 
 

 

 

 
 
 

 

A 1 =

1.92 0 0 0
0 1.92 0 0
0 0 1.87 0
0 0 0 0.724

 

 

 
 
 

 

 

 
 
 

, C = 0 0 1 −1[ ] 

The four state components stand for the deviation in 
the weight composition of the materials (A, B, W1, 
W2 respectively). The control inputs are defined as 
∂FA 6VR  and ∂FB 6VR (VR = 2.628m3 is the volume 
of the reactor) and ∂FA  and ∂FB  are the deviations in 
the feed rates (in pounds per hour) from their nominal 
values. The proposed residual defined on the output 
ε k/ r (t ) = ˆ y 0,k − ˆ y r, k = Cek, r (t)  is designed from the 
evolution of the norm of the estimation error 
covariance matrix (k = 15) and from the evolution of 
the sensitivity performance index ratio ρD r k

r
,
,0 1−  (r = 2 

< k) plotted in Figure 3. In this figure the evolution of 
the variance norm of the residual is also plotted. In 
Figure 4 the residual is plotted when there is no faults 
(it is statistically close to zero). The output is also 
plotted. Two additive bias on y are assumed of 
magnitude 0.02, length 1.6s and 0.5s starting at 
instants 0.8s and 4s respectively. Two random values 
of magnitude 0.02 are also simulated at instants 7s 
and 8s. The measurement noise is of 5% magnitude. 
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Fig. 3. Norms of the estimation error variance (A), 

ratio ρD r k
r

,
,0 1−  (B) and of the residual variance (C). 
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Fig. 4. (A) Residual when no faults. (B) Faulty and 

no-faulty output (dash) y(t) = x3(t) - x2(t). 
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Fig. 5. Estimation error (A) and residual (B) (faults). 
 
Finally, the residual and the estimation error are 
plotted in Figure 5. The error never converges to zero 
(even while no faults) and the evaluation procedure 
should be based on adaptive threshold whereas only a 
fixed threshold is required for the residual. It is 
therefore more efficient for fault detection as it is less 
sensitive to model uncertainties and the evaluation 
procedure is simpler. 

6. CONCLUSION 
 
Despite of the uncertain model (as time-delays are 
not taken into account to design the observer) the 
proposed residual is worthwhile for the detection of 
additive faults on the outputs. Indeed, the residual 
defined as the difference between two finite memory 
estimations, is robust with respect to some parameter 
uncertainties for a special choice of the parameters  
(k, r) that define the two overlapping horizons. 
Thanks to this choice, a detection window is defined 
and the residual is therefore more sensitive to 
incipient faults than to parameter uncertainties 
appearing in the measurements outside the detection 
window. This is true in comparison of the estimation 
error that accumulates uncertain parameters and 
could present a divergence phenomenon. Besides, 
both faults and parameter uncertainties can not be 
isolated. This is still true for the new residual but, it 
allows the isolation of incipient faults upon the 
detection window with respect to fault or 



disturbances that appeared before the detection 
window. Note that such a residual as also been 
developed and studied for discrete time 
representation (Kratz, et al., 1997). In addition, in 
order to detect faults on the input, a generalised state 
finite memory observer is developed by Nuninger 
(1997). Future work will present this observer and 
study the residual proprieties.  
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