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Abstract: The identification and estimation of rainfall-flow models is one of the
most challenging problems in hydrology. This paper presents the results of direct
continuous-time identification and estimation of a rainfall-flow model for the
Canning, an ephemeral river in Western Australia, based on daily sampled data. It
compares simplified and full implementations of the optimal instrumental variable
algorithm used in the application and discusses the advantages of this direct
method when compared with the alternative indirect approach to the problem
based on discrete-time model estimation.

Keywords: Continuous-time models, hybrid models, instrumental variable,
sampled data, parameter estimation, river catchments, rainfall-flow

1. INTRODUCTION

This paper 1 deals with the modelling of rainfall-
flow dynamics in river systems. One important
application for such models is in flood fore-
casting and warning, where recent research has
shown the value of discrete (e.g. Young, 2002)
and continuous-time (Young, 2004) transfer func-
tion models. As these references show, identifi-
cation and estimation based on inductive Data-
Based Mechanistic (DBM) modelling (e.g. Young,
1998 and the prior references therein) and State-
Dependent Parameter (SDP) estimation (e.g.
Young et al., 2001) suggests that the rainfall
flow model is of the ‘Hammerstein’ nonlinear

1 This report is related to the paper presented at the 14th
IFAC Symposium on System Identification (SYSID’2006),
Newcastle (Australia), pp. 1276-1281, March 2006.

form, with an input nonlinearity that converts
the measured rainfall into ‘effective rainfall’: i.e.
the rainfall that is effective in causing varia-
tions in flow. This effective rainfall then passes
through a linear transfer function to yield the
river flow. This paper presents the results of direct
continuous-time (CT) identification and estima-
tion of a rainfall-flow model for the Canning, an
ephemeral river in Western Australia, based on
daily sampled data. These results are obtained
using the optimal Refined Instrumental Variable
method of identification for Continuous-time sys-
tems (RIVC) (Young et al., 2006) and they are
compared with alternative ‘indirect’ approaches
to the problem, where the CT model parameters
are inferred from the parameters of discrete-time
(DT) models. Such DT models are normally iden-
tified using conventional stochastic DT estimation



methods available for use in Matlab, such as the
Refined Instrumental Variable (RIV) approach in
the CAPTAIN Toolbox (Young, 2006a) and the
Prediction Error Method (PEM) in the Matlab
System IDentification (SID) Toolbox.

2. OPTIMAL IV METHODS FOR CT
MODELS

In recent years, there has been renewed interest
in the problem of identifying continuous-time sys-
tems on the basis of discrete-time sampled data
(see e.g.; Johansson, et al., 1999; Bastogne et al.,
2001; Wang and Gawthrop, 2001; Garnier et al.,
2003; Garnier and Young, 2004; Moussaoui et al.,
2005).

In the RIVC algorithm (Young et al., 2006)
the relationship between the measured input and
output is a continuous-time transfer function,
while the noise is represented as a discrete-
time AR or ARMA process. This RIVC algo-
rithm is a direct development of the Simplified
Refined Instrumental Variable (SRIVC) method
for continuous-time systems (Young and Jake-
man, 1980) that has been used successfully for
many years and has demonstrated the advantages
of the stochastic formulation of the CT estimation
problem over earlier deterministic methods.

The ‘simplification’ that characterises the name
of the SRIVC method is the assumption, for the
purposes of algorithmic development, that the ad-
ditive noise is purely white in form. Although the
inherent instrumental variable aspects of the re-
sulting algorithm ensure that the parameter esti-
mates are consistent and asymptotically unbiased
in statistical terms, even if the noise happens to
be coloured, the estimates are not statistically ef-
ficient (minimum variance) in this situation. This
is because the special prefilters required in the
estimation are not designed to account for the
colour in the noise process. The hybrid RIVC es-
timation procedure follows logically from the RIV
estimation method for DT models (Young, 1976;
Young and Jakeman, 1979) by including concur-
rent DT noise model estimation and the use of
this estimated noise model in the implementation
of the prefilters.

The hybrid form of the Box-Jenkins transfer func-
tion (BJTF) model is considered for two reasons.
First, the theoretical and practical problems as-
sociated with the estimation of purely stochastic
continuous-time ARMA models are avoided by
formulating the problem in this manner. Second,
as pointed out above, one of the main functions
of the noise estimation is to improve the statis-
tical efficiency of the parameter estimation by
introducing appropriately defined prefilters into
the estimation procedure. This can be achieved

adequately on the basis of prefilters defined by
reference to discrete-time AR or ARMA noise
models.

This more sophisticated and statistically moti-
vated RIVC method of CT identification and esti-
mation is described and evaluated in Young et al.
(2006) in order to demonstrate the advantages of
the stochastic model formulation. This evaluation
is based on comprehensive Monte Carlo Simula-
tion (MCS) analysis. In the present paper, the
practical advantages of this approach are demon-
strated by the real example considered next in
Section 3.

3. RAINFALL-FLOW MODELLING

The set of daily effective rainfall-flow data shown
in Figure 1 is from the Canning, an ephemeral
river in Western Australia (i.e. the river stops
flowing during Summer). Note that the effective
rainfall is considered here so that the dynamics
are linear for the purposes of the present analysis.
Full nonlinear modelling of another river system
is considered in Young (2006b).

3.1 SRIVC Identification and Estimation

Previous discrete-time modelling of the data in
Figure 1 has utilized the SRIV option of the RIV
algorithm in the CAPTAIN Toolbox (e.g. Young
et al., 1997). Here, however, let us consider the
application of the continuous-time SRIVC and
RIVC algorithms. The bottom panel of Figure 1
compares the sampled output ŷk of the SRIVC
estimated continuous-time model (full line) with
the measured flow. This model is identified in the
second order, linear form:

ŷ(t) = b0s2+b1s+b2
s2+a1s+a2

u(t)
yk = ŷk + ξk

(1)

where the subscript k in the second, observation
equation denotes the sampled value of the asso-
ciated variable on the kth day, i.e. yk = y(k∆t),
where ∆t is the daily sampling interval; ŷk is the
sampled, deterministic output of the model; and
ξk is the discrete-time noise process associated
with yk. This noise is identified by the AIC cri-
terion (Akaike, 1974) as an AR(25) process and
by the Schwarz (1978) criterion as ARMA(5,2).

The estimated parameters of the main TF model
are as follows:

â1 = 0.4428(0.0232); â2 = 0.0208(0.0027);

b̂0 = 0.0160(0.0012); b̂1 = 0.0689(0.0018);

b̂2 = 0.0057(0.0007) (2)

where the figures in parentheses are the estimated
standard errors on the associated estimates. This
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Fig. 1. Measured rainfall (top panel), effective rainfall (middle panel) and flow (lower panel) data from
the River Canning, Western Australia. The lower panel also shows the output ŷ(t) of the SRIVC
estimated continuous-time model (full line) and the associated noise (error, yk − ŷk) series (+5).

model has coefficients of determination, based on
its simulated deterministic output ŷ(t), of R2

T =
0.958; (i.e. 95.8% of the measured flow variance
is explained by ŷ(t)); and a standard coefficient
of determination based on the one-step-ahead
prediction errors of R2 = 0.983.

Frequency response plots of the estimated AR(25)
and ARMA(5,2) noise models are shown in Figure
2. Here, the ARMA(5,2) model was estimated in
two ways, as indicated on the plot: namely, using
the PEM algorithm in the Matlab SID Toolbox
(dashed line); and using a recent modification of
the method described in Young (1985), shown
as a full line. This latter algorithm is based on
high order AR modelling coupled with subsequent
ARMA estimation based on a combination of IV
and least squares estimation (ARMA-IV) (Young,
2006c). The residual variances of the two ARMA
models are 0.00353 for PEM and somewhat less
at 0.00339 for ARMA-IV, while the residual vari-
ance of the AR(25) model is 0.00292. Note that
the main spectral characteristics of these various
noise models are similar and all appear at higher
frequencies, well outside the bandwidth of the
estimated model. The autocorrelation function of
both the AR(25) and ARMA(5,2) noise model
residuals shows that they are not significantly
autocorrelated but their variance changes rather
radically over time (i.e. they are ‘heteroscedastic’:
see Young, 2002), with no noise at all over the

Summer periods when there is no flow, and high
variance when the largest flows occur over the
Winter periods. Of course, the fact that the noise
has this non-standard property should alert us to
possible problems and question the application of
AR/ARMA modelling: this is considered later.
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Fig. 2. Spectral characteristics of various noise
models (see text). The lower dashdot line is
discussed later in Section 3.3.

3.2 Derived Parameter and Indirect Estimation

In conformity with the Data-Based Mechanis-
tic (DBM) modelling philosophy (see e.g. Young



(1998) and the prior references therein), it is im-
portant to interpret the model (1) with the param-
eter estimates of (2) in a physically meaningful
manner. Following previous research on rainfall-
flow modelling (e.g. Young, 2002, 2004) this is
possible if the TF model is decomposed into a
parallel connection of two, first order transfer
functions that can be associated with the sur-
face and groundwater characteristics of the river
catchment. In the present case, the respective time
constants (residence times) T̂1 and T̂2 of the two
transfer functions are defined as follows:

Surface processes : T̂1 = 2.57 days

Groundwater processes : T̂2 = 18.71 days
(3)

In other words, and not surprisingly, the rainfall
affects the flow via the surface processes much
more quickly than it affects the flow through the
groundwater system.

The SRIVC results in (2) can be compared with
the results obtained by indirect identification and
estimation. For example, using the SRIV option of
the RIV algorithm in CAPTAIN and converting
the estimated [2 3 0] model to continuous-time,
using the d2cm algorithm in Matlab (‘zoh’ option),
yields the following estimates for the continuous
time model parameters:

â1 = 0.4425; â2 = 0.0209;
b̂0 = 0.0159; b̂1 = 0.0688; b̂2 = 0.0057

(4)

The time constants associated with this model are
2.57 and 18.6 days and it has an R2

T = 0.958.

It is interesting to compare these results with
those produced by the PEM, OE, BJ and IV4
algorithms in the SID Toolbox. The PEM algo-
rithm produces very poor results if the noise is
modelled as an ARMA(5,2) or AR(25) process
with a coefficient of determination of R2

T = 0.917
and of R2

T = 0.903 respectively. However, it yields
a model that is closer to the SRIV estimated
model if the noise model is not included (sim-
ple TF model, effectively OE estimation), with
a marginally smaller coefficient of determination
R2

T = 0.953 and estimated time constants of 3.13
and 14.77 days 2 . Exactly the same results are ob-
tained from the OE and BJ algorithms, as would
be expected. However, IV4 produces very poor
results with a negative real pole in the discrete-
time model and an R2

T = 0.933. Interestingly,
if the SRIV estimates are used as starting val-
ues for PEM, the coefficients of determination is
increased to almost the same as the SRIV esti-
mated model, at R2

T = 0.957, and the estimated
time constants are then 2.49 and 15.7 days. Of
course, PEM estimation is clearly redundant in

2 All ARMAX estimation was poor with maximum R2
T =

0.929

this situation if it needs to be started by the SRIV
estimates in order to ensure convergence to a sim-
ilarly acceptable model. Note that for the results
shown in (4), no standard errors are given because
these are not available after the d2cm transfor-
mation and would need to be evaluated in some
manner: e.g. by Monte Carlo Simulation (MCS)
analysis based on the estimated parametric error
covariance matrix provided by the discrete-time
estimation algorithms.

The uncertainty on the estimates of any param-
eters derived from the directly estimated CT
model, such as the time constants T̂1 and T̂2, is
also not available and so needs to be estimated by
MCS analysis. For example, Figure 3 presents the
results of such MCS analysis using a simulation
model based on the SRIVC estimated parameters
and a normally distributed white noise chosen to
provide a signal/noise ratio similar to that on
the real data. These results are based on 5000
realizations and are presented in the form of the
normalised histograms (empirical distributions) of
the two time constants. The full line in these
plots shows the best fitting normal distribution
curve, based on the first two moments (mean and
variance) of the realisations in each case. The
values of these statistics are given above each sub-
plot. Not surprisingly, given that the information
content of the data in this regard is naturally less
than that for the short time constant, the long
time constant estimate is not so well defined and
is somewhat skewed towards higher values. Note
that the PEM-based indirect estimates lie at the
very edge of these distributions.
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Fig. 3. Normalized histograms (empirical distri-
butions) of the two time constants based on
MCS analysis: T1 in the left panel and T2 in
the right panel.

3.3 Full RIVC Estimation

As far as full RIVC estimation is concerned, there
is one problem with the present example: namely,



the nature of the naturally occurring noise. As
pointed out previously, this noise is heteroscedas-
tic (see bottom panel, Figure 1). This means that
some of the assumptions about the noise process
required for the full RIVC estimation are vio-
lated because the AR(25) and ARMA(5,2) noise
models are rather poor representations of the real
noise. As a result, application of the full RIVC
model yields reasonable estimates of the param-
eter values because of the instrumental variable
mechanism, which is much less vulnerable to the
nature of the noise. On the other hand, the re-
sults are very similar to those obtained with the
simpler SRIVC algorithm. The main reason for
this is that the AR(25) and ARMA(5,2) models
are dominated by higher frequency characteristics
(see Figure 2), with no significant roots close to
the unit circle in the complex z domain. As a
result, there is only a small improvement in sta-
tistical efficiency resulting from the introduction
of the noise model and related enhancement of
the adaptive prefilters. As can often be the case,
however, the SRIVC parameter and covariance
matrix estimates are quite good and would be sat-
isfactory for most practical applications. Indeed,
the results obtained here and in other studies we
have carried out, suggest that SRIVC provides an
excellent default algorithm for day-to-day appli-
cations of this kind. Of course, as illustrated in
other simulation studies reported by Young et al.
(2006), the advantages of full RIVC estimation
can be significant in the case of more severely
coloured noise, particularly when the AR model
has roots near to the unit circle. For example, the
results shown in Table 1 were obtained by MCS
analysis using a simulation model based on the
SRIVC estimated parameters but with the noise
process simulated as a first order AR process with
denominator polynomial C(z−1) = 1 − 0.96z−1

and a normally distributed white noise input cho-
sen to provide a signal/noise ratio similar to that
on the real data. The spectral characteristics of
this noise are shown by the dash-dot line in Figure
2 (the gain has been adjusted a little for greater
clarity).

The MCS results in Table 1 now reveal a sig-
nificant reduction in the standard errors on the
RIVC parameter estimates when compared with
the SRIVC estimates. Note, however, that because
of the inherent instrumental variable and prefilter-
ing aspects of the SRIVC algorithm, the parame-
ter estimates are statistically consistent and have
relatively low variance. This demonstrates, once
again, the robust characteristics of this simpler
algorithm.

4. CONCLUSIONS

This paper has described the application of op-
timal, continuous-time identification and estima-

tion methods to the problem of modelling rainfall-
flow dynamics in an ephemeral river system. With
the help of numerical simulations, the paper has
also demonstrated a number of interesting prop-
erties of the SRIVC and RIVC algorithms used in
this application. In particular, the results reveal
that, in this case, little advantage is obtained from
the use of the full RIVC method in comparison
with the simpler SRIVC method because of the
particular ‘heteroscedastic’ and high frequency
noise characteristics. However, subsequent MCS
analysis, based on the stochastic simulation of the
SRIVC estimated rainfall-flow model with addi-
tive low frequency AR noise replacing the natural
noise, have showed the advantages of the new
RIVC approach.

It is felt that the results presented in this paper,
based on a stochastic formulation of the CT trans-
fer function estimation problem, provide a theo-
retically elegant and practically useful approach
to the modelling of stochastic linear systems from
discrete-time sampled data. It is an approach
that has a number of advantages in scientific
terms, since it provides a differential equation
model that conforms with models used in most
scientific research, where conservation equations
(mass, energy etc.) are normally formulated in
terms of differential equations. It is also a model
defined by a unique set of parameter values that
are not dependent on the sampling interval, so
eliminating the need for conversion from discrete
to continuous-time that is an essential element
of indirect approaches to estimation based on
discrete-time model estimation.

The SRIVC and RIVC algorithms used
in this paper are both available in
the CONTSID (http://www.cran.uhp-
nancy.fr/contsid/) and CAPTAIN
(http://www.es.lancs.ac.uk/cres/captain/)
Toolboxes for Matlab. CONTSID concentrates
on all of the major identification tools
for continuous-time systems including
SRIVC/RIVC; while CAPTAIN is a more
general toolbox for stationary, nonstationary
and nonlinear time series analysis, having tools
for discrete (SRIV/RIV) and continuous-time
(SRIVC/RIVC) TF identification, as well as
algorithms for time variable and state dependent
(nonlinear model) parameter estimation,
nonstationary signal extraction and adaptive
forecasting.
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