
Chapter 2
Refined Instrumental Variable Methods
for Hammerstein Box-Jenkins Models

Vincent Laurain, Marion Gilson, and Hugues Garnier

2.1 Introduction

Hammerstein block diagram model is widely represented for modelling nonlinear
systems [3, 6, 8, 26]. The nonlinear block can be represented as a piecewise linear
function [2] or as a sum of basis functions [7, 21].

Among the very recent work on discrete-time (DT) Hammerstein models in the
time domain, the most exposed methods are the extended least squares for Ham-
merstein ARMAX models [6] which were further extended to Hammerstein OE
models [7]. E.R Bai exposed a two stage algorithm involving least squares and sin-
gle value decomposition used in different configurations [3, 4, 19] and was very
recently analysed for Hammerstein Box-Jenkins models [28]. Nonetheless, the con-
vergence properties of the algorithm are studied but there was no study driven in
case of noise modelling error. Suboptimal Hammerstein model estimation in case of
a bounded noise was studied in [5]. A blind maximum likelihood method is derived
in [27] but the output signal is considered to be errorless.

In the continuous-time (CT) case, an exhaustive survey by Rao and Unbehauen
[25] shows that CT model identification methods applied to Hammerstein mod-
els are poorly studied in the literature. In [22], the authors focus on the time-
derivative approximation problems while solving the optimization problem using
least squares. A non-parametric method can be found in [14] while an approach
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dedicated to periodic input signals can be found in [33]. To the best of the authors’
knowledge, the parametric estimation problem has not been addressed yet for CT
Hammerstein models with colored added noise.

Section 2.2 shows how the refined instrumental variable (RIV) method intro-
duced in [29] can be extended in order to deal with Hammerstein BJ models. More-
over, the development of instrumental variable techniques able to cope with the
direct continuous-time model estimation in colored noise conditions are exposed in
Sect. 2.3. All presented methods are statistically analyzed through relevant Monte
Carlo simulations and the features of the proposed method are studied in the differ-
ent pre-cited contexts.

2.2 Discrete-Time Hammerstein Model Identification

2.2.1 System Description

Consider the Hammerstein system represented in Fig. 2.1 and assume that both input
and output signals, u(tk) and y(tk) are uniformly sampled at a constant sampling
time Ts over N samples. The Hammerstein system So, is described by the following
input-output relationship:

So

⎧
⎪⎨

⎪⎩

ū(tk) = f (u(tk)),

χo(tk) = Go(q)ū(tk),

y(tk) = χo(tk) + vo(tk),

(2.1)

where u and y are the deterministic input and noisy output respectively, χo is the
noise-free output and vo the additive noise with bounded spectral density. Go(q) is
the linear transfer function which can be written as

Go(q) = Bo(q
−1)

Ao(q−1)
, (2.2)

Fig. 2.1 Hammerstein block representation
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where Bo(q
−1) and Ao(q

−1) are polynomial in q−1 of degree nb and na respec-
tively:

Ao(q
−1) = 1 +

na∑

i=1

ao
i q

−i , and Bo(q
−1) =

nb∑

j=0

bo
j q

−j , (2.3)

where the coefficients ao
i and bo

j ∈ R. The most general case is considered where
the colored noise associated with the sampled output measurement y(tk) is assumed
to have a rational spectral density which might have no relation to the actual pro-
cess dynamics of So. Therefore, vo is represented by a discrete-time autoregressive
moving average (ARMA) model:

vo(tk) = Ho(q)eo(tk) = Co(q
−1)

Do(q−1)
eo(tk), (2.4)

where Co(q
−1) and Do(q

−1) are monic polynomials with constant coefficients and
with respective degree nc and nd. Furthermore, all roots of zndDo(z

−1) are inside
the unit disc. It can be noticed that in case Co(q

−1) = Do(q
−1) = 1, (2.4) defines an

OE noise model. It can be noticed that the same theory could be straightforwardly
used if some pure delay was present on the input but this case is not exposed here
for clarity’s sake.

2.2.2 Model Considered

Next we introduce a discrete-time Hammerstein Box-Jenkins (BJ) type of model
structure that we propose for the identification of the data-generating system (2.1)
with noise model (2.4). In the chosen model structure, the noise model and the
process model are parameterized separately.

2.2.2.1 Linear Part of the Hammerstein Model

The linear process model is denoted by LρL and is defined in a linear representation
form as:

LρL : (A(q−1, ρL),B(q−1, ρL)
)
, (2.5)

where the polynomials A and B are parameterized as

LρL

{

A(q−1, ρL) = 1 +
na∑

i=1

aiq
−i , and B(q−1, ρL) =

nb∑

j=0

bjq
−j .

The associated model parameters ρL are stacked columnwise:

ρL = [
a1 . . . ana b0 . . . bnb

]� ∈ R
na+nb+1. (2.6)
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Introduce also L = {LρL | ρ ∈ R
nρL }, as the collection of all process models in the

form of (2.5).

2.2.2.2 Nonlinear Part of the Hammerstein Model

The static nonlinearity model is denoted by FρNL and defined:

FρNL : (f (u,ρNL)) (2.7)

where f (u,ρNL) is parameterized as a sum of basis functions

f (u(tk), ρNL) =
l∑

i=1

αi(ρNL)γi(u(tk)). (2.8)

In this parametrization, {γi}li=1 are meromorphic functions1 of u(tk) which are
assumed to be a priori known. Furthermore, they have a static dependence on u, and
are chosen such that they allow the identifiability of the model (pairwise orthogonal
functions on R for example). The associated model parameters ρNL are stacked
columnwise:

ρNL = [
α1 . . . αl

]� ∈ R
l , (2.9)

Introduce also F = {FρNL | ρNL ∈R
l}, as the collection of all process models in the

form of (2.7).

Remark Note that the Hammerstein model (βf (u,ρNL),
G(q,ρL)

β
) produces the

same input-output data for any β . Therefore, to get a unique parametrization, the
gain of (βf (u,ρNL) or G(q,ρL)/β has to be fixed [1, 6]. Hence, the first coefficient
of the function f (.) is fixed to 1, i.e. α1 = 1 in (2.9).

2.2.2.3 Noise Model

The noise model denoted by H is defined as a linear time invariant (LTI) transfer
function:

Hη : (H(q,η)) , (2.10)

where H is a monic rational function given in the form of

H(q,η) = C(q−1, η)

D(q−1, η)
= 1 + c1q

−1 + · · · + cncq
−nc

1 + d1q−1 + · · · + dndq
−nd

. (2.11)

1f :Rn �→R is a real meromorphic function if f = g/h with g,h analytic and h �= 0.
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The associated model parameters η are stacked columnwise in the parameter vector,

η = [
c1 . . . cnc d1 . . . dnd

]� ∈ R
nη , (2.12)

where nη = nc + nd. Additionally, denote H = {Hη | η ∈ R
nη }, the collection of all

noise models in the form of (2.10).

2.2.2.4 Whole Hammerstein Model

With respect to a given nonlinear, linear process and noise part (FρNL ,LρL ,Hη),
the parameters can be collected as

θH = [ρ�
L ρ�

NL η� ], (2.13)

and the signal relations of the Hammerstein BJ model, denoted in the sequel as Mθ ,
are defined as:

MθH

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū(tk) =
l∑

i=1

αi(ρNL)γi(u(tk)),

A(q−1, ρL)χ(tk) = B(q−1, ρL)ū(tk),

v(tk) = C(q−1, η)

D(q−1, η)
e(tk),

y(tk) = χ(tk) + v(tk).

(2.14)

Based on this model structure, the model set, denoted as M, with the linear pro-
cess (LρL ), the nonlinearity (FρNL ) and noise (Hη) models parameterized indepen-
dently, takes the form

M = {
(FρNL ,LρL ,Hη) | col(ρNL, ρL, η) = θH ∈R

nρNL+nρL +nη
}
. (2.15)

2.2.2.5 Reformulation of the Model

The optimization problem is not convex in general. However, it can be clearly seen
from the parametrization (2.8) that the model (2.14) can be rewritten in order to
obtain a linear regression structure. By combining the first two equations in (2.14),
the model can be rewritten as:

MθH

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A(q−1, ρL)χ(tk) = B(q−1, ρL)

l∑

i=1

αi(ρNL)γi(u(tk)),

v(tk) = C(q−1, η)

D(q−1, η)
e(tk),

y(tk) = χ(tk) + v(tk),

(2.16)
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which can be expanded as (note that for clarity’s sake γi(u(tk)) is denoted ui(tk) in
the sequel)

MθH

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A(q−1, ρL)χ(tk) =
l∑

i=1

αi(ρNL)B(q−1, ρL)
︸ ︷︷ ︸

Bi(q
−1,ρNL,ρL)

γi(u(tk))
︸ ︷︷ ︸

ui(tk)

,

v(tk) = C(q−1, η)

D(q−1, η)
e(tk),

y(tk) = χ(tk) + v(tk).

(2.17)

Under these modelling settings, the nonlinearity model and the linear process
model can be combined into the process model, denoted by Gρ and defined in the
form:

Gρ : (A(q−1, ρ),Bi(q
−1, ρ)

)
, (2.18)

where the polynomials A and Bi are given by

Gρ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(q−1, ρ) = 1 +
na∑

i=1

aiq
−i ,

Bi(q
−1, ρ) = αi

nb∑

j=0

bjq
−j , i = 1 . . . l, α1 = 1.

The associated model parameters are stacked columnwise in the parameter vector ρ,

ρ =

⎡

⎢
⎢
⎢
⎣

a
α1b
...

αlb

⎤

⎥
⎥
⎥
⎦

∈R
nρ , a =

⎡

⎢
⎢
⎢
⎣

a1
a2
...

ana

⎤

⎥
⎥
⎥
⎦

∈R
na , b =

⎡

⎢
⎢
⎢
⎣

b0
b1
...

bnb

⎤

⎥
⎥
⎥
⎦

∈ R
nb+1, (2.19)

with nρ = na + l(nb + 1). Introduce also G = {Gρ | ρ ∈ R
nρ }, as the collection of all

process models in the form of (2.18). Finally, with respect to the given process and
noise part (Gρ,Hη), the parameters can be collected as θ = [ρ� η� ] and the signal
relations of the Hammerstein BJ model, denoted in the sequel as Mθ , are defined
as:

Mθ : y(tk) =
∑l

i=1 Bi(q
−1, ρ)ui(tk)

A(q−1, ρ)
+ C(q−1, η)

D(q−1, η)
e(tk), (2.20)

with Bi(q
−1, ρ) = αiB(q−1, ρ) and ui(tk) = γi(u(tk)). Based on this model struc-

ture, the whole model set including the process (Gρ ) and noise (Hη) models param-
eterized independently, is denoted as M and takes finally the form

M = {
(Gρ,Hη) | col(ρ, η) = θ ∈ R

nρ+nη
}
. (2.21)
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Fig. 2.2 Hammerstein augmented model

The set (2.21) corresponds to the set of candidate models in which we seek the
best fitting model using data gathered from So under a given identification criterion
(cost function).

Remarks It has to be noticed that this model transforms the Hammerstein struc-
ture into an augmented LTI Multi Input Single Output model structure such as pre-
sented in Fig. 2.2. Consequently, the number of parameters to be estimated is not
minimal as nρ = na + l(nb + 1) which is in general greater than nρL + nρNL =
na + l + (nb + 1). Therefore, as the model is not minimal, the optimal estimation
of this augmented MISO model does not correspond to the optimal estimates of the
true Hammerstein model. Nonetheless, the gain granted using this modelling is the
possible linear regression form and therefore, the convexification of the optimiza-
tion problem. In order to define the identification problem it is firstly necessary to
define a minimization criterion. Nonetheless, the augmented model structure given
in (2.20) is now an LTI structure, and therefore, the PEM framework from [20] can
be directly used here.

2.2.3 Identification Problem Statement

Based on the previous considerations, the identification problem addressed can now
be stated.

Problem 2.1 Given a discrete-time Hammerstein data generating system So de-
fined as in (2.1) and a data set DN collected from So. Based on the Hammerstein
BJ model structure Mθ defined by (2.20), estimate the parameter vector θ using DN

under the following assumptions:

HA1 So ∈ M, i.e. there exits a θo defining a Gρo ∈ G and a Hηo ∈ H such that
(Gρo ,Hηo) is equal to So.

HA2 u(tk) is not correlated to eo(tk).
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HA3 DN is informative with respect to M.
HA4 So is BIBO stable, i.e. for any bounded input signal u, the output of So is

bounded.

2.2.4 Refined IV for Hammerstein Models

The Hammerstein RIV (HRIV) method derives from the RIV algorithm for DT lin-
ear systems. This was evolved by converting the maximum likelihood estimation
equations to a pseudo-linear form involving optimal prefilters [29, 32]. A similar
analysis can be utilised in the present situation since the problem is very similar, in
both algebraic and statistical terms. The linear-in-the-parameters model (2.20) then
takes the linear regression form [31]:

y(tk) = ϕ�(tk)ρ + ṽ(tk), (2.22)

where ρ is as described in (2.19), ṽ(tk) = A(q−1, ρ)v(tk) and

ϕ(tk) =

⎡

⎢
⎢
⎢
⎣

−y(tk)

u1(tk)
...

ul(tk)

⎤

⎥
⎥
⎥
⎦

, y(tk) =
⎡

⎢
⎣

y(tk−1)
...

y(tk−na )

⎤

⎥
⎦ , ui(tk) =

⎡

⎢
⎣

ui(tk)
...

ui(tk−nb
)

⎤

⎥
⎦ .

Using the conventional PEM approach on (2.22) leads to the prediction error εθ (tk)

given as:

εθ (tk) = D(q−1, η)

C(q−1, η)

{

y(tk) −
l∑

i=1

Bi(q
−1, ρ)

A(q−1, ρ)
ui(tk)

}

, (2.23)

which can be written as

εθ (tk) = D(q−1, η)

C(q−1, η)A(q−1, ρ)

{

A(q−1, ρ)y(tk) −
l∑

i=1

Bi(q
−1, ρ)ui(tk)

}

, (2.24)

where the prefilter D(q−1, η)/C(q−1, η) will be recognised as the inverse of the
ARMA(nc, nd ) noise model. However, since the polynomial operators commute in
this linear case, (2.24) can be considered in the alternative form:

εθ (tk) = A(q−1, ρ)yf(tk) −
l∑

i=1

Bi(q
−1, ρ)uif(tk) (2.25)

where yf(tk) and uif(tk) represent the outputs of the prefiltering operation using the
filter:

Q(q, θ) = D(q−1, η)

C(q−1, η)A(q−1, ρ)
. (2.26)
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Therefore, from (2.25), the associated linear-in-the-parameters model then takes the
form:

yf(tk) = ϕ�
f (tk)ρ + ṽf(tk), (2.27)

where

ϕf(tk) =

⎡

⎢
⎢
⎢
⎣

−yf(tk)

u1f(tk)
...

ulf(tk)

⎤

⎥
⎥
⎥
⎦

, yf(tk) =
⎡

⎢
⎣

yf(tk−1)
...

yf(tk−na )

⎤

⎥
⎦ , uif(tk) =

⎡

⎢
⎣

uif(tk)
...

uif(tk−nb
)

⎤

⎥
⎦ , (2.28)

and ṽf(tk) = Q(q, θ)ṽ(tk) = e(tk) which is a white noise.
Therefore, according to the conditions for optimal IV estimates [30], the optimal

instrument and filter for the augmented LTI MISO model structure (2.20) depicted
in Fig. 2.2 are given as:

ζ opt(tk) = [−χo(tk−1) . . . −χo(tk−na) u1(tk) . . . u1(tk−nb
)

. . . ul(tk) . . . ul(tk−nb
)
]�

, (2.29)

and

Lopt(q) = Q(q, θo) = Do(q
−1)

Co(q−1)Ao(q−1)
. (2.30)

2.2.5 The Hammerstein RIV (HRIV) Algorithm for BJ Models

Of course none of A(q−1, ρo), Bi(q
−1, ρo), C(q−1, ηo) or D(q−1, ηo) is known

and only their estimates are available. Therefore, neither the optimal prefilter nor the
optimal instrument can be accessed and they can only be estimated. The ‘auxiliary
model’ used to generate the noise-free output as well as the computation of the
associated prefilter (2.26), are updated based on the parameter estimates obtained at
the previous iteration to overcome this problem.

Algorithm 2.1 (HRIV)

Step 1 Generate an initial estimate of the process model parameter ρ̂(0)(e.g. using
the LS method). Set C(q−1, η̂(0)) = D(q−1, η̂(0)) = 1. Set τ = 0.

Step 2 Compute an estimate of χ(tk) via

χ̂ (tk) =
∑l

i=1 Bi(q
−1, ρ̂(τ ))ui(tk)

A(q−1, ρ̂(τ ))
,

where ρ̂(τ ) is the estimate obtained at the previous iteration. According to
assumption HA4 each χ̂ is bounded.
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Step 3 Compute the filter as in (2.26):

L(q, θ̂ (τ )) = D(q−1, η̂(τ ))

C(q−1, η̂(τ ))A(q−1, ρ̂(τ ))

and the associated filtered signals {uif = γi(u)f}li=1, yf and {χ̂f}na,nα

i=1,l=0.

Step 4 Build the filtered regressor ϕf(tk) and the filtered instrument ζ̂f(tk) which
equal in the given context:

ϕf(tk) = [−yf(tk−1) . . . −yf(tk−na) u1f(tk) . . . u1f(tk−nb
)

. . . ulf(tk) . . . ulf(tk−nb
)
]�

,

ζ̂f(tk) = [−χ̂f(tk−1) . . . −χ̂f(tk−na) u1f(tk) . . . u1f(tk−nb
)

. . . ulf(tk) . . . ulf(tk−nb
)
]�

. (2.31)

Step 5 The IV optimization problem can be stated in the form

ρ̂(τ+1)(N) = arg min
ρ∈Rnρ

∥
∥
∥
∥
∥

[
1

N

N∑

k=1

ζ̂f(tk)ϕ
�
f (tk)

]

ρ −
[

1

N

N∑

k=1

ζ̂f(tk)yf(tk)

]∥
∥
∥
∥
∥

2

,

(2.32)
where the solution is obtained as

ρ̂(τ+1)(N) =
[

N∑

k=1

ζ̂f(tk)ϕ
�
f (tk)

]−1 N∑

k=1

ζ̂f(tk)yf(tk).

The resulting ρ̂(τ+1)(N) is the IV estimate of the process model associated
parameter vector at iteration τ +1 based on the prefiltered input/output data.

Step 6 An estimate of the noise signal v is obtained as

v̂(tk) = y(tk) − χ̂ (tk, ρ̂
(τ )). (2.33)

Based on v̂, the estimation of the noise model parameter vector η̂(τ+1) fol-
lows, using in this case the ARMA estimation algorithm of the MATLAB
identification toolbox (an IV approach can also be used for this purpose,
see [30]).

Step 7 If θ(τ+1) has converged or the maximum number of iterations is reached,
then stop, else increase τ by 1 and go to Step 2.

At the end of the iterative process, coefficients α̂i are not directly accessible. They
are however deduced from polynomial B̂i(q

−1) as Bi(q
−1, ρ) = αiB(q−1, ρ). The

hypothesis α1 = 1 guarantees that B1(q
−1, ρ) = B(q−1, ρ) and α̂i can be computed

from:

α̂i = 1

nb + 1

nb∑

j=0

b̂i,j

b̂1,j

, (2.34)
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where b̂i,j is the j th coefficient of polynomial term Bi(q
−1, ρ) for i = 2 . . . l.

Moreover, after the convergence is complete, it is possible to compute the esti-
mated parametric error covariance matrix P̂ρ from the expression:

P̂ρ = σ̂ 2
e

(
N∑

k=1

ζ̂f(tk)ζ̂
�
f (tk)

)−1

, (2.35)

where ζ̂ is the IV vector obtained at convergence and σ̂ 2
e is the estimated residual

variance.

Comments By using the described algorithm, if convergence occurs, the HRIV
estimates might be statistically optimal for the augmented model proposed, but the
minimal number of parameters needed for representing the MISO structure and the
Hammerstein structure are not equal. Consequently, the HRIV estimates cannot be
statistically optimal for the Hammerstein model structure. Nonetheless, even if not
optimal, the HRIV estimates are unbiased with a low variance as it will be seen in
the result Sect. 2.2.7.

2.2.6 HSRIV Algorithm for OE Models

A simplified version of HRIV algorithm named HSRIV follows the exact same the-
ory for estimation of Hammerstein output error models. It is mathematically de-
scribed by, C(q−1, ηj ) = Co(q

−1) = 1 and D(q−1, ηj ) = Do(q
−1) = 1. All pre-

vious given equations remain true, and it suffices to estimate ρj as θj = ρj . The
implementation of HSRIV is much simpler than HRIV as there is no noise model
estimation in the algorithm.

2.2.7 Performance Evaluation of the Proposed HRIV and HSRIV
Algorithms

This section presents numerical evaluation of both suggested HRIV and HSRIV
methods. For the presented example, the nonlinear block has a polynomial form,
i.e. γi(u(tk)) = ui(tk),∀i and the system to identify is given by

So

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ū(tk) = u(tk) + 0.5u2(tk) + 0.25u3(tk),

Go(q) = 0.5q−1 + 0.2q−2

1 + q−1 + 0.5q−2
,

Ho(q) = 1

1 − q−1 + 0.2q−2
,

where u(tk) follows a uniform distribution with values between −2 and 2.
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The models considered for estimation are:

MHRIV

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G(q,ρ) = b1q
−1 + b2q

−2

1 + a1q−1 + a2q−2
,

H(q,η) = 1

1 + d1q−1 + d2q−1
,

f (u(tk)) = u(tk) + α1u
2(tk) + α2u

3(tk)

(2.36)

for the HRIV method which fulfills [HA1] and

MHSRIV

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(q,ρ) = b1q
−1 + b2q

−2

1 + a1q−1 + a2q−2
,

H(q,η) = 1,

f (u(tk)) = u(tk) + α1u
2(tk) + α2u

3(tk)

(2.37)

for the HSRIV method which only fulfills Go ∈ G (Ho /∈ H ).
The result of a Monte Carlo simulation (MCs) analysis is shown in Table 2.1 and

the algorithms considered are: HRIV, HSRIV and LSQNONLIN. The LSQNONLIN
is a nonlinear optimization algorithm from the MATLAB� optimization toolbox. It
assumes the same model as the HRIV method (So ∈ M ) and hands out the statis-
tically optimal estimates if the method is properly initialized. In order to place the
LSQNONLIN method at its advantage, it is initialized with the true parameter values
and therefore this method can be considered as the ground truth.

The MCs results are based on Nrun = 100 random realization, with the Gaussian
white noise input to the ARMA noise model being selected randomly for each real-
ization. In order to compare the statistical performance of the different approaches,
the computed mean and standard deviation of the estimated parameters are pre-
sented. The noise added at the output is adjusted such that it corresponds to a Signal-
to-Noise-Ratio (SNR) of 5dB using:

SNR = 10 log

(
Pχ

Pvo

)

, (2.38)

where Pg is the average power of signal g. The number of samples is chosen as
N = 2000.

As expected, Table 2.1 shows that the proposed algorithms produce unbiased es-
timates of the Hammerstein model parameters. It can be further noticed that the stan-
dard deviation of the estimates remains low even under the unrealistic noise level
of 5 dB. Even though, the ratio between the HSRIV and HRIV estimate standard
deviation equals to 2. This can be logically explained by the fact that the HSRIV
algorithm assumes a wrong noise model and such result remains acceptable in prac-
tical applications. Finally it can be depicted that the HRIV provides the statistical
optimal estimates for the parameters which are not replicated inside the parameter
vector ρ, that is a1, a2, d1 and d2. Concerning the other coefficients the standard
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Table 2.1 Estimation results of the proposed algorithm

Method b0 b1 a1 a2 α1 α2 d1 d2

True value 0.5 0.2 1 0.5 0.5 0.25 −1 0.2

LSQNONLIN mean(θ̂ ) 0.4991 0.1983 0.9984 0.4992 0.5011 0.2512 −1.0004 0.2001

std(θ̂) 0.0159 0.0109 0.0114 0.0059 0.0187 0.0194 0.0224 0.0219

HSRIV mean(θ̂ ) 0.4992 0.1975 0.9944 0.4976 0.4956 0.2657 X X

std(θ̂) 0.0402 0.0471 0.0186 0.0071 0.1107 0.0999 X X

HRIV mean(θ̂ ) 0.5004 0.2009 0.9984 0.4992 0.5006 0.2487 −1.0011 0.2007

std(θ̂) 0.0193 0.0208 0.0114 0.0059 0.0384 0.0397 0.0224 0.0220

deviation is approximately multiplied by 2 but the absolute value remains accept-
able considering the level of noise added. It can be concluded that the presented
algorithms, even if not optimal in the Hammerstein case, constitute good candidates
for practical applications where the noise is unknown, and can be a strong help for
initializing optimal methods such as LSQNONLIN.

2.3 Continuous-Time Hammerstein Model Identification

Even if measured data are sampled, the underlying dynamic of a real system is con-
tinuous and direct continuous-time model identification methods regained interest in
the recent years [15]. The advantage of using direct continuous-time model identifi-
cation has been pointed out in many different contexts in the LTI framework [9–13,
15, 24]. Nonetheless, a survey by Rao and Unbehauen [25] shows that CT model
identification methods applied to Hammerstein models are poorly represented in
literature and only a few methods can be found. In [22], the authors focus on the
time-derivative approximation problems while solving the optimization problem us-
ing least squares. A non-parametric method can be found in [14] while an approach
dedicated to periodic input signals can be found in [33]. To the best of the authors’
knowledge, the parametric estimation problem has not been addressed yet for CT
Hammerstein models which focus with some colored added noise. Consequently,
this section presents an RIV algorithm for direct CT model identification for CT
Hammerstein models.

2.3.1 System Description

Consider the CT Hammerstein data generating system depicted in Fig. 2.3 corre-
sponding to the following input-output relationship:

So

⎧
⎪⎨

⎪⎩

ū(t) = fo(u(t)),

χo(t) = Go(d)ū(t),

y(t) = χ(t) + vo(t),

(2.39)
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Fig. 2.3 CT Hammerstein block representation

Fig. 2.4 Hybrid
Hammerstein block
representation

where

Go(d) = Bo(d)

Ao(d)
(2.40)

and Bo(d) and Ao(d) are polynomials in the differential operator d (dix(t) = dix(t)

dt i
)

of respective degree nb and na (na ≥ nb).
In terms of identification we can assume that sampled measurements of (y,u)

are available at a sampling time kTs > 0. Hence, we will denote the discrete time
samples of these signals as u(tk) = u(kTs), where k ∈ Z. The basic idea to solve
the noisy continuous-time (CT) modelling problem is to assume that the CT noise
process vo(t) can be written at the sampling instances as a discrete-time (DT) white
noise process filtered by a DT transfer function [16, 23]. The practically general
case is considered where the colored noise associated with the sampled output mea-
surement y(tk) is assumed to have a rational spectral density which might has no
relation to the actual process dynamics. Therefore, vo is represented by a discrete-
time autoregressive moving average (ARMA) model:

vo(tk) = Ho(q)eo(tk) = Co(q
−1)

Do(q−1)
eo(tk), (2.41)

where eo(tk) is a DT zero mean white noise process, q−1 is the backward time shift
operator, i.e. q−iu(tk) = u(tk−i ), and Co with Do are monic polynomials with con-
stant coefficients. This avoids the rather difficult mathematical problem of treating
sampled CT random process [9] and their equivalent in terms of a filtered piecewise
constant CT noise source (see [23]). Therefore, we will consider the Hammerstein
system represented in Fig. 2.4 where it is assumed that both input and output sig-
nals, u(t) and y(t) are uniformly sampled at a constant sampling time Ts over N

samples.
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Consequently, in terms of (2.41), the Hammerstein system So (2.39), is de-
scribed by the following input-output relationship:

So

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ū(t) = fo(u(t)),

χo(t) = Go(d)ū(t),

vo(tk) = Ho(q)e(tk),

y(tk) = χo(tk) + vo(tk).

(2.42)

This corresponds to a so-called Hammerstein hybrid Box-Jenkins system concept
already used in CT identification of LTI systems (see [16, 23, 31]). Furthermore, in
terms of (2.4), exactly the same noise assumption is made as in the classical DT
Box-Jenkins models [20].

2.3.2 Model Considered

2.3.2.1 Process Modelling

Similarly to the discrete-time case, by aiming at the convexification of the optimiza-
tion problem, the static nonlinearity model is modelled as the linear sum of basis
functions:

f (u(t), ρ) =
l∑

i=1

αi(ρ)γi(u(t)), α1 = 1 (2.43)

while the CT linear part can be parameterized such that:

χ(t) = G(d,ρ)ū(t) = B(d,ρ)

A(d,ρ)
f (u(t), ρ), (2.44)

with

A(d,ρ) = dna +
na∑

i=1

aid
na−i and B(d,ρ) =

nb∑

j=0

bjd
nb−j . (2.45)

Just as in the DT case, both equations (2.43) and (2.44) can be combined such
that:

χ(t) = B(d,ρ)

A(d,ρ)

l∑

i=1

αi(ρ)γi(u(t)) = 1

A(d,ρ)

l∑

i=1

αi(ρ)B(d,ρ)
︸ ︷︷ ︸

Bi(d,ρ)

γi(u(t))
︸ ︷︷ ︸

ui(t)

. (2.46)

Under these modelling settings, the nonlinearity model and the linear process
model can be combined into a process model, denoted by Gρ and defined in the
form:

Gρ : (A(d,ρ),Bi(d,ρ)) (2.47)
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where the polynomials A and Bi are parameterized as

Gρ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(d,ρ) = 1 +
na∑

i=1

aid
na−i ,

Bi(d,ρ) = αi

nb∑

j=0

bjd
nb−j , i = 1 . . . l.

The associated model parameters are stacked columnwise in the parameter vec-
tor ρ,

ρ =

⎡

⎢
⎢
⎢
⎣

a
α1b
...

αlb

⎤

⎥
⎥
⎥
⎦

∈R
nρ , a =

⎡

⎢
⎢
⎢
⎣

a1
a2
...

ana

⎤

⎥
⎥
⎥
⎦

∈R
na , b =

⎡

⎢
⎢
⎢
⎣

b0
b1
...

bnb

⎤

⎥
⎥
⎥
⎦

∈ R
nb+1, (2.48)

with nρ = na + l(nb + 1). Introduce also G = {Gρ | ρ ∈ R
nρ }, as the collection of all

process models in the form of (2.47).

2.3.2.2 Noise Model

The noise model being expressed in discrete-time, it is denoted by H and defined
as in the DT case (see Sect. 2.2.2.3) Additionally, denote H = {Hη | η ∈ R

nη}, the
collection of all noise models in the form of (2.10).

2.3.2.3 Whole Model

With respect to the given process and noise parts (Gρ,Hη), the parameters can be
collected as θ = [ρ� η� ] and the signal relations of the CT Hammerstein BJ model,
denoted in the sequel as Mθ , are defined as:

Mθ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

χ(t) =
∑l

i=1 Bi(d,ρ)ui(t)

A(d,ρ)
,

v(tk) = C(q−1, η)

D(q−1, η)
e(tk),

y(tk) = χ(tk) + v(tk),

(2.49)

with Bi(d,ρ) = αi(ρ)B(d,ρ) and ui(t) = γi(u(t)). Based on this model structure,
the model set, denoted as M, with the linear process (Gρ ) and noise (Hη) models
parameterized independently, takes the form

M = {
(Gρ,Hη) | col(ρ, η) = θ ∈ R

nρ+nη
}
. (2.50)
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Again, this set corresponds to the set of candidate models in which we seek the
best fitting model using data gathered from So under a given identification criterion
(cost function). The identification problem can be stated in the exact same way as in
the DT case (see Sect. 2.2.3).

Remarks It has to be noticed that, just as in the DT case, this model trans-
forms the Hammerstein structure into an augmented LTI Multi Input Single Out-
put model similarly to the DT case. Consequently, the number of parameters to be
estimated is not minimal as nρ = na + l(nb + 1) which is in general greater than
nρL + nρNL = na + l + (nb + 1). Therefore, as the model is not minimal, and there-
fore the optimal estimation of this augmented MISO model does not correspond to
the optimal estimates of the true Hammerstein model. Nonetheless, the gain granted
using this modelling is the possible linear regression form and therefore, the con-
vexification of the optimization problem.

2.3.3 Refined IV for CT Hammerstein BJ Models

Using the LTI model (2.49), y(tk) can be written in the regression form:

y(na)(tk) = ϕ�(tk)ρ + ṽ(tk), (2.51)

where

ϕ(tk) = [−y(na−1)(tk) . . . −y(tk) u
(nb)
1 (tk) . . . u1(tk) . . . u

(nb)
l (tk) . . . ul(tk)

]�

ρ = [
a1 . . . ana b0 . . . bnb . . . αlb0 . . . αlbnb

]�

and

ṽ(tk) = A(d,ρ)v(tk),

where x(n)(tk) denotes the sample of the nth derivative of the signal x(t) sampled
at time tk .

By driving the exact same discussion as in Sect. 2.2.4 it can be shown that the
optimal filtered instrument for the augmented LTI MISO model structure (2.49) is
given as:

ζ opt(tk) = [−χ
(na−1)
o (tk) . . . −χo(tk) u

(nb)
1 (tk) . . . u1(tk) . . . u

(nb)
l (tk) . . . ul(tk)

]�

(2.52)
while the optimal filter is given as the filter chain involving the continuous-time
filtering operation using the filter (see [31]):

L
opt
c = Qc(d,ρo) = 1

Ao(d)
, (2.53)
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and the discrete-time filtering operation using the filter:

L
opt
d = Qd(q, ηo) = Do(q

−1)

Co(q−1)
. (2.54)

2.3.4 Hammerstein RIVC (HRIVC) Algorithm for BJ Models

For space and redundancy’s sake the HRIVC algorithm is not described here, but
the interested reader can find a detailed algorithm in [18]. By using the HRIVC al-
gorithm, if convergence occurs, the HRIVC estimates might be statistically optimal
for the augmented model proposed, but the minimal number of parameters needed
for representing the MISO structure and the Hammerstein structure are not equal.
Consequently, the HRIVC estimates cannot be statistically optimal for the CT Ham-
merstein model structure. Nonetheless, even if not optimal, the HRIVC estimates
are unbiased with a low variance as it will be seen in the result Sect. 2.3.5. A sim-
plified version of HRIVC algorithm named HSRIVC follows the exact same theory
for estimation of Hammerstein output error models.

2.3.5 Performance Evaluation of the Proposed HRIVC and
HSRIVC Algorithms

This section presents numerical evaluation of both suggested HRIVC and HSRIVC
methods. For the presented example, the nonlinear block has a polynomial form, i.e.
γi(u(t)) = ui(t),∀i and

ū(t) = u(t) + 0.5u2(t) + 0.25u3(t), (2.55)

where u(t) follows a uniform distribution with values between −2 and 2. The sys-
tem is simulated using a zero-order-hold on the input.

The system considered is a hybrid Hammerstein Box-Jenkins model in which the
linear dynamic block is first a second-order system described by:

Go(d) = 10d + 30

d2 + d + 5
, (2.56)

and the noise is given by

Ho(q) = 1

1 − q−1 + 0.2q−2
.
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Table 2.2 Estimation results for different noise models

SNR Method b0 b1 a1 a2 α1 α2 d1 d2

True value 10 30 1 5 0.5 0.25 −1 0.2

15 dB HSRIVC mean(θ̂) 9.9957 29.8760 1.0001 4.9991 0.5026 0.2523 X X

std(θ̂) 0.3670 1.5660 0.0170 0.0436 0.0201 0.0180 X X

RMSE 0.0367 0.0523 0.0169 0.0087 0.0405 0.0723 X X

HRIVC mean(θ̂) 9.9906 30.0172 1.0006 5.0020 0.5008 0.2506 −1.0002 0.2005

std(θ̂) 0.2497 0.8954 0.0119 0.0265 0.0118 0.0115 0.0219 0.0223

RMSE 0.0250 0.0298 0.0119 0.0053 0.0236 0.0460 0.0218 0.1112

5 dB HSRIVC mean(θ̂) 10.0882 29.6146 1.0010 4.9814 0.5080 0.2604 X X

std(θ̂) 1.0764 4.4585 0.0517 0.1291 0.0610 0.0542 X X

RMSE 0.1079 0.1490 0.0517 0.0261 0.1230 0.2208 X X

HRIVC mean(θ̂) 10.049 30.0277 0.9998 4.9980 0.5015 0.2522 −0.9997 0.1994

std(θ̂) 0.7861 2.8278 0.0379 0.0871 0.0369 0.0366 0.0227 0.0219

RMSE 0.0787 0.0942 0.0378 0.0174 0.0738 0.1466 0.0227 0.1096

The models considered for estimation are:

MHRIVC

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G(d,ρ) = b0d + b1

d2 + a1d + a2
,

H(q,η) = 1

1 + d1q−1 + d2q−2
,

f (u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(2.57)

for the HRIVC method and

MHSRIVC

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(d,ρ) = b0d + b1

d2 + a1d + a2
,

H(q,η) = 1,

f (u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(2.58)

for the HSRIVC method.
The result of a Monte Carlo simulation (MCs) analysis is shown in Table 2.2

for the algorithms considered. The MCs results are based on Nrun = 500 random
realization, with the Gaussian white noise input to the ARMA noise model being
selected randomly for each realization. In order to compare the statistical perfor-
mance of the different approaches, the computed mean, standard deviation and Root
Mean Squared Error of the estimated parameters are presented. The noise added at
the output is adjusted such that it corresponds to a SNR of 15 dB and 5 dB. The
number of samples is N = 2000.

Table 2.2 shows that according to the theory, the HRIVC and HSRIVC methods
provide similar, unbiased estimates of the model parameters. Both methods seem to
be robust even at unrealistic noise level of 5 dB as the RMSE remain under 22% for
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both methods. Results obtained using the HRIVC algorithm, have standard devia-
tions which are always smaller than the ones produced by HSRIVC. Even though,
the HSRIVC algorithm based on an Output Error model is a reasonable alterna-
tive to the full HRIVC algorithm based on a Box-Jenkins model: in practice the
noise model cannot be exactly known and therefore the use of the HRIVC algorithm
would simply raise the number of parameters to be estimated. If the noise model is
correctly assumed, it is as well correctly estimated as shown in Table 2.2.

2.4 Conclusion

In this chapter, some methods dedicated to Hammerstein CT and DT nonlinear mod-
els in open-loop were investigated. Extension to the closed-loop case has been pub-
lished and can be found in [17]. Through a relevant set of examples, it was possible
to show that the HRIV approach is robust to noise conditions and to noise error
modelling. The presented methods are suboptimal as they estimate a larger number
of parameters than the minimum needed for the system description. Nonetheless,
the variance in the estimated parameters is acceptable in practical conditions, and if
not satisfactory, the estimates can be used as initialisation values for some optimal
method which usually are posed into some nonlinear optimization problems and of-
ten rely on some robust initialisation. The refined instrumental variable approach
for Hammerstein models remains an interesting estimation method for practical ap-
plications where the noise condition are unknown.
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