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Université Henri Poincaré, Nancy 1, BP 239, F-54506
Vandœuvre-lès-Nancy Cedex, France,

email: firstname.surname@cran.uhp-nancy.fr

Abstract: This paper describes the latest developments for the CONTSID toolbox
which includes time-domain identification methods for estimating continuous-time
transfer function or state-space models directly from sampled data. The main
additions to the new version aim at extending the optimal instrumental variable
method to handle wider practical situations in order to enhance the application
field of the CONTSID toolbox. The toolbox now includes: (1) a recursive
version of the optimal instrumental variable method, (2) a version for multiple
input system identification where the denominators of the transfer functions
associated with each input are not constrained to be identical, (3) a version
for identifying hybrid models of the general Box-Jenkins transfer function form,
where a continuous-time plant model with a discrete-time noise model is estimated.
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1. INTRODUCTION

This paper 1 describes the latest developments
for the CONtinuous-Time System IDentification
(CONTSID) toolbox. This toolbox for use with
Matlab was first released in 1999 (Garnier and
Mensler, 1999). It has gone through several up-
dates, some of which have been reported at ear-
lier IFAC SYSID Symposia (Garnier and Mensler,
2000; Garnier et al., 2003a). The relevance of
direct continuous-time (CT) model identification
methods available in the toolbox has been recently
illustrated with extensive numerical simulation
(Rao and Garnier, 2004). The recent rewriting
of the CONTSID toolbox functions as object-

1 This report is related to the paper presented at the 14th
IFAC Symposium on System Identification (SYSID’2006),
Newcastle (Australia), pp. 714-719, March 2006.

oriented to ensure the exchange with the Matlab
System Identification toolbox (SITB) has also sig-
nificantly extended the usability of the toolbox
(Garnier et al., 2003a). Amongst the different es-
timators available for CT SISO system identifica-
tion (Garnier et al., 2003b), there is one which has
proven to be very effective and robust in practical
situations. This approach is the Simplified Re-
fined Instrumental Variable for Continuous-time
systems (Garnier and Young, 2004), denoted by
SRIVC from hereon. It presents the advantage of
yielding asymptotically efficient estimates in the
presence of white measurement noise. The main
additions to the latest version all aim at extending
this SRIVC method to enhance its application
field. The three main additions concern

• a recursive implementation of the SRIVC
method,



• the development of a SRIVC version for mul-
tiple input systems described by multiple
transfer functions with different denomina-
tors,

• the development of an optimal IV approach
for identifying hybrid Box-Jenkins models,
where the relationship between the measured
input and output is a CT transfer function,
while the noise is represented as a discrete-
time (DT) AR or ARMA process.

This paper is organized as follows. A short
overview of the toolbox is given in Section 2.
Section 3 outlines the main steps of the SRIVC
method for SISO transfer function models. The
recent developments for the toolbox are then pre-
sented in Section 4. These latter are illustrated
with the help of numerical examples in Section 5.
In Section 6, some of the development plans are
briefly discussed.

2. A SHORT OVERVIEW OF THE CONTSID
TOOLBOX

The CONTSID Matlab toolbox contains time-
domain identification methods of CT parametric
models for linear time-invariant SISO and MIMO
systems operating in open-loop from regularly
or irregularly sampled data. It is designed as
an add-on to the System IDentification toolbox
(Ljung, 2003) and has a similar setup. Version
4.1 is compatible with Matlab 7.x and operates
exclusively in the Matlab command window. This
updated version of the CONTSID toolbox is freely
available for academic researchers and can be
downloaded from:

http://www.cran.uhp-nancy.fr/contsid/

The toolbox contains most of the methods de-
veloped over the last thirty years (Garnier et
al., 2003b). Parameter estimation techniques can
be divided into the following two families:

(1) transfer function model estimation schemes
to identify SISO or MISO systems,

(2) state-space model estimation schemes to
identify MIMO systems.

The main demonstration program called id-
cdemo.m provides several examples illustrating
the use of the CONTSID toolbox approaches.

3. SRIVC FOR SISO TF MODEL

Consider a linear, single-input, single-output, CT
system 2 whose input u(t) and output y(t) are re-
lated by a constant coefficient differential equation

2 A time-delay on the system input is not considered for
simplicity here but is easy to accommodate.

x(n)(t) + a1x
(n−1)(t) + . . . + anx(0)(t) =

b0u
(m)(t) + b1u

(m−1)(t) + . . . + bmu(0)(t) (1)

where x(i)(t) denotes the ith time-derivative of the
continuous-time signal x(t). Equation (1) can also
be written in the transfer function (TF) form:

x(t) =
B(s)
A(s)

u(t), (2)

with

B(s) = b0s
m + b1s

m−1 + · · ·+ bm,

A(s) = sn + a1s
n−1 + · · ·+ an,

where s is the differential operator, i.e.
spx(t) = dpx(t)

dtp . It is assumed that the input
signal {u(t), t1 < t < tN} is applied to the
system and that the output x(t) is sampled
at discrete times t1, · · · , tN , not necessarily
uniformly spaced.

In order to obtain high quality statistical estima-
tion results, it is vital to consider the inevitable er-
rors that will affect the measured output signal. In
the case of uniformly sampled data, the measured
output yk = y(tk), where tk = kTs, is assumed to
be corrupted by an additive measurement noise
ξ(tk)

y(tk) = x(tk) + ξ(tk). (3)
where x(tk) is the hypothetical noise-free, deter-
ministic output of the system. The identification
problem aims at estimating the parameters of the
differential equation model (2) from N sampled
measurements of the input and output ZN =
{u(tk); y(tk)}N

k=1.

One particularly successful stochastic identifica-
tion method is the iterative Simplified Refined In-
strumental Variable method for Continuous-time
model Identification (SRIVC: see Young and Jake-
man (1980), Young (2002)) where, for simplicity,
the noise is assumed to be discrete-time, white
noise process so that no explicit noise modelling
is necessary, except in relation to the estimation
of the variance of the white noise process. This
approach involves a method of adaptive prefilter-
ing based on a quasi-optimal 3 statistical solution
to the problem in this white noise case.

The SRIVC algorithm is based on the assumption
that the additive noise ξ(tk) in (3) is simply a zero
mean, normally distributed, white noise process
e(tk): i.e. e(tk) = N(0, σ2). In this situation,
following the usual Prediction Error Minimization
(PEM) approach (which is Maximum Likelihood
(ML) estimation in the present situation because

3 The method is quasi-optimal because true optimality
would require optimal interpolation of the input signal
u(t) over the sampling interval, whereas only simple inter-
polation is used in the SRIVC implementation. However,
this normally produces very good, near optimal estimation
results.



of the Gaussian assumption on e(tk)), a suitable
error function ε(t) in continuous-time is given by
the output error (OE),

ε(t) = y(t)− B(s)
A(s)

u(t),

which can be written as,

ε(t) =
1

A(s)
[A(s)y(t)−B(s)u(t)] . (4)

Minimization of a least squares criterion function
in ε(tk), measured at the sampling instants, pro-
vides the basis for stochastic estimation. However,
since the polynomial operators commute in this
linear case, the filter F (s) = 1/A(s) can be taken
inside the square brackets to yield:

ε(t) = A(s)yf (t)−B(s)uf (t) (5)

or,

ε(t) = y
(n)
f (t) + a1y

(n−1)
f (t) + . . . + any

(0)
f (t)

− b0u
(m)
f (t)− . . .− bmu

(0)
f (t) (6)

where{
y
(i)
f (t) = fi(t) ∗ y(t), i = 0, . . . , n

u
(i)
f (t) = fi(t) ∗ u(t), i = 0, . . . , m,

(7)

The ∗ symbol denotes the convolution operator
and the set of filters takes the form

fi(t) = L−1
( si

A(s)

)
. (8)

where L−1 is the inverse Laplace transform. So
that, at the kth sampling instant t = tk, the
associated estimation model can be written in the
form:

y
(n)
f (tk) = φT

f (tk)θ + ε(tk) (9)

where φT
f (tk) and θ are defined as

φT
f (tk) = [− y

(n−1)
f (tk) · · · − y

(0)
f (tk)

u
(m)
f (tk) · · ·u(0)

f (tk)] (10)

θ = [a1 . . . an b0 . . . bm]T . (11)

Thus, provided we assume that A(s) is known
a priori, the estimation model (9) forms a basis
for the definition of a likelihood function and ML
estimation.

There are two problems with this formulation.
The most obvious one is, of course, that the A(s)
polynomial is not known a priori. The less obvious
one is that, in practical applications, we cannot as-
sume that the noise ξ(tk) will always be white: in
most applications it will be coloured. Both of these
problems can be solved by employing a similar
approach to that used first in the RIV algorithm
for DT system identification and estimation. Here,
a ‘relaxation’ optimization procedure is devised
that iteratively adjusts the unknown polynomials
in the TF model (2), as well as the estimate
of the instrumental variable, until they converge.

The instrumental variable at each iteration of the
algorithm is generated by the following auxiliary
model

x̂(t) =
B(s, θ̂IV

N )

A(s, θ̂IV
N )

u(t). (12)

where θ̂IV
N is the estimated parameter vector ob-

tained at the previous iteration of the algorithm.
The main steps in this algorithm are given in
Young (2002).

4. LATEST DEVELOPMENTS

4.1 Recursive implementation of the SRIVC
method

In many situations, we need to estimate the model
at the same time as the data is collected during
the measurement. The model is then “updated” at
each time instant some new data becomes avail-
able. The updating is performed by a recursive
algorithm for system identification. The SRIVC
method outlined above can easily be applied as
on-line algorithms in a recursive form and is now
available in the CONTSID toolbox.

4.2 SRIVC for MISO transfer function models

In DT model estimation, the approaches dedi-
cated to multiple transfer function model identifi-
cation combine either extensions of linear regres-
sion techniques like pseudo-linear, multi-linear re-
gression, instrumental variable, or non linear op-
timization techniques (Ljung, 1999). For the CT
case, to our knowledge, the only procedure devel-
oped to handle the MISO identification problem
was based on non linear optimization techniques
which minimize the output error. However, these
techniques may critically rely on a good initial pa-
rameter set to converge to the global minimum of
the cost function. The linear regression-based al-
gorithms offer an interesting solution to overcome
this drawback. However, the parameter estimation
procedures for MISO systems have usually been
developed by a straightforward extension of pro-
cedures devoted to SISO systems, which only al-
lows transfer function estimation with a common
denominator. Since this case is not very realistic
in many practical applications, a new method to
estimate MISO systems described by multiple CT
transfer functions with different denominators has
been recently developed (Huselstein et al., 2004).
The main idea is recalled here.

Consider a MISO CT linear time-invariant causal
system that can be described by




xi(tk) = Gi(s)ui(tk),
x(tk) =

∑nu

i=1 xi(tk),
y(tk) = x(tk) + ξ(tk),

(13)



where Gi(s) is the ith transfer function given by

Gi(s) =
Bi(s)
Fi(s)

=
bi,0 + bi,1s + · · ·+ bi,mi

smi

fi,0 + fi,1s + · · ·+ fi,ni
sni

,

(14)
fi,ni

= 1, ni ≥ mi, i = 1, . . . , nu,

and θi = [bi,mi
. . . bi,0 fi,ni−1 . . . fi,0]

T ∈ Rnsi ,
with nsi = ni + mi + 1, where ni and mi denote
the denominator and numerator orders of Gi(s)
respectively. Therefore, the sought parameter vec-
tor is

θ =
[
θT
1 . . . θT

nu

]T ∈ Rnp×1, (15)

with np =
∑nu

i=1 npi
.

The proposed method 4 aims at identifying MISO
model with different denominators for each input
(13), which is more realistic than assuming an
identical denominator for all transfer functions.
However, the model is no longer linear in the
parameters and the proposed MISO version of
SRIVC lies, therefore, in the domain of multi-
linear regression. The MISO model (13) can be
converted into nu SISO models as follows

v(tk, θ) = ξi,f (tk, θ)− xi,f (tk, θi) (16)

ξi,f (tk, θ) = yf (tk)−
nu∑

j=1,j 6=i

xj,f (tk, θj) (17)

The parameter vector θ is partitioned into classes
θ1, . . . , θnu such that the error is affine with re-
spect to the parameters of any of these classes
when the parameters of all others are fixed. It
is then possible to search for θ̂ by applying suc-
cessively the SISO version of the SRIVC to esti-
mate the parameters of each class in turn, with a
cyclic exploration of all classes. This is achieved by
following the same type of ‘relaxation’ procedure
described in Section 3.

A key point to be solved in the identification
procedure concerns the model order selection. The
method available for SISO systems based on the
properties of the instrumental product matrix (see
e.g. (Young, 2002)) has been extended to the
case of MISO systems for identifying the model
structure prior to parameter estimation.

4.3 RIVC method for identifying hybrid
Box-Jenkins models

If the noise ξ(tk) in the observation equation
(3) is coloured and described by an ARMA(p, q)
model, then the SRIVC method has no claim to
optimality in statistical terms. However, because
it inherently includes the IV mechanism, the es-
timates are consistent. Moreover, experience has

4 The approach is also available in the CAPTAIN Toolbox
for Matlab: http://www.es.lancs.ac.uk/cres/captain/

shown that the algorithm is very robust in practi-
cal application and normally yields estimates with
reasonable statistical efficiency (i.e. low but not
minimum variance). Nevertheless, it is worthwhile
extending the algorithm to the coloured noise case
by employing the hybrid approach adumbrated
above, where the noise modelling, as well as the
noise-derived parts of the prefiltering, are carried
out in discrete-time terms.

In general, following the normal approach to the
estimation of stochastic TF models, it makes sense
to assume that the discrete-time noise process
ξ(tk) in (3) has rational spectral density and so
can be described by an ARMA(p, q) process, i.e.,

ξ(tk) =
C(z−1)
D(z−1)

e(tk) e(tk) = N(0, σ2) (18)

where,

C(z−1) = 1 + c1z
−1 + ... + cpz

−p

D(z−1) = 1 + d1z
−1 + ... + dqz

−q

are, respectively, the Moving Average (MA) and
Autoregressive (AR) polynomials in the backward
shift operator, denoted here by z−r; i.e. z−ryk =
yk−r.

Following the approach used in the SRIVC case,
we need to consider a hybrid prefiltering opera-
tion involving both continuous and discrete-time
prefilters. In particular, since discrete-time noise
(18) is only associated with the definition of the
observation equation (3) and we are dealing with
a linear model, the prefiltering can be consid-
ered in these two stages: first, the continuous-
time prefiltering already described in the SRIVC
algorithm above; and second, discrete-time pre-
filtering based on the inverse of the ARMA(p, q)
noise model.

In order to explain this hybrid prefiltering, con-
sider the discrete-time sampled value ε(tk) of ε(t)
in (4). Introducing the ARMA(p, q) noise process
(18), the RIVC error function ε(tk), now defined
in discrete-time, can be written as,

ε(tk) =
D(z−1)
C(z−1)

ε(tk) (19)

where ε(tk) is given by (5) and the DT pre-
filter will be recognized as the inverse of the
ARMA(p, q) noise model. With this definition, the
estimation model takes a similar form to (9), i.e.:

y
(n)
f (tk) = φT

f (tk)θ + ε(tk) (20)

but the prefilters required in the definition of the
estimation model are obviously more complex, re-
quiring the practical implementation of the above
hybrid filtering operations. The main steps of the
full RIVC algorithm are outlined in Young et al.
(2006).



5. EXAMPLES OF THE NEW FEATURES

The new developments are illustrated with the
help of numerical examples in this section.

5.1 Recursive identification

The following example shows the recursive SRIVC
algorithm being used to identify a CT second
order SISO system without delay described by

x(t) =
4

s2 + 3s + 2
u(t),

y(tk) = x(tk) + ξ(tk).

The input signal stored in u is chosen as a PRBS
of maximum length. 2040 data points are used for
the identification. The sampling period is set to
10ms. ξ(tk) is chosen here as a zero-mean white
Gaussian noise which variance is adjusted to get
a signal-to-noise ratio of 20 dB. The simulated
output is stored in y.

Let us now recursively identify a CT model from
the sampled data z=iddata(y,u,Ts), by the recur-
sive version of optimal IV algorithm rsrivc. The
extra information needed are

• the number of parameters for the TF numer-
ator and denominator and number of sample
for the delay of the model stored in the vari-
able nn=[nb nf nk]=[1 2 0],

• lambda which is the cut-off frequency (in
rad/s) of the filter used to get an initial
parameter estimate (lambda=2).

The routine can now be used as follows:
[m,thm]=rsrivc(z,nn,lambda);

The final estimated model is stored in m and can
be displayed with: present(m)
which leads to:
CT IDPOLY model: y(t) = [B(s)/F(s)]u(t)

B(s) = 3.990

F(s) = s2 + 3.031 s + 2.004

Loss function 0.00089 and FPE 0.00089

Estimated using RSRIVC

The second output argument thm is a matrix
that contains the estimated model parameters at
the different samples. The estimated parameter
estimates can then be plotted as a function of
time, as displayed in Figure 1.

5.2 MISO transfer function identification

The following example shows the SRIVC algo-
rithm being used to identify a 2 inputs 1 output
system described by

x(t) =
4e−3Tss

s2 + 2s + 4
u1(t) +

e−5Tss

s2 + s + 1
u2(t),

y(tk) = x(tk) + ξ(tk).
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Fig. 1. RSRIVC estimates as a function of time

The two inputs stored in [u1 u2]are chosen as
uncorrelated PRBS of maximum length. The sam-
pling period is set to 10ms. ξ(tk) is chosen here as
a zero-mean white Gaussian noise which variance
is adjusted to get a signal-to-noise ratio of 10 dB.
The noisy output is stored in y.

Let us now identify a CT model from the sampled
data
z=iddata(y,[u1 u2],Ts), by the MISO version
of optimal IV algorithm srivc. The extra infor-
mation needed in this case are

• the number of parameters for the TF nu-
merators and denominators and numbers of
sample for the delays of the model stored in
nn=[nb1 nb2 nf1 nf2 nk1 nk2]=[1 1 2 2 3 5]

• lambda which is the cut-off frequency (in
rad/s) of the filter used to get an initial
parameter estimate (lambda=3).

The routine can now be used as follows:
m=srivc(z,nn,lambda);

The final estimated model is stored in m and can
be displayed with:
present(m)

which leads to:
CT IDPOLY model: y(t) = [B(s)/F(s)]u(t)

B1(s) = 4.08 (+-0.0786)

B2(s) = 0.9869 (+-0.0307)

F1(s) = s2 + 1.952 (+-0.0599) s + 3.906 (+-0.0750)

F2(s) = s2 + 1.002 (+-0.0552) s + 1.01 (+-0.0319)

Input delays (listed by channel): 0.03 0.05

Estimated using SRIVC

Loss function 0.00664518 and FPE 0.00670851

The figures in parentheses are the estimated stan-
dard deviation of the associated parameter esti-
mates. More illustration of the use of the MISO
SRIVC version can be obtained by executing
idcdemo3.

5.3 Hybrid Box-Jenkins model identification

This last example shows the RIVC algorithm
being used to identify the hybrid Box-Jenkins



model. The system and the simulation conditions
are identical to the ones used in Section 5.1. ξ(tk)
is now an AR(2) noise model given by

ξ(tk) =
1

1− q−1 + 0.2q−2
e(tk) (21)

where e(tk) is chosen here as a zero-mean white
Gaussian noise. The variance of ξ(tk) is adjusted
to get a signal-to-noise ratio of 10 dB. The full hy-
brid version of the optimal IV algorithm rivc can
then be used by specifying the extra information
needed in this case

• the number of parameters for the TF numer-
ator nb and denominator nf and number of
sample for the delay nk but also the number
of parameters for the AR model nd stored in
nn=[nb nf nk nd]=[1 2 0 2]

• lambda, the cut-off frequency of an all-pole fil-
ter used to get an initial parameter estimate
(lambda=2) 5 .

The routine can then be used as follows:
[m,D]=rivc(z,nn,lambda);

The estimated model stored in m can be displayed
CT IDPOLY model: y(t) = [B(s)/F(s)]u(t)

B(s) = 4.292

F(s) = s2 + 3.077 s + 2.198

Input delays (listed by channel): 0

Estimated using RIVC

Loss function 0.00259509 and FPE 0.00260274

The second output argument D is a vector that
contains the estimated AR model parameter
D(q−1) = 1 -1.0091q−1 + 0.2178q−2

6. DEVELOPMENT PLANS

The new developments outlined in this paper sig-
nificantly extend the practical application field of
the CONTSID toolbox. We plan in the near future
to concentrate on the following developments:

• writing of a user’s guide,
• implementation of several instrumental

variable based methods for identifying
continuous-time models of systems operating
in closed-loop (Gilson et al., 2004),

• implementation of a graphical user interface.
We are working on the development of an
easy-to-use interface which allows the user
to perform identification, data and model
analysis, as well as model validation by ”click
and mouse” operations.

5 The initiation of the rivc algorithm involves the selec-
tion of a suitable prefilter. The option chosen here is to
specify a suitable cut-off frequency of the filter. However
the default option uses the DT RIV algorithm to estimate
first a DT model which is then transformed to CT form
and provides automatically the required filter.
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