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Abstract: This paper describes an optimal instrumental variable method for
identifying discrete-time transfer function models of the Box-Jenkins transfer
function form in the closed-loop situation. This method is based on the Refined
Instrumental Variable (RIV) algorithm which, because of an appropriate choice
of particular design variables, achieves minimum variance estimation of the model
parameters. The Box-Jenkins model is the most natural since it does not constrain
the process and the noise models to have common polynomials. The performance
of the proposed approach is evaluated by Monte Carlo analysis in comparison with
other alternative closed loop estimation methods.
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1. INTRODUCTION

This paper 1 describes an optimal instrumen-
tal variable method for identifying discrete-time
transfer function models of the Box-Jenkins trans-
fer function form in the closed-loop situation. For
many industrial production processes, safety and
economic restrictions are often strong reasons for
not allowing identification experiments in open-
loop. In such situations, experimental data can
only be obtained under closed-loop conditions.
The main difficulty in closed-loop identification

1 This report is related to the paper presented at the 14th
IFAC Symposium on System Identification (SYSID’2006),
Newcastle (Australia), pp. 903-908, March 2006.

is due to the correlation between the disturbances
and the control signal induced by the loop. Several
alternatives are available to cope with this prob-
lem (Ljung, 1999). Some particular versions of
these methods have been developed more recently
in the area of control-relevant identification. An
overview of these recent developments can be
found in Van den Hof (1998) and Forssell and
Ljung (1999). This paper focuses more specially
on instrumental variable techniques which present
the great advantage of being able to consistently
identify closed-loop plant models while relying on
simple linear (regression-like) algorithms.

For closed-loop identification, a basic IV estimator
was first suggested by (Young, 1970), assuming



knowledge of the controller; and the topic was
later discussed in more detail by (Söderström et
al., 1987). More recently a so-called ‘tailor-made
IV algorithm’ was proposed (Gilson and Van den
Hof, 2001), where the closed-loop plant is pa-
rameterized using (open-loop) plant parameters.
Then, an optimal variance result has been devel-
oped in the closed-loop extended IV identifica-
tion case, revealing consequences for the choice
of weights, filters and instruments (Gilson and
Van den Hof, 2005). Two bootstrap techniques
have been proposed: the first one aims at esti-
mating an ARX model; and the second improves
on this by utilizing a more accurate noise model
with an ARARX structure. However, both meth-
ods still rely on a noise model having the same
dynamics as the process model.

In this paper, we propose a new technique which is
based on the identification of a more realistic Box-
Jenkins (BJ) model where the process and the
noise models are not constrained to have common
polynomials. An apparent problem with this type
of BJ model is that simple IV estimation cannot
be used directly because the model is non-linear-
in-the-parameters. However, more sophisticated
IV estimation overcomes this limitation. In partic-
ular, this paper proposes a solution based on the
use of the iterative, optimal Refined Instrumen-
tal Variable (RIV) method of estimation (Young,
1976, 1984).

The paper is organized as follows. After the pre-
liminaries, the lower bound of the covariance ma-
trix in case of closed-loop identification is recalled
in Section 3. Section 4 shows how the refined IV
method provides an estimation approach to the
closed loop estimation problem. Finally, in Section
6, the comparison between different IV methods
is illustrated with the help of Monte Carlo simu-
lation examples, demonstrating the efficacy of the
proposed approach.

2. PRELIMINARIES
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Fig. 1. Closed-loop configuration.

Consider a linear SISO closed-loop system shown
in Figure 1. The process is denoted by G0(z)
and the controller by Cc(z); u(t) describes the
process input signal, y(t) the process output signal
and e0(t) is a sequence of independent identically
disturbed random variables of variance λ0. The
external signals r1(t), r2(t) are assumed to be

uncorrelated with e0(t). For ease of notation, we
also introduce the signal r(t) = r1(t)+Cc(q)r2(t).
With this notation, the data generating system
becomes

S :

{
y(t) = G0(q)u(t) + H0(q)e0(t)
u(t) = r(t)− Cc(q)y(t)

(1)

The real plant G0 is considered to satisfy G0(q) =
B0(q−1)/A0(q−1), while in these expressions q−1

is the delay operator, and the numerator and
denominator degree is n0.

A parameterized process model is considered

G : G(q, θ)=
B(q−1, θ)
A(q−1, θ)

=
b1q

−1 + · · ·+ bnq−n

1 + a1q−1 + · · ·+ anq−n
,

(2)
and the process model parameters are stacked
columnwise in the parameter vector

θ =
[
a1 · · · an b1 · · · bn

]T ∈ R2n. (3)

Furthermore, let us denote the open-loop regres-
sor by ϕ(t) ∈ R2n, defined as

ϕT (t) =
[−y(t− 1) · · · − y(t− n)u(t− 1) · · ·u(t− n)] (4)

If n = n0, i.e. the plant G0 is contained in the
chosen model set, y(t) can be written as

y(t) = ϕT (t)θ0 + v0(t) (5)

where θ0 denotes the true parameters and v0(t) =
A0(q−1)H0(q)e0(t). Additionally we use the fol-
lowing notation for filtered data

ϕf (t) = L(q)ϕ(t) (6)

where L(q) is a stable prefilter.

The objective is to estimate θ0 while using the
collected data y(t), u(t) and r(t) with or without
knowledge of the controller.

Extended-IV. The well-known extended-IV es-
timate is given by (Söderström and Stoica, 1983)

θ̂xiv(N) = arg min
θ

∥∥∥∥∥

[
1
N

N∑
t=1

zf (t)L(q)ϕT (t)

]
θ

−
[

1
N

N∑
t=1

zf (t)L(q)y(t)

]∥∥∥∥∥

2

Q

, (7)

where zf (t) is the instrument vector and ‖x‖2Q =
xT Qx, with Q a positive definite weighting ma-
trix.

By definition, the extended-IV estimate provides
a consistent estimate under the following two
conditions 2

• Ēzf (t)L(q)ϕT (t) is non singular,
• Ēzf (t)L(q)v0(t) = 0.

2 The notation Ē[.] = limN→∞ 1
N

∑N−1

t=0
E[.] is adopted

from the prediction error framework of Ljung (1999)



3. LOWER BOUND FOR AN IV METHOD

The choice of the instrumental variable vector
zf (t), the number of instruments nz, the weighting
matrix Q and the prefilter L(q) may have a
considerable effect on the covariance matrix Pxiv

produced by the IV estimation algorithm. In the
open-loop situation the lower bound of Pxiv for
any unbiased identification method is given by
the Cramer-Rao bound, which is specified in e.g.
(Söderström and Stoica, 1983) and (Ljung, 1999).
The closed-loop situation has been investigated
recently in Gilson and Van den Hof (2005), so
only the main results are recalled here. It has been
shown that a minimum value of the covariance
matrix Pxiv as a function of the design variables
zf (t), L(q) and Q exists under the restriction that
zf (t) is a function of the external signal r(t) only:

Pxiv ≥ P opt
xiv

with
P opt

xiv = λ0[Ēϕ̃f (t)ϕ̃T
f (t)]−1,

ϕ̃f (t) = L(q)ϕ̃(t) and ϕ̃(t) is the noise-free part of
ϕ(t).

It is shown that the minimum variance result
can be achieved by the following choice of design
variables (see Gilson and Van den Hof (2005) for
further explanations):

Q = I and nz = 2n, (8)

L(q) =
1

H0(q)A0(q−1)
, (9)

zf (t) = L(q)ϕ̃(t). (10)

Using equations (7) and (8)-(10), the optimal IV
estimate is given by

θ̂opt(N) = R̂−1
zf ϕf

(N)R̂zf yf
(N) (11)

with R̂zf ϕf
(N) = 1/N

∑N
t=1 zf (t)ϕT

f (t),
R̂zf yf

(N) = 1/N
∑N

t=1 zf (t)yf (t); and where
both the open-loop regressor ϕf (t) = L(q)ϕ(t)
and the output yf (t) = L(q)y(t) are filtered by
L(q) (9).

Note that the optimal IV estimator can only be
obtained if the true noise model A0(q−1)H0(q) 3

is exactly known and therefore optimal accuracy
cannot be achieved in practice.

4. REFINED INSTRUMENTAL VARIABLE
ESTIMATION IN THE CLOSED LOOP

(RIVCL)

Based on the results presented in the previous
section, it is necessary to take care so that

3 Although A0H0 is referred to as “noise model” it also
involves knowledge of G0 through its denominator A0.

• a model of A0H0 is available in order to con-
struct the prefilter L(q) and the instruments
zf (t),

• the noise free part of the regressor ϕ̃(t) is
needed.

In this connection, while the choice of the in-
struments and prefilter in the IV method af-
fects the asymptotic variance of the parameter
estimates, the consistency properties are generi-
cally secured. This suggests that minor deviations
from the optimal value (which is not available in
practice) will only cause second-order effects in
the resulting accuracy. Therefore it is considered
sufficient to use consistent, but not necessarily
efficient estimates of the dynamics and of the noise
when constituting the instrument and the pre-
filter (Ljung, 1999). In addition, when obtaining
the necessary preliminary models, estimation is
restricted to linear regression estimates in order
to keep the computational procedures simple and
tractable. Several attempts have been proposed
to handle this problem in closed-loop (see Gilson
and Van den Hof (2005) for more details). These
previous solutions have used bootstrap techniques
since this alternates between computing the vec-
tor parameter and forming the new regressor and
instruments.

As the optimal IV estimation only requires ver-
ification of the assumption G0 ∈ G (and not
S ∈ M), the first possibility consists of estimating
a simple ARX model without any specific noise
model identification:

G : A(q−1)y(t) = B(q−1)u(t) + e(t)

Although the results are consistent, it is worth
while considering improved noise model estima-
tion in order to construct a more accurate es-
timate (closer to (11)). One improvement is to
use the following ARARX structure (Gilson and
Van den Hof, 2005)

A(q−1)y(t) = B(q−1)u(t) +
1

D(q−1)
e(t)

However, this approach still relies on a noise
model having the same dynamics as the process
model. A superior alternative is to consider a
closed loop BJ Transfer Function (TF) model
defined as

G : y(t) =
B(q−1)
F (q−1)

u(t) +
C(q−1)
D(q−1)

e(t) (12)

and u(t) = r(t)− Cc(q)y(t). (13)

For most practical purposes, this model is
the most natural since it does not constrain
the process and the noise models to have
common polynomials. The problem introduced
by considering (12), however, is that the model
is non-linear-in-the-parameters so that simple IV
estimation cannot be directly applied.



Fortunately, this problem of nonlinear estimation
can be overcome by utilizing the iterative Refined
Instrumental Variable (RIV) method (see Young,
1976, 1984) that is available in the CAPTAIN
Toolbox for Matlab 4 . The simplest explanation
of this method is to consider the usual Predic-
tion Error Minimization (PEM) approach within
an Optimal Generalized Equation Error setting
(Young, 1985a). Here, a suitable error function
ε(t) is given by

ε(t) =
D(q−1)
C(q−1)

[
y(t)− B(q−1)

F (q−1)
u(t)

]
. (14)

This error function is clearly nonlinear in the
parameters of the unknown polynomials. However
it can be written alternatively as

ε(t) =
D(q−1)

C(q−1)F (q−1)
[F (q−1)y(t)−B(q−1)u(t)],

or

ε(t) = F (q−1)yf (t)−B(q−1)uf (t), (15)

where{
yf (t) = L(q)y(t)
uf (t) = L(q)u(t),

with L(q) =
D(q−1)

C(q−1)F (q−1)
.

(16)

Equation (15) is now linear-in-the-parameters of
the transfer function model, so that IV methods
could be used to estimate the parameters if it were
possible to perform the prefiltering operations in
(16). In practice, of course, the parameters of
the filter L(q) (16) are unknown a priori and so
the prefiltering operations must be made adaptive
with the iterative RIV algorithm.

5. THE ITERATIVE REFINED IV METHOD

The outline of RIV algorithm for the Box-Jenkins
model within the closed-loop context (RIVCL) is
given below. For ease of notation, the following
simplified BJ model with AR noise (as used in the
CAPTAIN RIV routine) will be considered here 5 :

y(t) =
B(q−1)
F (q−1)

u(t) +
1

D(q−1)
e(t)

1. Estimate an ARX model
Postulate an ARX model

F (q−1, θ)y(t) = B(q−1, θ)u(t) + e(t)

Apply the LS method

θ̂(0) =

[
N∑

i=1

ϕ(t)ϕT (t)

]−1 N∑

i=1

ϕ(t)y(t), (17)

4 http://www.es.lancs.ac.uk/cres/captain/
5 the RIV algorithm in CAPTAIN will shortly be updated
to allow for the full BJ model estimation with an ARMA
noise model

where ϕ(t) is given by (4). This yields B̂(0)(q−1)
and F̂ (0)(q−1). Denote the corresponding transfer
function by Ĝ(0)(q)

Ĝ(0)(q) =
B̂(0)(q−1)
F̂ (0)(q−1)

Set D̂(0)(q−1) = 1 and i = 1.

2. Compute an IV estimate using the es-
timated prefilter and previous IV estimate
for generating the instruments.
Generate the instruments as





L
(i−1)
rivcl (q−1) =

D̂(i−1)(q−1)
F̂ (i−1)(q−1)

ŷ(t, θ̂(i−1)) =
Ĝ(i−1)(q)

1 + Cc(q)Ĝ(i−1)(q)
r(t),

û(t, θ̂(i−1)) =
1

1 + Cc(q)Ĝ(i−1)(q)
r(t),

zf (t) = L
(i−1)
rivcl (q)[

−ŷ(t− 1, θ̂(i−1)) . . .− ŷ(t− n, θ̂(i−1))

û(t− 1, θ̂(i−1)) . . . û(t− n, θ̂(i−1))
]

zf (t) can be seen as an filtered estimation of the
noise-free part of the regressor ϕ(t). Determine
the IV estimate using the prefilter and these
instruments

θ̂
(i)
rivcl =

[
N∑

i=1

zf (t)ϕT
f (t)

]−1 N∑

i=1

zf (t)yf (t), (18)

with {
ϕf (t) = L

(i−1)
rivcl (q)ϕ(t)

yf (t) = L
(i−1)
rivcl (q)y(t)

(19)

This yields B̂
(i)
rivcl(q

−1) and F̂
(i)
rivcl(q

−1). Denote
the corresponding transfer function by Ĝ

(i)
rivcl(q)

Ĝ
(i)
rivcl(q) =

B̂
(i)
rivcl(q

−1)

F̂
(i)
rivcl(q−1)

3. Compute the residuals associated with
the RIVCL estimates at iteration i and
determine an AR model for these.
Let

ω̂(t) = F̂rivcl(q−1)ỹf (t)− B̂rivcl(q−1)ũf (t)

with ỹf (t) = 1/F̂rivcl(q−1)y(t) and ũf (t) =
1/F̂rivcl(q−1)u(t).

Postulate an AR model for these residuals ω̂(t) in
the form :

D(q−1)ω̂(t) = e(t)

Estimate D(q−1) by LS (or some alternative such
as the ARMACEL procedure (Broersen, 2002))
and denote the result by D̂

(i)
rivcl(q

−1).



4. Repeat from step 2. Stop when F̂
(i)
rivcl, B̂

(i)
rivcl

and D̂
(i)
rivcl have converged. Considerable previous

experience with the RIV algorithm has shown
that this iterative relaxation approach normally
requires only two to four iterations to converge
on a reasonable set of model parameters but a
convergence criterion could be incorporated.

5.1 Comments

• Adaptive prefiltering of both I/O data signals
is an inherent part of the RIVCL estimation.

• This algorithm requires knowledge of the
controller but a solution is to estimate the
closed-loop TF (instead of the open-loop one)
in the first step of the algorithm and then to
construct the instruments on the basis of this
closed-loop TF and r(t).

5.2 The Closed-Loop Simplified Refined IV
(SRIVCL) algorithm

Like its close relative RIV, the RIVCL algorithm
described above with ARMA or AR noise mod-
elling does not necessarily require the concurrent
estimation of a noise model and, indeed, is sta-
tistically efficient for this model if the additive
noise on the output is white. In the RIV case, this
algorithm is called the Simplified RIV (SRIV) al-
gorithm (Young, 1985b) and so we will refer to this
closed loop equivalent as the Simplified RIVCL
(SRIVCL) algorithm. It is identical to the RIVCL
algorithm except that the adaptive prefiltering
operation simplifies by setting D(i−1)(q−1) = 1.

The SRIVCL algorithm is not only easy to im-
plement since it does not require concurrent esti-
mation of a disturbance model (and is therefore
independent of any stochastic assumption about
the noise process, which can take on any form),
but it also provides very good estimates in many
practical situations. Over many years, the SRIV
algorithm has proven to be quite robust in the face
of non-standard noise on the output signal, pro-
ducing consistent, asymptotically unbiased and
relatively low variance parameter estimates in
case of open-loop identification (Young, 1984).
The closed loop algorithm is virtually identical
to the open loop algorithm and so similar per-
formance is to be expected.

6. SIMULATION EXAMPLES

The following numerical example is used to il-
lustrate the performance of the proposed method
(Gilson and Van den Hof, 2005). The process to
be identified is described by equation (1), where

G0(q) =
0.5q−1

1− 0.8q−1
, n = 1

Cc(q) =
0.0012 + 0.0002q−1 − 0.001q−2

0.5− 0.9656q−1 + 0.4656q−2

r(t) is a deterministic sequence (realization of a
random binary signal) and e0(t) is a white noise
uncorrelated with r(t).

6.1 Example 1: white noise

Firstly, a white noise disturbance (H0(q) = 1) is
considered in order to validate the performance of
the proposed simplified refined IV (srivcl) algo-
rithm in the case S ∈ M. The process parameters
are estimated on the basis of closed-loop data
sequences of length N = 1000. A Monte Carlo
simulation of 100 experiments has been performed
for a signal to noise ratio

SNR = 10 log
(

Pyd

Pe

)
= 15 dB, (20)

where Px denotes the power of the signal x and
yd is the noise-free output signal.
The proposed method is compared to another
approximatively optimal IV method referenced as
div (without noise model estimation, see Gilson
and Van den Hof (2005)). The Monte Carlo sim-
ulation (MCS) results are presented in Table 1
where the mean and standard deviation of the
estimated parameters are displayed. It can be seen
that both methods deliver unbiased and accurate
results, with smaller standard errors for the pro-
posed srivcl method.

param. true div srivcl

b̂1 0.5 0.4999± 0.0062 0.5000± 0.0039
â1 -0.8 −0.7996± 0.0033 −0.7999± 0.0023

Table 1. MCS results - H0(q) = 1

6.2 Example 2: colored noise

A second example is used to analyse the perfor-
mance of the proposed methods in the case of a
colored noise, with

H0(q) =
1− 1.56q−1 + 1.045q−2−0.3338q−3

1− 2.35q−1 + 2.09q−2 − 0.6675q−3

The proposed methods (referred to as rivcl
and srivcl) are compared to the div algorithm
and another approximatively optimal IV method
which estimates an ARARX model and is referred
to as divn (Gilson and Van den Hof, 2005). More-
over, note that a simplified BJ noise model is used
in the rivcl (C(q−1) = 1) case. Therefore, the
case G0 ∈ G (and not S ∈ M) is considered in
this example in order to analyse the robustness of
the proposed method to the noise.
The process parameters are estimated on the basis



parameters true values div divn srivcl rivcl

b̂1 0.5 0.5005± 0.0210 0.5003± 0.0116 0.4998± 0.0212 0.5005± 0.0107
â1 -0.8 −0.7995± 0.0352 −0.7993± 0.0139 −0.8001± 0.0120 −0.7997± 0.0080

Table 2. Mean and standard deviation of the 100 estimated models in the case of example 2

of closed-loop data sequences of length N = 1000.
A Monte Carlo simulation of 100 experiments has
been performed for a SNR = 10dB. The mean
and standard deviation of the estimated parame-
ters for the 100 models are given in Table 2. The
Bode diagrams of the 100 models identified by
the divn and rivcl algorithms are displayed in
Figure 2. It can be seen that all of the methods
give unbiased and good results. The rivcl and
srivcl algorithms seem to give estimates with
smaller standard errors compared to the div and
divn algorithms.
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Fig. 2. Estimated Bode diagrams over the 100
Monte Carlo simulation runs

7. CONCLUSION

This paper has considered the identification of
a non-linear-in-the-parameters Box-Jenkins TF
model within a closed loop environment, using
the optimal Refined Instrumental Variable tech-
nique modified to handle the closed loop situation
(RIVCL). It has been shown that a minimal value
of the associated parametric error covariance ma-
trix can be achieved by the RIVCL choice of
instruments and prefilters. The estimated Box-
Jenkins model has the advantage of not constrain-
ing the process and the noise models to have com-
mon polynomials. The proposed method has been

compared to recently suggested estimators using
comprehensive Monte Carlo simulation analysis.
All of these methods considered in the paper yield
unbiased estimates but the RIVCL algorithm pro-
vides the best statistical efficiency.
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