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Abstract: The purpose of this paper is to present some issues that arise when applying a
traditional continuous-time model identification technique to highly resonant systems over
a large bandwidth. A scheme based on the use of frequency localising basis functions to
improve the numerical conditioning of the identification problem is examined. Examples are
presented showing the superior performance of the proposed method when applied to wide-
band estimation problems.Copyright c© 2004 IFAC
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1. INTRODUCTION

Many mechatronic systems exhibit resonant behavior
(see for example Akcay and Ninness (1999), Mo-
heimani (2000)). Control of such systems typically
relies upon the availability of high precision models.
In principle, such models could be obtained from phe-
nomenological considerations but usually this type of
model is too complex to be accurately described using
physical parameters. Hence, one needs to obtain the
models using data collected from the system. How-
ever, several challenges arise including the fact that
the systems are highly resonant and the fact that the
model may be required over a wide frequency band.
These factors make the problem challenging.

This paper is aimed at examining the associated es-
timation problems for continuous-time systems. In
particular, we extend the frequency-domain method
of Welsh and Goodwin (2003) to the time-domain.
Comparison results with a traditional continuous-time
model identification method are also presented.

The remainder of the paper is organized in the follow-
ing way. Section 2 states the problem. The traditional

state-variable filter approach is reviewed in section 3.
The proposed new method is then described in sec-
tion 4. The performance of the proposed algorithm is
illustrated through a simulation example in section 5.
Section 6 presents the results of the identification of a
flexible robot arm. Finally, section 7 gives concluding
remarks.

2. PROBLEM STATEMENT

Consider a single-input single-output continuous-time
linear time-invariant causal system whose inputu(t)
and outputy(t) are related by a constant coefficient
differential equation of ordern

y(n)(t) + an−1y
(n−1)(t) + . . . + a0y

(0)(t) =

bmu(m)(t) + . . . + b0u
(0)(t) (1)

wherex(i)(t) denotes theith time-derivative of the
continuous-time signalx(t).

The system is assumed to be subject to an arbitrary set
of initial conditions



u0 =
[
u(0) u(1)(0) · · · u(m−1)(0)

]
,

y0 =
[
y(0) y(1)(0) · · · y(n−1)(0)

]
.

Equation (1) can also be written as

A(p)y(t) = B(p)u(t), (2)

with

B(p) = bmpm + · · ·+ b1p + b0,

A(p) = pn + an−1p
n−1 + · · ·+ a1p + a0, n ≥ m,

wherep is the differential operator,i.e.px(t) = dx(t)
dt .

The polynomialsA(p) and B(p) are assumed to be
relatively prime and the roots of the polynomialA(p)
are assumed to have negative real parts; the system
under study is therefore assumed to be asymptotically
stable. It is also assumed that the continuous-time
signalsu(t) and y(t) are sampled at a regular time
interval, Ts. The sampled signals will be denoted as
{u(tk); y(tk)}.
The identification problem can then be stated as fol-
lows: estimate the parameters of the differential equa-
tion model fromN sampled measurements of the in-
put and outputZN = {u(tk); y(tk)}N

k=1.

3. THE TRADITIONAL SVF APPROACH

There are two main time-domain approaches to es-
timate a continuous-time model from discrete-time
data. The first is to estimate from the sampled data,
an initial discrete-time model and then convert it into
a continuous-time model. The second approach con-
sists in identifying directly a continuous-time model
from the discrete-time data. In comparison with the
discrete-time counterpart, the direct method raises
several technical issues. Unlike the difference equa-
tion model, the differential equation model is not a
linear combination of the sampled process input and
output signals, i.e. it also contains time-derivative
terms which are not available as measurement data in
most practical cases.

Various types of methods have been devised to deal
with the need to reconstruct these time-derivatives.
Each method is characterized by specific advantages
such as mathematical convenience, simplicity in nu-
merical implementation and computation, physical
insight, accuracy, etc (Garnieret al., 2003b). The
CONtinuous-Time System IDentification (CONTSID)
toolbox has been developed on the basis of these
methods (Garnieret al., 2003a). One traditional ap-
proach that dates from the days of analog computers
(Young, 1964) is known as the state variable filter
(SVF) method. We begin by a short review of this
method with the objective to highlight the difference
with the newly proposed method.

3.1 Outline of the SVF approach

Consider the Laplace transform of the differential
equation defined in (1),

A(s)Y (s) = B(s)U(s) + C(s), (3)

with

C(s) = cn−1s
n−1 + · · ·+ c1s + c0 (4)

where s represents the Laplace variable andY (s)
and U(s) are the Laplace transforms ofy(t) and
u(t) respectively. The coefficientsci depend on the
unknown parametersai andbi as well as the unknown
initial conditions. Assume now that a filter has a
Laplace transformL(s) = 1/E(s). Applying this
filter to both sides of (3) yields

A(s)
E(s)

Y (s) =
B(s)
E(s)

U(s) +
C(s)
E(s)

, (5)

or

sn

E(s)
Y (s) +

n−1∑

i=0

ai
si

E(s)
Y (s) =

m∑

i=0

bi
si

E(s)
U(s) +

n−1∑

i=0

ci
si

E(s)
. (6)

The minimum-order SVF filter is typically chosen to
have the following form

L(s) =
1

E(s)
=

(
pn

s + pn

)n

(7)

wherepn is the breakpoint frequency. This latter quan-
tity can be chosen in order to emphasize the frequency
band of interest and it is advised, in general, to choose
it slightly larger than the bandwidth of the system
to be identified (Young, 1964). LetLk(s), for k =
0, 1, 2, . . . , n, be a set of filters defined as

Lk(s) =
sk

E(s)
=

(pn)nsk

(s + pn)n (8)

andlk(t) be their corresponding functions in the time-
domain. By using the filters defined in (8), (6) can be
rewritten as

(
Ln(s) + an−1Ln−1(s) + . . . + a0L0(s)

)
Y (s)

=
(
bmLm(s) + . . . + b0L0(s)

)
U(s)

+
(
cn−1Ln−1(s) + . . . + c0L0(s)

)
. (9)

In terms of time-domain signals, (9) can be written as

[Lny](t) + an−1[Ln−1y](t) + . . . + a0[L0y](t)
= bm[Lmu](t) + . . . + b0[L0u](t)

+cn−1ln−1(t) + . . . + c0l0(t) (10)

where

[Liy](t) = li(t) ∗ y(t)
[Liu](t) = li(t) ∗ u(t)

and∗ denotes the convolution operator. The filter out-
puts[Liy] and[Liu] will then provide time-derivatives
of the inputs and outputs in the bandwidth of interest,



which may be exploited for linear regression and other
parameter estimation techniques.

At time-instantt = tk, equation (10) can be rewritten
in standard linear regression form as

[Lny](tk) = φT (tk)θ (11)

where

φT (tk) =
[−[Ln−1y](tk) . . . − [L0y](tk)

[Lmu](tk) . . . [L0u](tk)
ln−1(tk) . . . l0(tk)

]
(12)

θ = [an−1 . . . a0 bm . . . b0 cn−1 . . . c0]T . (13)

Now, fromN samples of the input and output signals
observed at discrete timest1, . . . , tN , the least-squares
(LS)-based SVF estimates are given by

θ̂N =

[
N∑

k=1

φ(tk)φT (tk)

]−1 N∑

k=1

φ(tk) [Lny](tk).

The SVF technique can also be associated with a basic
instrumental variable (IV) method when the output
signal is contaminated with noise. This technique be-
longs to the six methods which have proven to exhibit
very good performance in extensive Monte Carlo sim-
ulation studies (Garnieret al., 2003b).

3.2 Implementation and numerical issues

Initial conditions. The SVF approach makes it possi-
ble to estimate the initial condition termsci along with
the model parameters. However, treating them as an
additional set of unknowns complicates the parameter
estimation. From (10), it can be seen that although
the initial condition terms do not vanish, the impulse
responses of the low-pass filters decay exponentially
provided the SVF filters are stable and hence become
insignificant quite quickly. Thus, if the SVF-based
algorithm is used with a large observation timeT , the
terms related to the initial conditions may be neglected
after a timeT0 = k0Ts. The estimation algorithm is
then applied over[T0, T ], whereT0 has to be chosen
comparable to the settling time of the filter (7). The
number of parameters to be estimated can, in this way,
be reduced substantially and this is advantageous with
regard to computation effort and numerical proper-
ties. Note however, that this is not recommended for
highly resonant wide-band systems since the transient
response of such systems (and therefore of the SVF
filter impulse responses) can be significant.

Digital implementation of the SVF filter. Since only
the sampled versions of the continuous-time signals
are available, the output of the state-variable filters
can only be computed from a discrete approximation
of these filters. This problem is well known and
should be treated in a proper manner since errors
generated by the digital implementation can have a
severe influence on the quality of the estimated model
(Chouet al., 1999). Using a control canonical form,

the state-space representations of the continuous-
time SVF filter can be either integrated by the
Runge-Kutta method or discretized by using an
appropriate method provided the intersample nature
of the continuous-time input signal is known. A high
sampling frequency is often required to obtain an
accurate simulation.

Numerical conditioning of the estimation problem.
The normal matrix can be identified in (3.1) as

R =
[∑N

k=1 φ(tk)φT (tk)
]
. If the normal matrix is

‘near singular’ then the solution for the least-squares
method becomes ill-conditioned. The condition num-
ber of the normal matrix is defined as

κ(R) =
λmax(R)
λmin(R)

(14)

where λmax(R) and λmin(R) denote the largest
and smallest singular values, respectively (Golub and
Loan, 1996). It is known that the relative error of the
solution,θ̂N , is proportional to the condition number
and it is therefore of interest to have the normal matrix
well conditioned (Gevers and Li, 1993). There are two
main reasons for the normal matrix to become ill-
conditioned, and hence lead to erroneous parameter
estimates:

• when the difference between the magnitude of
the diagonal elements becomes large, the identi-
fication becomes off balanced and the parameters
corresponding to the small elements are almost
negligible;

• when the rows of the normal matrix become
approximately aligned, the matrix will be close
to singular (ill-conditioned) which will cause the
estimation to ’blow up’.

The normal matrix formed using the traditional SVF
method is susceptible to extreme ill-conditioning
when the system is highly resonant over several
decades and/or when the system order is high and/or
when the data are rapidly sampled. Indeed, for a large
bandwidth, as the order of the system increases the
difference between the magnitude of the term with the
highest order and that of the term of the lowest order
increases dramatically. As a result, the last term in the
regression vector receives little information and the
normal matrix becomes ill-conditioned. One way to
improve the condition number of the normal matrix
consists in normalising the entries by the L2-norm
of the corresponding entry. This leads to a scaled
normal matrix with identical diagonal elements. The
parameters are then deduced from the known scaling
matrix after the least-squares estimation. This scaling
technique is used in all methods considered in this pa-
per. However, this scaling strategy is often insufficient,
as we will see in the examples, using the traditional
SVF-based approach for highly resonant wide-band
systems.



4. THE PROPOSED FLBF APPROACH

In this section we present a scheme to improve the
numerical conditioning of the estimation problem.
The proposed method consists of two steps. In the
first, the model is re-parameterised using frequency
localising basis functions (FLBF’s). This is equivalent
to filtering the measured input and output through
a bank of passband filters. Note that the proposed
method differs with the traditional SVF approach or
the scheme suggested by Johansson (1994) based on
a bank of low-pass filters and the approach taken by
Chouet al. (1999) based on a bank of all-pass filters.
The filtered input, filtered output and the impulse
responses of the passband filter are related by a linear
equation with constant coefficients of which can be
estimated using LS-type of techniques. Once these
coefficients have been determined, the parameters of
the original differential equation can be computed via
a linear transformation in the second step. Note that
the idea of using this kind of band-splitting filters was
first mentioned in Young (1970).

4.1 Outline of the FLBF approach

The basis functions that have been recently proposed
for wide-band frequency-domain identification, take
the following form (Welsh and Goodwin, 2003):

Fk(s) =
k∏

l=1

sk−1pk

s + pl
, k = 1, . . . , n. (15)

Let fk(t) be their corresponding functions in the time-
domain. Note that these filters have approximately
0dB gain in the range[pk−1, pk] for basis functionFk.
Outside of this range the gain decreases by at least20
dB per decade.

4.1.1. First step The model (5) is first parame-
terised as

A(s)
E(s)

= 1 +
n∑

l=1

a⊥l−1Fl(s) (16)

B(s)
E(s)

=
n∑

l=1

b⊥l−1Fl(s) (17)

C(s)
E(s)

=
n∑

l=1

c⊥l−1Fl(s) (18)

where

E(s) =
n∏

l=1

(s + pl) (19)

= sn + en−1s
n−1 + · · ·+ e0. (20)

With the new model parameterisation, (5) can be
rewritten as(

1 + a⊥n−1Fn(s)+ . . . + a⊥0 F1(s)
)
Y (s)

=
(
b⊥n−1Fn(s)+ . . . + b⊥0 F1(s)

)
U(s)

+
(
c⊥n−1Fn(s) + . . . + c⊥0 F1(s)

)
. (21)

In terms of time-domain signals, (21) can be written
as

y(t) + a⊥n−1[Fny](t)+ . . . + a⊥0 [F1y](t)

= b⊥n−1[Fn−1u](t)+ . . . + b⊥0 [F1u](t)

+c⊥n−1fn(t) + . . . + c⊥0 f1(t) (22)

where

[Fiy](t) = fi(t) ∗ y(t)
[Fiu](t) = fi(t) ∗ u(t).

The key point regarding these filters is that they are
non-zero essentially for only a small set of frequencies
that lie in their passband. Hence the least-squares
normal matrix will take on a near block diagonal form.
The filtered input, filtered output and the impulse
responses of the passband filter are again related by
a linear equation with constant coefficients denoted as
a⊥i , b⊥i , c⊥i , which are also be estimated by the least-
squares method.

At time-instantt = tk, equation (22) can be rewritten
in standard linear regression form as

y(tk) = ψT (tk)θ⊥, (23)

with

ψT (tk) =
[−[Fny](tk) . . . − [F1y](tk)

[Fn−1u](tk) . . . [F1u](tk)
fn(tk) . . . f1(tk)

]
(24)

θ⊥ =
[
a⊥n−1 . . . a⊥0 b⊥n−1 . . . b⊥0 c⊥n−1 . . . c⊥0

]T
.

(25)
Now, with N samples of the input and output signals,
the LS-based FLBF estimates are given by

θ̂⊥N =

[
N∑

k=1

ψ(tk)ψT (tk)

]−1 N∑

k=1

ψ(tk) y(tk). (26)

4.1.2. Second step The model parameterisation can
be easily expressed in terms of the original polynomi-
als by using the following transformation. Let

M l(s) = Fl(s)E(s) (27)

= ml
n−1s

n−1 + . . . + ml
l−1s

l−1, l = 1, . . . , n

wherel represents the order oflth basis function, then

a = Ma⊥ + e, b = Mb⊥, c = Mc⊥ (28)

wherea, b, c ande are the parameter vectors ofA(s),
B(s), C(s) andE(s) respectively,a⊥, b⊥ andc⊥ are
the vectors of parameters in (16) to (18) and

M =




m1
0 0 . . . 0

m1
1 m2

1

.. .
...

...
... 0

m1
n−1 m2

n−1 . . . mn
n−1




(29)



4.2 Remarks

The basis function representation given in (16) to (18)
is specifically for a strictly proper model. If the model
is bi-proper then the re-parameterisation forA(s) and
C(s) remain the same, however re-parameterisation
for B(s) becomes:

B(s)
E(s)

=
n∑

l=1

b⊥l−1Fl(s) +
b⊥n s

s + pn
(30)

wherepn is the high breakpoint frequency.
We have found that initial condition effects are im-
portant with the FLBF’s when they are utilized in the
time-domain. Hence inclusion of the termsc⊥i in the
parameter vector seems important in this case.
In the presence of a noisy output signal, the proposed
FLBF method can be associated to a basic IV algo-
rithm to reduce the LS estimation bias (see Garnieret
al. (2003b) for example).

5. SIMULATION EXAMPLE

Consider the identification problem of an8th order
highly resonant system that spans several decades of
frequency described by

G(s) =
1
α

4∑

k=1

bkω2
k(s + ω0)

(s2 + 2ζkωks + ω2
k)

(31)

where [b1, b2, b3, b4] = [1, 3, 1, 1], α = 1320
and ω0 = 225 rad/sec. This system is char-
acterized by four highly resonant modes with
[ω1, ω2, ω3, ω4] = [4, 40, 400, 4000] and
[ζ1, ζ2, ζ3, ζ4] = 0.0008× [10, 1, 1, 1].

A magnitude Bode plot of the true system is shown
in Figure 1 as a dash line. The system is excited by
an aperiodic multisine of25 logarithmically spaced
frequencies with starting and end frequency at2 and
6000 rad/sec respectively which spans the entire fre-
quency range of the system. No noise was added to
both input/output signals for this comparison. The
time window for observation is fixed at4 s and the
sampling frequency is set to50 × max(ωu) rad/sec.
This large value has been chosen in order to minimize
the numerical errors in the digital simulation of the
continuous-time filtering. The model was then esti-
mated using the following methods:

(1) LS-based SVF method with filter breakpoint fre-
quencypn = 4000 chosen equal to the highest
natural frequency of the system;

(2) LS-based FLBF method with breakpoint fre-
quencies chosen logarithmically spaced between
2rad/sec and2×the highest natural frequency of
the system.

Note that the initial condition terms were estimated
along with the transfer function parameters in both
SVF and FLBF methods. Table 1 compares the condi-
tion number of the normal matrix for the two methods.

Method Condition number
SVF 1.4e+14

FLBF 4120

Table 1. Condition number for the two
compared LS-based methods

In each of the estimation methods, we utilised the QR
factorisation (Golub and Loan, 1996) to improve the
numerical properties of the least-squares routines. It
may be noticed from Table 1 that the condition number
for the LS-based SVF method is much poorer than
the LS-based FLBF method. Note furthermore that
the estimated LS-based SVF model is unstable. The
magnitude Bode plot is nevertheless plotted for com-
parison purposes. Figure 1 compares the magnitudes
of the estimated frequency responses with that of the
true system. It is observed that the LS-based FLBF
method provides a very good model fit.
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Fig. 1. Magnitude Bode of the LS-based SVF and
FLBF estimates for the8th order system.

6. REAL DATA FROM A ROBOT ARM

In this section, we consider the modelling of a flexible
robot arm based on experimental data1 . The input is
the controlled torque applied to the vertical axis at
one end of the arm, while the output is the tangential
acceleration of the other end. The excitation signal
was a multisine. The sampling period was set to2 ms.
Measurements were made using anti-alias filters. The
data set consisted of10 periods each of length4096
were exactly measured. The process and experiment
are described in more detail in Kollaret al. (1994).

For the estimation algorithm, the numerator and de-
nominator orders of the transfer function have to be
given. From the empirical transfer function estimate
(Kollar et al., 1994), it may be noticed that the system
has at least two complex pole pairs and two complex
zero pairs. The best results have been obtained here for
a 5/5 transfer function model. The process identifica-
tion is performed with the IV-based SVF and FLBF al-

1 The authors are most grateful to Istvan Kollar for kindly provid-
ing access to the data.
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Fig. 2. Bode plot for the estimated model

gorithms on the fifth period data set. As in the simula-
tion example case, the traditional SVF-based method
was not able to estimate a reasonable model from this
data. The Bode plot for the estimated FLBF-based
model is displayed in Figure 2. It may be noticed
that the resonant mode around40 rad/sec is slightly
more damped than in the case of the estimated models
discussed in Kollaret al. (1994). Figure 3 compares
the simulated model output (dotted line) with the mea-
sured output (full line), over a short interval of0.6
seconds of the7-th period data set. It may be seen that
the simulated output matches the measured data quite
well, with a coefficient of determination of0.95.
Remark: The authors acknowledge that other re-
searchers have been able to obtain excellent fits by us-
ing frequency domain approaches (Kollaret al., 1994).
We are only able to state that the proposed time-
domain FLBF method appears to give a reasonable
model while the traditional SVF technique fails with
this data.
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Fig. 3. Cross-validation results for the robot arm

7. CONCLUSIONS

In this paper we have extended a recently proposed
frequency-domain identification technique based on
the use of frequency localising basis functions to
the time-domain. This method is aimed at improving
the numerical conditioning of least-squares estimation
problem. The performance of the proposed approach
has been compared with a traditional continuous-time
model identification method using a simulation exam-
ple and real data from a flexible robot arm.
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