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The CONTSID Toolbox: A Software Support
for Data-based Continuous-time Modelling

Hugues Garnier!, Marion Gilson', Thierry Bastogne! and Michel Mensler?

1 Nancy-Université, CNRS, France
2 Direction de la Recherche, Etudes Avancées, Matériaux - Renault, France

9.1 Introduction

This chapter describes the continuous-time system identification (CONTSID)
toolbox for MATLAB®, which supports continuous-time (CT) transfer func-
tion and state-space model identification directly from regularly or irregularly
time-domain sampled data, without requiring the determination of a discrete-
time (DT) model. The motivation for developing the CONTSID toolbox was
first to fill in a gap, since no software support was available to serve the cause
of direct time-domain identification of continuous-time linear models but also
to provide the potential user with a platform for testing and evaluating these
data-based modelling techniques. The CONTSID toolbox was first released
in 1999 [15]. It has gone through several updates, some of which have been
reported at recent symposia [11,12,16]. The key features of the CONTSID
toolbox can be summarised as follows:

e it supports most of the time-domain methods developed over the last thirty
years [17] for identifying linear dynamic continuous-time parametric mo-
dels from measured input/output sampled data,

e it provides transfer function and state-space model identification methods
for single-input single-output (SISO) and multiple-input multiple-output
(MIMO) systems, including both traditional and more recent approaches;
it can handle irregularly sampled data in a straightforward way;
it may be seen as an add-on to the system identification (SID) toolbox for
MATLAB® [26]. To facilitate its use, it has been given a similar setup to
the SID toolbox;

e it provides a flexible graphical user interface (GUI) that lets the user anal-
yse the experimental data, identify and evaluate models in an easy way.

The chapter is organised in the following way. Section 9.2 outlines the main
steps of the procedure for direct continuous-time model identification. An
overview of the identification tools available in the toolbox is given in Sec-
tion 9.3. An introductory example to the command mode along with a brief
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description of the GUI are then presented in Section 9.4. In Section 9.5, the ad-
vantages of CT model identification approaches are discussed and illustrated.
A few successful application results from real-life process data are described
in Section 9.6. Finally, Section 9.7 presents conclusions of the chapter and
highlights future developments for the toolbox.

9.2 General Procedure for Continuous-time Model
Identification

The procedure to directly determine a continuous-time model of a dynamical
system directly from observed time-domain input/output data is similar to
the general approach used for traditional DT model identification and involves
three basic ingredients:

the time-domain sampled input/output data;

a set of candidate models (the model structure);

a criterion to select a particular model in the set, based on the information
in the data (the parametric model estimation method).

The identification procedure consists then in repeatedly selecting a model
structure, computing the best model in the chosen structure, and evaluat-
ing the identified model. More precisely, the iterative procedure involves the
following steps:

1. Design an experiment and collect time-domain input/output data from
the process to be identified.

2. Examine the data. Remove trends and outliers, and select useful portions
of the original data.

3. Select and define a model structure (a set of candidate system descrip-
tions) within which a model is to be estimated.

4. Estimate the parameters in the chosen model structure according to the
input/output data and a given criterion of fit.

5. Examine the finally estimated model properties.

If the model is good enough, then stop; otherwise go back to Step 3 and try
another model set. Possibly also try other estimation methods (Step 4) or
work further on the input/output data (Steps 1 and 2).

As described in the following section, the CONTSID toolbox includes tools
for applying the general data-based modelling procedure summarised above.

9.3 Overview of the CONTSID Toolbox

9.3.1 Parametric Model Estimation

The CONTSID toolbox offers a variety of parametric model estimation meth-
ods for the most common input/output and state-space model structures.
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CT ARX Models

The CT autoregressive with external input (ARX) model structure considered
here, takes the form

A(p)y(te) = B(p)u(ty — 7) + e(tr) (9.1)

with
B(p) =b1p™ 4 bop™ 2 4 - + by, , (9.2)
Alp) =p" +arp™ T+ an,, na =1 (9-3)

where p denotes the differential operator; u(t) and y(¢x) represent the deter-
ministic input and noisy output signals at time instant tx, respectively; e(ty)
is a zero-mean DT white Gaussian sequence® with variance o2; 7 is a pure
time delay in time units. The latter will be assumed in the following to be an
integer number related to the sampling time T, i.e., 7 = t,, = niTs. Note
however that this is not essential in this CT environment, ‘fractional’ time
delays can be introduced if required (e.g., see Chapter 11 and [27,49]).

The CT ARX model structure, when the time delay is supposed to be an
integer multiple of the sampling period, is denoted in the SISO case by the
triad [n,y np nl.

Here, the integers n, and ny, are the number of parameters to be estimated in
each polynomial while ny is the number of delays from input to output. Note
that (9.1) also applies in a straightforward manner to the multiple-input case,
with n,, input channels

A(p)y(tk) = Bl(p)ul(tk—nkl) +...+ Bnu (P)Unu (tk—"knu) + e(tk) (94)
The CT MISO ARX model structure is denoted by [na np, ...np, Ny - .. Nk, ]-

Equation (9.1) can also be explicitly written as
y("a)(tk) + aly(na_l)(tk:) + -+ anay(tk) =
B D (b )+ byt ) +e(t)  (9.5)

where () (t;,) denotes the ith time derivative of the continuous-time signal
z(t) at time instant ¢, = k7.

It may be noted that in contrast to the difference-equation model, the
differential-equation model (9.5) is not a linear combination of samples of
only the measurable process input and output signals. It also contains time-
derivative terms that are not available as measurement data in most practical
cases. The general scheme for CT ARX model estimation then requires two
stages [17]:

3 The disturbance term is modelled here as a zero-mean discrete-time Gaussian
noise sequence. This avoids mathematical difficulties associated with continuous-
time stochastic process modelling (see, e.g., [1] and Chapter 2).
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e the primary stage that consists in using a preprocessing method to generate
some measures of the process signals and their time derivatives. This stage
also includes finding an approximating or discretizing technique so that
the preprocessing operation can be performed in a purely digital way from
sampled input/output data;

e the secondary stage in which the CT parameters are estimated within the
framework of a LS or IV-based linear regression methods. Most of the well-
known LS or IV-based methods developed for DT parameter estimation
can be extended to the CT case with slight modifications.

Therefore, the main difference from conventional DT ARX model identifica-
tion lies in the primary stage. There is a range of choice for the preprocess-
ing required in the primary stage. Each method is characterised by specific
advantages such as mathematical convenience, simplicity in numerical imple-
mentation and computation, physical insight, accuracy and others. However,
all perform some prefiltering on the process signals. Process signal prefiltering
is indeed a very useful and important way to improve the statistical efficiency
in system identification and yields lower variance of the parameter estimates.
Preprocessing methods developed over the last thirty years are traditionally
grouped into three main classes of methods that are summarised below. The
main references that have been used as the basis for their implementation
along with their acronym used in the toolbox, are also given (see [17]):

o for the linear filters: the state-variable filter (SVF) [52] and the generalised

Poisson moment functionals (GPMF) [18,42];

o for the modulating functions: the Fourier [34] and Hartley modulating

functions (HMF) [43];

e for the integral methods:

— among the numerical integration methods: the block-pulse functions
(BPF) [9], the trapezoidal-pulse functions (TPF) [9] and the Simpson’s
rule of integration (SIMPS) [7];

— among the orthogonal functions: the Fourier trigonometric functions
(FOURIE) [33], the Walsh functions (WALSH) [8], for the orthogonal
polynomials: Hermite (HERMIT) [33], Laguerre (LAGUER) [33], Leg-
endre (LEGEND) [33], first and second kind of Chebychev polynomials
(CHEBY1 and CHEBY?2) [32];

— among the others methods: the linear integral filter (LIF) [39] and the
re-initialised partial moments (RPM) [35].

Several parameter estimation algorithms associated with all implemented pre-
processing techniques are available for identifying CT ARX models of the form
of (9.1) or (9.5). First, conventional least squares (LS)-based methods have
been implemented. In order to overcome the bias problem associated with
simple LS-based estimation in the presence of noisy output data, a two-step
instrumental variable (IV) estimator where the instruments are built up from
an auxiliary model, has also been coupled with all available preprocessing



9 The CONTSID toolbox for MATLAB® 253

Table 9.1. Available methods for CT ARX model identification

Preprocessing LS v BCLS WLS
methods SISO MISO SISO MISO SISO SISO
linear SVF v v v v
filters GPMF v v v v v
modulating FMF v v v v v v
functions HMF v v v v v
specific RPM v v v v
LIF v v v v
. BPF v v
.numerlc.al TPF v v
integration
SIMPS v v
integral  orthogonal FOURIE Vv v
methods  functions WALSH v
CHEBY1 V v
CHEBY2 Vv v
orthogonal ‘pyppyip v
polynomials
LAGUER V v
LEGEND Vv v

techniques [17]. A few specific bias-reduction algorithms are also included,
like a weighted least squares (WLS) associated with the modulating func-
tions or a bias-compensating least squares (BCLS) technique coupled with
the GPMF approach [19]. For details on the different parametric estimation
methods for the CT ARX model identification, the reader is referred to [17].
Table 9.1 lists the methods available in the CONTSID toolbox for SISO and
MISO CT ARX model identification. The performances of the sixteen pre-
filtering methods mentioned above have been thoroughly analysed by Monte
Carlo simulation. Simulation [17,30] and real-life [28] studies have shown that
integral methods (this does not include the RPM and LIF techniques) can
have quite poor performances in the presence of medium to high measure-
ment output noise. In particular, they require the estimation of additional
initial condition parameters and have a high sensitivity to their user param-
eters. However, six of the methods exhibit very good overall performance:
these are based on linear filters (GPMF and SVF), on modulating functions
(FMF and HMF), and on the two particular types of integral methods (LIF
and RPM). The final choice for a particular approach will probably depend
on the taste or experience of the user since their global performances are very
close. It is, therefore, not necessary to be able to tell which of the approaches
is ‘best’. Experience says that each may have its advantages. It is, however,
good practice to have them all in one’s toolbox. Furthermore, these methods
can be used to get an initial high-quality estimate for iterative parametric
estimation methods, presented in the next paragraphs.
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CT Hybrid OE Models

The so-called CT hybrid output-error (OE) model structure is given by

y(tr) = ?ggu(tk_m) + e(tr) (9.6)
with
F(p) =p" + fip™ 4ot foy, np>mp—1 (9.7)

where the noise e(ty) is assumed to be a zero-mean DT white Gaussian se-
quence so that no explicit noise modelling is necessary, except in relation to
the estimation of the variance of the DT white noise process.

The CT hybrid OE model structure is denoted in the SISO case by the triad
[nb nf nk].

Here, the integers np and nf are the number of parameters to be estimated
in each polynomial ; ny is the number of delays from input to output. For a
multiple-input systems, (9.6) becomes

y(te) = 5 (p) Uy (ti—ny, ) + oo+ Bn, (p)

Fi(p) F..,(p)

The CT hybrid MISO OE model structure 1is denoted by
[I’lb1 <o Npy, N NE Ny ...nknu].

Un,, (th—ny, ) + e(tr) (9-8)

Two methods for identifying MISO OE structure-based models with different
denominators are available in the toolbox.

The first is based on the iterative simplified refined instrumental variable
method for continuous-time model identification (SRIVC: see Chapter 4). This
approach involves a method of adaptive prefiltering based on an optimal sta-
tistical solution to the problem in this white noise case. This SRIVC method
has been recently extended to handle MISO systems described by multiple
CT transfer functions with different denominators [13] of the form of (9.8). It
is important to mention that for day-to-day usage, the SRIVC algorithm pro-
vides a quick and reliable approach to CT model identification and has been
used for many years as the algorithm of choice for this in the CAPTAIN tool-
box?* and, more recently, in the CONTSID toolbox. The application results
of the SRIVC method to different real-life processes are further presented in
this chapter.

The second method abbreviated by COE (continuous-time output error) im-
plements the Levenberg-Marquardt or Gauss—Newton algorithm via sensitiv-
ity functions [38]. In contrast to LS- and IV-based methods, these algorithms
rely on a numerical search procedure with a risk to get stuck in local minima
and also require a larger amount of computation.

4 See http://www.es.lancs.ac.uk/cres/captain/.
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Table 9.2. Available methods for CT hybrid OE and BJ model identification

OF Bi

Methods sre5—11S0 SISO
COE v 7

SRIVC v v

RIVC v

CT Hybrid BJ Models

The so-called CT hybrid Box—Jenkins (BJ) model structure in the SISO case
is given by

y(ty) = ﬁggu(m_m T gggl;ew (9.9)

with
Clg ) =1+cqg "+ +cuq? (9.10)
D(g ') =1+dig '+ +dyq” (9.11)

where e(tx) is a zero-mean DT white Gaussian sequence. Here, the model of
the basic dynamic system is in continuous time, while the associated additive
noise model is a discrete-time, autoregressive moving-average (ARMA)
process (see Chapter 4). This CT hybrid BJ model structure is denoted by
the following model order structure [np nc ng ng nJ.

One of the main advantage of the CT hybrid BJ model is the asymptotic inde-
pendence of the process and noise estimates. An approach based on the refined
optimal IV, denoted by RIVC, has been derived to estimate the parameters
of such models (see Chapter 4).
Table 9.2 lists the methods available in the CONTSID toolbox for CT hybrid
OE and BJ model identification.

CT State-space Models

Continuous-time state-space models considered in the CONTSID toolbox take
the form

{i‘(tk) = Ax(ty,) + Bu(ty) (9.12)

y(tr) = Cz(ty) + Du(ty) + &(tr)

where u(tg) € R™ is the input vector and y(t;) € R™ the output vector and
x(tr) € R™ is the state vector at time tx, £(tx) € R™ is the possibly coloured
output noise vector.



256 H. Garnier et al.

Table 9.3. Available methods for CT state-space model identification

Canonical model Fully parameterised model
LS I\Y BCLS N4SID
GPMF v v v v
FMF v
HMF v
RPM v
LIF v

Two types of approaches for CT state-space model identification are avail-
able in the CONTSID toolbox. A first family of techniques relies on the a
priori knowledge of structural indices, and considers the estimation of CT
canonical state-space models. From the knowledge of the observability in-
dices, the canonical state-space model can, in a straightforward way, be first
transformed into an equivalent input—output polynomial description that is
linear-in-its-parameters and therefore more suitable for the parameter esti-
mation problem. A preprocessing method may then be used to convert the
differential equation into a set of linear algebraic equations in a similar way to
that for CT ARX type of models. The unknown model parameters can finally
be estimated by LS-, IV- or BCLS-based algorithms [18,20]. This scheme has
been implemented for the GPMF approach only.

A second class of state-space model identification schemes is based on the
subspace-estimation techniques. Most efficient data-based modelling methods,
discussed so far, rely on iterative, non-linear optimisation or IV-type methods
to fit parameters in a preselected model structure, so as to best fit the observed
data. Subspace methods are an alternative class of identification methods that
are ‘one-shot’ rather than iterative, and rely on linear algebra.

Moreover, these subspace methods are attractive since canonical forms are not
required, while fully parameterised state-space models are estimated directly
from sampled I/O data. Most commonly known subspace methods were de-
veloped for DT model identification [44]. The association of the more efficient
preprocessing methods with subspace methods of the 4SID family [44] has
been implemented in the toolbox [4,29] (see also Chapter 10 in this book).
Table 9.3 summarises the methods available in the CONTSID toolbox for CT
state-space model identification.

The application results of the GPMF-based subspace algorithm to a multiple-
input multiple-output winding process are presented in Section 9.6.3.

9.3.2 Model Order Selection and Validation

The toolbox also includes tools for selecting the model orders as well as for
evaluating the estimated model properties.
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Model Order Selection

Model order selection is one of the difficult tasks in the system identification
procedure. A natural way to find the most appropriate model orders is to
compare the results obtained from model structures with different orders and
delays. A model order selection algorithm associated to the SRIVC model es-
timation method allows the user to automatically search over a whole range of
different model orders. T'wo statistical measures are then used for the analysis.
The first is the simulation coefficient of determination R%, defined as follows

R =1- Zg (9.13)
)

where o2 is the variance of the estimated noise é(t;) and 05 is the variance
of the measured output y(¢;). This should be differentiated from the stan-
dard coefficient of determination R?, where the ¢ in (9.13) is replaced by
the variance of the final noise model residuals 62. R% is clearly a normalised
measure of how much of the output variance is explained by the deterministic
system part of the estimated model. However, it is well known that this mea-
sure, on its own, is not sufficient to avoid overparametrisation and identify a
parsimonious model, so that other order identification statistics are required.
In this regard, because the SRIVC method exploits optimal instrumental vari-
able methodology, it is able to utilise the special properties of the instrumental
product matrix (IPM) [45,53]; in particular, the YIC statistic [47] is defined
as follows
VIC — log, o + log, (NEVN}; NEVN = L §° 2 9.14
- Oge O_g + Oge{ }7 - nﬂi_zl 912 ( . )

Here, ng is the number of estimated parameters; p;; is the ith diagonal element
of the block-diagonal SRIVC covariance matrix and so is an estimate of the
variance of the estimated uncertainty on the ith parameter estimate. 62 is
the square of the ith SRIVC parameter estimate, so that the ratio p;;/ 0? isa
normalised measure of the uncertainty on the ith parameter estimate.

From the definition of R%, we see that the first term in the YIC is simply
a relative measure of how well the model explains the data: the smaller the
model residuals, the more negative the term becomes. The normalised error
variance norm (NEVN) term, on the other hand, provides a measure of the
conditioning of the IPM, which needs to be inverted when the IV normal
equations are solved (see e.g., [46]): if the model is overparameterised, then
it can be shown that the IPM will tend to singularity and, because of its ill-
conditioning, the elements of its inverse will increase in value, often by several
orders of magnitude. When this happens, the second term in the YIC tends
to dominate the criterion function, indicating overparametrisation.

Although heuristic, the YIC has proven very useful in practical identification
terms. It should not, however, be used as a sole arbiter of model order: rather



258 H. Garnier et al.

the combination of R% and YIC provides an indication of the best parsimo-
nious models that can be evaluated by other standard statistical measures
(e.g., the autocovariance of the model residuals, the cross-covariance of the
residuals with the input signal u(tx), etc.). Also, within a ‘data-based mech-
anistic’ (DBM) model setting (see, e.g., [48]), the physical interpretation of
the model can often provide valuable information on the model adequacy:
for instance, a model with complex eigenvalues caused by overparametrisa-
tion may prove incompatible with the non-oscillatory nature of the physical
system under study.

The CONTSID toolbox includes a srivestruc routine that allows the user
to automatically search over a range of different orders by using the SRIVC
algorithm and computes the two loss functions YIC and R%. The in-line help
specifies the required input parameters for the srivecstruc function

data=iddata(y,u,Ts);
V=srivcstruc(data, [] ,modstruc);

The routine collects in a matrix modstruc all the CT hybrid OE
model to be investigated so that each row of modstruc is of the type
[Mb, -+ Nb,, Nf ... N, Nig ... Ny, ], where np, and ng, are the number of param-
eters for the numerator and denominator, respectively, and ny; represents the
number of samples for the delay. Then, a continuous-time model is fitted to
the iddata set data for each of the structures in modstruc. For each of these
estimated models, the two loss functions YIC and R% are computed from this
estimation data set. The best model structures sorted according to the chosen
criterion (‘YIC’ or ‘RT2’) are displayed with

selcstruc(V,criterion,nu);

where nu indicates the number of inputs. The application results of this model
order selection procedure are illustrated further in this chapter.

Experiment Design, Model Validation and Simulation

In addition to the parameter estimation and model order determination rou-
tines, the toolbox provides several functions in order to generate excitation
signals, simulate and examine CT models (see Table 9.4).

A few functions are available to generate excitation signals: prbs allows the
design of a pseudo-random binary signal of maximum length, while sineresp
returns the exact steady-state response of a continuous-time model for a sum
of sine signals.

Simulated data can then be generated by using the function simc that allows
the simulation of a CT model under an idss or idpoly format from a given
iddata input object from regularly or irregularly sampled data.

Two functions are available for model validation purposes: comparec displays
the measured output with the identified model output, while residc plots
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the auto-covariance function of the model residuals and the cross-covariance
function of the residuals with the input signal.

Note that most of the functions included in the SID toolbox for the computa-
tion and presentation of frequency functions and zeros/poles (bode, zpplot)
can be used with the identified CONTSID models.

The main demonstration program called idcdemo provides several examples
illustrating the use and the relevance of the CONTSID toolbox approaches.
These demos also illustrate what might be typical sessions with the CONTSID
toolbox.

Table 9.4. CONTSID toolbox programs for experiment design, model simulation,
order selection and validation

Program Description

idcdemo is the main routine for the CONTSID toolbox demonstration programs

prbs generates a pseudo-random binary sequence of maximum length

sineresp generates the exact steady-state response of a CT model for a sum of
sine signals

sinerespl generates the exact steady-state response of a CT first-order model for
a sine given arbitrary initial conditions

sineresp2 generates the exact steady-state response of a CT second-order model
for a sine given arbitrary initial conditions

simc simulates a system under its CT idpoly or idss form

comparec compares measured and model outputs

residc computes and plots the residuals of a CT model. Plots the autocovari-
ance function of the model residuals, the cross-covariance function of
the residuals with the input signal

srivcstruc computes the fit between simulated and measured outputs for a set
of model structure of CT hybrid OE type estimated using the srivc
method

selcstruc helps to choose a model structure from the information obtained as the
output from srivcstruc

Recursive Estimation

In many situations, there is a need to estimate the model at the same time as
the data is collected during the measurement. The model is then ‘updated’ at
each time instant some new data become available. The updating is performed
by a recursive algorithm. Recursive versions RLSSVF, RIVSVF and RSRIVC
of the LS, IV-based SVF methods and optimal IV technique for CT hybrid
OE models are available in the CONTSID toolbox.
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Identification from Non-uniformly Sampled Data

The problem of system identification from non-uniformly sampled data is of
importance as this case occurs in several applications (see, e.g., Chapter 11).
The case of irregularly sampled data is not easily handled by discrete-time
model identification techniques, but as illustrated further in this chapter (see
Sections 9.4.1 and 9.6.2), mild irregularity can be easily handled by some
of the CONTSID toolbox methods. This is because the differential-equation
model is valid whatever the time instants considered and, in particular, it does
not assume regularly sampled data, as required in the case of the standard
difference-equation model.

Table 9.5 lists the functions available for data-based modelling from irregularly
sampled data.

Table 9.5. Available functions for CT model identification from irregularly sampled
data

Program Description
LSSVF LS-based state-variable filter method for CT ARX models
IVSVF IV-based state-variable filter method for CT ARX models

COE  non-linear optimisation method for CT hybrid OE models
SRIVC optimal instrumental variable method for CT hybrid OE models

SIDGPMF subspace-based generalised Poisson moment functionals method for CT
state-space models

9.4 Software Description

The CONTSID toolbox is compatible with MATLAB® versions 6.x and 7.x.
Two external commercial toolboxes are required: the Control toolbox and
the SID toolbox. The current version can be considered as an add-on to the
SID toolbox and makes use of the iddata, idpoly and idss objects used in
the SID toolbox. It is freely available for academic researchers and can be
downloaded from

http://www.cran.uhp-nancy.fr/contsid/

All available parametric model estimation functions share the same command
structure

m
m

function(data,modstruc)
function(data,modstruc,specific_parameters)

The input argument data is an iddata object that contains the output-
and input-data sequences along with the sampling time and inter-sample be-
haviour for the input, while modstruc specifies the particular structure of the
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model to be estimated. The specific parameters depend on the preprocessing
method used. The resulting estimated model is contained in m, which is a
model object that stores the various usual information. The function name
is defined by the abbreviation for the estimation method and the abbrevia-
tion for the associated preprocessing technique, as for example, IVSVF for
the instrumental variable-based state-variable filter approach or SIDGPMF
for subspace-based state-space model identification GPMF approach.

Note that help on any CONTSID toolbox function may be obtained from the
command window by invoking classically help name_function.

9.4.1 Introductory Example to the Command Mode

A part of the first demonstration program is presented in this section. This
demo is designed to get the new user started quickly with the CONTSID
toolbox: it is straightforward to run the demo by typing idcdemol in the
MATLAB® command window) and follow along. This example considers a
second-order SISO CT system without delay. The complete equation for the
data-generating system has the following form

y(t) u(ty) + e(tr) (9.15)

PP +4p+3
where e(t1,) is a zero-mean DT white Gaussian noise sequence. Let us first cre-
ate an idpoly model structure object describing the model. The polynomials
are entered in descending powers of the differential operator

mO=idpoly(1,[3],1,1,[1 4 3],’Ts’,0);

‘Ts’ and 0 indicate here that the system is time continuous.
We take a PRBS of maximum length with 1016 points as input u. The sam-
pling period is chosen to be 0.05 s

u = prbs(7,8);
Ts = 0.05;

We then create an iddata object for the input signal with no output, the input
u and sampling interval Ts. The input inter-sample behaviour is specified by
setting the property ’Intersample’ to ’zoh’ since the input is piecewise-
constant here

datau = iddata([],u,Ts,’InterSample’,’zoh’);

The noise-free output is simulated with the simc CONTSID routine and stored
in ydet. We then create an iddata object with output ydet, input u and
sampling interval Ts

ydet = simc(m0,datau);
datadet = iddata(ydet,u,Ts,’InterSample’,’zoh’);
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We then identify a CT ARX model for this system from the determinis-
tic iddata object datadet with the conventional least squares-based state-
variable filter (1ssvf) method. The extra pieces of information required are

e the number of denominator and numerator parameters and number of
samples for the delay of the model [n,n,n,] =[2 1 0];
e the cut-off frequency (in rad/s) of the SVF filter, set to 2 here.

The 1ssvf routine can now be used as follows
mlssvf = lssvf(datadet,[2 1 0],2)
which leads to®

CT IDPOLY model: A(s)y(t) = B(s)u(t) + e(t)
A(s) = s + 3.999 s + 2.999

B(s) 2.999

Estimated using LSSVF

Loss function 6.03708e-15 and FPE 6.07284e-15

It will be noted that, not surprisingly, the estimated model coefficients are very
close to the true parameters. This is, of course, because the measurements are
not noise corrupted. Note that even in the noise-free case, the true parameters
are not estimated exactly here. This is due to small simulation errors intro-
duced in the numerical implementation of the continuous-time state-variable
filtering for the output signal.

Let us now consider the case when a white Gaussian noise is added to the
output samples. The variance of e(¢y) is adjusted to obtain a signal-to-noise
ratio (SNR) of 10 dB. The SNR is defined as

P,
SNR = 10log —%&=t (9.16)
P
where P, represents the average power of the zero-mean additive noise on the
system output (e.g., the variance) while P, , denotes the average power of
the noise-free output fluctuations.

snr=10;
y = simc(m0,datau,snr);
data = iddata(y,u,Ts);

The input/output data are displayed in Figure 9.1. The use of this noisy out-
put in the basic 1ssvf routine will inevitably lead to biased estimates. A
bias-reduction algorithm based on the two-step instrumental variable tech-
nique where the instruments are built up from an auxiliary model (ivsvf)
can be used instead

® Note that in the Matlab® System Identification (SID) toolbox, the variable ’s’
instead of 'p’ is used to denote the differential operator. The CONTSID toolbox
makes use of the SID object models ; therefore the CONTSID estimated models
are displayed with the ’s’ variable.
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Fig. 9.1. Input—output data (noisy case) — SNR=10 dB

mivsvf=ivsvf(data,[2 1 0],2)
which leads to

CT IDPOLY model: A(s)y(t) = B(s)u(t) + e(t)
A(s) = s? + 3.988 s + 3.076

B(s) = 3.008

Estimated using IVSVF

Loss function 0.217742 and FPE 0.219032

It will be noted now that the parameters are close to the true ones. However,
this basic IV-based SVF method suffers from two drawbacks, even if it is
asymptotically unbiased:

e it requires the a priori knowledge of a user parameter: the cut-off frequency
of the SVF filter here;

e it is suboptimal, in the sense that the variance of the estimates is not
minimal (it depends of the SVF filter mainly).

It is better, therefore, to use the optimal (in this white output measurement
noise context) iterative IV method (srivc) that overcomes the two latter
drawbacks. The searched model now takes the form of a CT hybrid OE model
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Fig. 9.2. Noisy and simulated SRIVC model outputs

(9.6). The model structure becomes [n,ngni] =[1 2 0].
The srivc routine can now be used as follows

msrivc = srivc(data,[1 2 0]);

The estimated parameters together with the estimated standard deviations
can be displayed

present (msrivc) ;
which leads to

CT IDPOLY model: y(t) = [B(s)/F(s)]u(t) + e(t)
B(s) = 3.002 (+-0.1113)

F(s) = s? + 3.992 (+-0.1619) s + 3.067 (+-0.1061)
Estimated using SRIVC

Loss function 0.0135763 and FPE 0.0136567

Let us now compare the model output for the input signal with the measured
output. This can be done easily by using the comparec CONTSID routine

comparec(data,msrivc,1:1000) ;

which plots the measured and the simulated model outputs. As can be seen
in Figure 9.2, they coincide very well. We can also check the residuals of this
model, and plot the autocovariance of the residuals and the cross-covariance
between the input and the residuals by using the CONTSID residc routine

residc(data,msrivc);
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Fig. 9.3. Correlation test for the SRIVC model

From Figure 9.3, it may be seen that the residuals are white and totally
uncorrelated with the input signal. We can thus be satisfied with the model.
Let us finally compare the Bode plots of the estimated model and the true
system

bode (msrivc,’sd’,3,°fil1l’ ,m0,’y--’)

The confidence regions corresponding to three standard deviations are also
displayed. From Figure 9.4, it may be observed that the Bode plots coincide
very well with narrow confidence regions.

As previously mentioned, non-uniformly sampled data can be handled easily
by some CONTSID toolbox methods [21]. This is now illustrated here. The
data-generating system has the following form

5

y(te) =
The input signal is chosen as the sum of three sines,

u(t) = sin(0.714¢) + sin(1.428¢) + sin(2.142t)
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Fig. 9.4. Bode plot of the SRIVC model together with a 3 standard deviation
uncertainty region

A non-uniform sampling setup similar to the one used in [23] is chosen. The
distance between two sampling instants is denoted by hy = tg4+1 — tx. We
assume that b < hy < h, where h > 0 and h are the finite lower and upper
bounds, respectively. A uniform probability density function U(h,h) is used
to describe the variations of the sampling interval, i.e., hy ~ U(0.01s,0.1s).
3000 data points are used for the identification. Analytic expressions are used
to compute the noise-free output in order to avoid errors due to numerical
simulations. A zero-mean white noise is then added to the system output in
order to get a signal-to-noise ratio of 10 dB. The simulated output is stored in
y. Figure 9.5 displays a short section of 3 s of the sampled records and reveals
the non-uniform sampling intervals.

We first create a iddata object with output y, input u, and the available time
instant stored in the vector t. The input inter-sample behaviour is specified by
setting the property ’Intersample’ to ’foh’ since the input is not piecewise-
constant here

data = iddata(y,u,[],’SamplingInstants’,t,’InterSample’,’foh’);

The optimal IV algorithm srivc can now be used for the appropriate model
structure
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Fig. 9.5. A section of the noisy output, input signal and sampling interval value in
the case of irregularly sampled data — SNR=10 dB

msrivc=srivc(data,[1 2 0]);

The estimated parameters and standard errors can then be displayed with
present (msrivc) ;

which leads to

Continuous-time IDPOLY model:

y(t) = [B(s)/F(s)]u(t)

B(s) 4.958 (+-0.0909)

F(s) = s2 + 2.796 (+-0.05637) s + 3.994 (+-0.05056)
Loss function 0.1748 and FPE 0.1752

Estimated using SRIVC

The estimated parameters are very close to the true ones.
As previously, traditional model validation tests can be performed to further
examine the quality of the estimated model.

9.4.2 The Graphical User Interface

The graphical user interface (GUI) for the CONTSID toolbox provides a main
window, as shown in Figure 9.6, which is divided into three basic parts:
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Fig. 9.6. The main window of the CONTSID GUI

e a data panel on the left part where data-sets can be imported, plotted,
pretreated and selected;

e a model estimation panel in the middle where CT ARX and CT hybrid OE
transfer function model structures and associated parameter estimation
methods can be tested;

e a model validation panel in the right part where basic properties of the
identified model can be examined.

The CONTSID GUI can be started by typing contsidgui in the MATLAB®
command window.

The Data Panel

As shown in Figure 9.6, the GUI lets the user define two data-sets: one for iden-
tifying the model and one, if sufficient data are available, for cross-validation
purposes.

Importing Measured Data

By clicking on the Load data button, time-domain sampled data from a .mat
file can be imported for systems with single- or multiple- input and single-
output channels. From this window, the input and output variables can be
specified along with the type of sampling scheme (regular or irregular), the
sampling time (Ty) and the assumption on the input inter-sample behaviour
(piecewise-constant (zoh) or continuous).
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Preprocessing and Selecting Observed Data

After the data have been imported, basic operations for data analysis and
preprocessing can be applied. An example of the window obtained after a
click on the button Plot & select data is displayed in Figure 9.7. This window
also allows the preprocessing of data including offset, drift removal and the
display of the results after the operation.

It is often the case that the whole data record is not directly suitable for
identification. This is mainly for two reasons:

the data-sets include erroneous values that it is essential to eliminate;

e if only one data-set is available, it is advisable to divide the data-set into
two parts, the first for model estimation purposes and the second reserved
for cross-validation purposes.

The Cursor selection button allows the insertion of two vertical axes on the
output plot that can be used to define the selected portion of measured data.
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Model Estimation Panel

While the CONTSID toolbox supports transfer function and state-space
model identification methods, the GUI lets the user estimate CT ARX and
hybrid OE models only. The user is thus invited to choose the type of model
structure in the unrolling menu at the top right of the model estimation panel,
as shown in Figure 9.6.

After selecting the model structure, the user has to specify the polynomial
orders and the time delay of the model to be estimated.

A first option is to deduce an estimate of the number of samples for the time
delay from an estimation of the impulse response by correlation analysis.
Then, if the TF model orders are not known a priori, the Order search button
allows the user to automatically search over a whole range of different model
orders. The user can choose several available criteria to sort and display the
estimation results in the MATLAB® workspace. From these results, the user
can select the best model orders and then set the order of the final model to
be estimated by clicking on the Order set button from the main window.
Once the number of samples for the time delay and the number of coefficients
for the polynomial model have been set, the model parameters can then be
estimated by using one of the available parametric estimation methods chosen
from an unrolling menu

e in the case of a CT hybrid OE model structure, the user can choose to use
the continuous-time output error (COE) method or the simplified refined
instrumental variable (SRIVC) method;

e in the case of a CT ARX model structure, the user can select one of
the six preprocessing-based methods that have proven successful. These
preprocessing methods are coupled with conventional least squares or basic
auxiliary model-based instrumental variable methods. These all require a
user parameter to be specified by the user [17] which should be chosen in
order to emphasise the frequency band of interest.

Once the parameter estimation method is chosen, the identified model is dis-
played in the command window after a click on the Parameter estimation
button.

Model Validation Panel

Once a model is estimated, it appears in the drop-down menu located at the
top part of the Model Validation panel (see Figure 9.6). Several basic model
properties can then be evaluated from an unrolling menu by using first the
data that were used for model identification

e model-output comparison: plots and compares the simulated model output
with the measured output. This indicates how well the system dynamics
are captured;
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restdual plot: displays the residuals;
transient response: displays the model response to an impulse or step ex-
citation signal;

e frequency response: displays the Nyquist or Bode plots to show damping
levels and resonance frequencies;

e zeros and poles: plots the zeros and poles of the identified models and tests
for zero-pole cancelation indicating overparameterised modelling;

e correlation test: displays the autocovariance function of the residuals and
the cross-covariance function between the input signal and the residuals.

If a cross-validation data-set is available, then traditional cross-validation tests
consist of comparisons between the measured and simulated model outputs
and analysis of the residuals.

9.5 Advantages and Relevance of the CONTSID Toolbox
Methods

There are two fundamentally different time-domain approaches to the prob-
lem of obtaining a CT model of a naturally CT system from its sampled
input/output data:

e the indirect approach that involves two steps. First, a DT model for the
original CT system is obtained by applying the DT model estimation meth-
ods and the DT model is then transformed into CT form;

e the direct approach where a CT model is obtained straightaway using CT
model identification methods discussed in this chapter.

The indirect approach has the advantage that it uses well-established DT
model identification methods [24,41]. Examples of such methods, which are
known to give consistent and statistically efficient estimates under very gen-
eral conditions, are gradient-optimisation procedures, such as the maximum
likelihood and prediction error methods in the SID toolbox; and iterative, re-
laxation procedures, such as the refined instrumental variable (RIV) method
in the CAPTAIN toolbox.

On the surface, the choice between the two approaches may seem trivial.
However, some recent studies have shown some serious shortcomings of the
indirect route through DT models. Indeed, an extensive analysis aimed at
comparing direct and indirect approaches has been discussed recently. The
simulation model used in this analysis provides a very good test for CT and
DT model estimation methods: it was first suggested by Rao and Garnier [36]
(see also [17,37,38]); further investigations by Ljung [25] confirmed the results.
This example illustrates some of the well-known difficulties that may appear
in DT modelling under less standard conditions such as rapidly sampled data
or relatively wide-band systems:
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e relatively high sensitivity to the initialisation. DT model identification of-
ten requires computationally costly minimisation algorithms without even
guaranteeing convergence (to the global optimum). In fact, in many cases,
the initialisation procedure for the identification scheme is a key factor
to obtain satisfactory estimation results compared to direct methods (see,
e.g., [50] for a recent reference);

e numerical issues in the case of fast sampling because the eigenvalues lie
close to the unit circle in the complex domain, so that the model param-
eters are more poorly defined in statistical terms;

a priori knowledge of the relative degree is not easy to accommodate;

e non-inherent data prefiltering in the gradient-based methods (adaptive

prefiltering is an inherent part of the DT RIV method in CAPTAIN).

Further, the question of parameter transformation between a DT description
and a CT representation is non-trivial. First, the zeros of the DT model are
not as easily translatable to CT equivalents as the poles [2]; second, due to the
discrete nature of the measurements they do not contain all the information
about the CT signals. To describe the signals between the sampling instants
some additional assumptions have to be made, for example, assuming that the
excitation signal is constant between the sampling intervals (zero-order hold
assumption). Violation of these assumptions may lead to severe estimation
errors [40].

The advantages of direct CT identification approaches over the alternative
DT identification methods can be summarised as follows:

e they directly provide differential-equation models whose parameters can
be interpreted immediately in physically meaningful terms. As a result,
they are of direct use to scientists and engineers who most often derive
models in differential-equation terms based on natural laws and who are
much less familiar with ‘black-box’ discrete-time models;
they can estimate a fractional time-delay system,;
the estimated model is defined by a unique set of parameter values that
are not dependent on the sampling interval T;

e there is no need for conversion from discrete to continuous time, as required
in the indirect route based on initial DT model estimation;

e the direct continuous-time methods can easily handle the case of mild
irregularity in the sampled data;

e the a priori knowledge of the relative degree is easy to accommodate and
therefore allows the identification of more parsimonious models than in
discrete time;

e they also offer advantages when applied to systems with widely separated
modes;

e they include inherent data filtering;
they are well suited in the case of very rapid sampling. This is particularly
interesting since modern data-acquisition equipment can provide nearly
continuous-time measurements and, therefore, make it possible to acquire
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data at very high sampling frequencies. Note that, as mentioned in [25], the
use of prefiltering and decimation strategies may lead to better results in
the case of DT modelling, but these may not be so obvious for practitioners.
The CONTSID toolbox methods are free of these difficulties.

All these advantages will facilitate for the user the application of the gen-
eral data-based modelling procedure. In the following, these advantages are
illustrated with the help of a simulated benchmark system.

The SYSID’2006 Benchmark System

Here, the performance of the CONTSID toolbox techniques is illustrated by
applying them to a benchmark example that was prepared for the 14th IFAC
Symposium on System Identification (SYSID’06) in Newcastle, Australia®.
The intent of the benchmark was to set up a format in which rigorous com-
parisons between competing techniques for the identification of CT models
from sampled data, including time- and frequency-domain approaches, could
be undertaken. The goal was also to collect and analyse quantitative results
in order to understand similarities and differences among the approaches and
to highlight the strengths and weaknesses of each approach.

Two benchmark data sets were generated. Both were simulated continuous-
time systems based closely on mechatronic systems. Data corresponding to
these two benchmarks were sent to participants to apply their preferred tech-
nique.

Unfortunately, the associated Benchmark Session at SYSID was cancelled
because referees felt that insufficient submitted papers were acceptable (only
one of the papers submitted to the proposed benchmark session got even
close to the correct model, demonstrating the difficulty of the benchmark
exercise). This section presents the CONTSID toolbox results obtained on the
benchmark data set 1, in which the additive measurement noise is a simple
white additive noise. The second benchmark data set is more difficult since the
white measurement noise is replaced by non-stationary noise (similar results
were obtained using the CAPTAIN toolbox routines [50], where a modified
example with coloured additive noise is considered).

The SYSID Benchmark data set 1 is obtained from

{m(t) = G,(p)u(t), subject to zero initial conditions (9.18)

y(tr) = z(tr) + e(tr)

where the measurement noise e(ty) is a zero-mean DT white Gaussian se-
quence.

The system is a linear, fourth-order, non-minimum phase system with complex
poles where the Laplace transfer function is given by

% The data can be downloaded from
http://sysid2006benchmark.cran.uhp-nancy.fr/.
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Fig. 9.8. Step response and Bode plot for the SYSID’2006 benchmark system
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with 7=0.035s, K =1,T1 =1/2s,,To =1/15s, w, 1 = 1 rad/s, (1 = 0.1,
wn,2 = 60 rad/s, (2 = 0.25.

The system has one fast oscillatory mode with relative damping 0.25 and one
slow oscillatory mode with relative damping 0.1 spread over one decade and a
half. The system has a small time delay of 35 ms and is non-minimum phase,
with a zero in the right half-plane.

The step response and the Bode plot of the system are shown in Figure 9.8.
The settling time of the system is about 40 s.

The variance of the additive noise is adjusted to obtain a signal-to-noise ratio
(see (9.16)) SNR= 8 dB.

The sampling period has been chosen as Ty = 5 ms (sampling frequency
ws = 1256 rad/s) that corresponds to about 20 times the bandwidth and is
therefore higher than the usual rule of thumb given for discrete-time model
identification”.

The input signal is a pseudo-random binary sequence of maximum length
(£1.0) and the complete data set consists of 6138 input/output samples. A
section of the input/output data is plotted in Figure 9.9.

The model order selection procedure (see Section 9.3.2) was applied for
different model structures. The best models sorted according to YIC are
presented in Table 9.6. From this table, the correct model order structure
[ny ne ny]=[3 4 7] is quite clear cut. It has indeed the fourth most negative
YIC=-11.33 with the highest associated R% = 0.962. The subsequent single-
run SRIVC model estimation results are shown in Table 9.7, where it can

Go(s) = (9.19)

7 The usual rule of the thumb for discrete-time model identification is to choose
the sampling frequency about ten times the bandwidth.
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Table 9.6. Best SRIVC model orders for the SYSID’2006 benchmark system. Njer
denotes the number of iterations for the SRIVC algorithm to converge

n, nf o YIC R%2  Niger
2 7 -12.65 0.937 2
8 —12.61 0.936 2
7 -12.24 0.936 4
7 —11.33 0.962** 4
8 -11.18 0.961 4
4
4
4

7 -10.89 0.962
8 —-10.67 0.912
8 -9.95 0.962

AN OR W W NN N
NS S NN O

be seen that the algorithm provides good parameter estimates with relatively
small standard error (SE) estimates. Figure 9.10 shows that the step and
frequency responses of the single run SRIVC estimated model are hardly dis-
tinguishable from those of the true model. It is interesting to mention here that
indirect estimation using the discrete-time ARX, IV4 and PEM algorithms,
followed by conversion to continuous time using the MATLAB® d2cm func-
tion, failed at this fast sampling rate because the algorithms did not converge
on acceptable discrete-time models.

9.6 Successful Application Examples

In this section, identification results for three real-life processes selected from
robotic, biological and electro-mechanical fields are summarised. They illus-
trate the use of the CONTSID toolbox methods to identify both continuous-
time transfer function and state-space models directly from regularly and
irregularly sampled data.

Additional successful experiences of the CONTSID toolbox methods with
other real-life data processes [10, 13,14, 28, 31] have already been reported
including an industrial binary distillation column [10] but also in the case of
biomedical systems [14] and environmental process data [51].

9.6.1 Complex Flexible Robot Arm
Process Description and Modelling Purpose

The robot arm is installed on an electrical motor. The modelling aim is here to
design a control law based on a model between the measured reaction torque
of the structure on the ground to the acceleration of the flexible arm. The
robot arm is described in more detail in [22].
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Table 9.7. SYSID’2006 benchmark system estimation results

Method Value b by be a1 a2 Gz Qa
True -120 —1560 3600 30.2 3607 750 3600

SRIVC 6 —114.6 —1493 3543 29.32 3524 732.9 3509
SE 2.7 21.2 38.7 0.92 35.8 9.0 36.2

Experiment Design

The excitation signal is a multi-sine. The sampling period is set to 2 ms.
Measurements are made with anti-aliasing filters. K = 10 periods each of
length M = 4096 are exactly measured and a record of N = KM = 40, 960
data points is collected. The data set over the 3rd period is displayed in
Figure 9.11.

Model Order Determination

The empirical transfer function estimate (ETFE) obtained from the 3rd period
data set is displayed in Figure 9.12. From this figure, one can have a good
indication about the model orders of the system. Indeed, one can see from
the ETFE that the system has at least 3 resonant modes and 4 zeros in the
frequency band w € [0;350] rad/s.

Different model structures in the range [n, nf ngx] = [4 4 0] to [7 6 0] have
been computed for the 3rd period data set. The other data set periods were
kept for model validation purposes®.

The 7 best models sorted according to YIC are given in Table 9.8. From this
table, the first model with [n, ns ngx]= [6 6 0] seems to be quite clear cut (it
has the most negative YIC=—9.19, with the highest associated R% = 0.977).

Identification Results

The process identification is performed with the SRIVC algorithm on the
third-period data set. The identification result is given as the [6 6 0] Laplace
transfer function model

G(s) = 20.87(s — 618.5)(s* — 1.698s + 710.6)(s? + 8.435s + 2.012¢4)
(52 4 1.033s + 2094)(s2 + 0.9808s + 9905) (52 + 2.693s + 7.042¢4)
(9.20)
This estimated model is characterised by three, lightly damped dynamic
modes, as defined in Table 9.9.
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Fig. 9.11. The data set over the 3rd-period robot arm data set

Model Validation

Figure 9.13(a) compares the simulated SRIVC model output with the mea-
sured output series, over a short section of 0.4 s in the 8th-period data set.
It can be noticed that the simulated output matches the measured data quite
well, with R2. > 0.95. There is also a very good agreement between the ETFE
and the frequency response of the estimated SRIVC model, as shown in Figure
9.13(b).

9.6.2 Uptake Kinetics of a Photosensitising Agent into Cancer
Cells

Process Description and Modelling Purpose

Figure 9.14(a) depicts the basic material used in in wvitro experiments for
studying the uptake kinetics of a photosensitising drug into living cancer cells.
Cells are seeded in culture wells and are exposed at time ty = 0 to a photosen-
sitising drug D. The purpose of this study is the estimation of the uptake yield

8 Similar identification results have been obtained from all of the other 9 period
data sets.



9 The CONTSID toolbox for MATLAB® 279

60
40 . .
X
2 . x X
Q X X
= 20+ &( « ¥
£ % ¥
3 x EX ok %
= or 3¢ X
8 &
> %
o * %
z X XRK
5 20+ « X xX Xy e S
S5 x x TOOX X X X K
8- x XX X X;
Lt )S<>< X %
X % X X
X
-40| X x .
X
-60 . R | . ] . ]
10° 10’ 10° 10°

Frequency (rad/s)

Fig. 9.12. Empirical transfer function estimate for the robot arm

(p) and the initial uptake rate (vp). These biological parameters allow the bi-
ologists to discriminate the uptake characteristics of different photosensitisers
and thus to choose the suitable photosensitising agent for the treatment of a
given cancer cell line [3].

Experiment Design

The input variable u(t) of this biological process is a step signal that corre-
sponds to the amount of drug injected into the well from time ty. The mag-
nitude of the step is given by ug = 5 x 10~3umol - L™, z(t) and y(t) denote
the extracellular quantity of photosensitising drug and the amount of drug ab-
sorbed by the cells, respectively. The process output is y,, (t), the measurement
of y(t), given by a spectrofluorimeter at times {t;} = {1,2,4,6,8,14,18,24h}.
Therefore, we are confronted with a model identification problem from non-
uniformly sampled data. In this study, it is assumed that y,,, (tx) = y(tx)+e(tx)
where e(t;) ~ N(0,02), is the measurement noise. Two experiments have been
carried out with two different protein concentrations [Se] = 0% et [Se] = 9%
in the culture medium.
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Table 9.8. Best SRIVC model orders for the robot arm data set

np ne 0 YIC R2%

6 6 0 -9.19 0.977**
4 4 0 -8.56 0.940
7 6 0 -8.03 0.977
5 6 0 -7.41 0.976
5 4 0 -7.01 0.940
6 5 0 —5.56 0.966
4 5 0 —4.86 0.959
4 6 0 —-3.49 0.950

Table 9.9. Eigenvalues and dynamic modes for the robot arm SRIVC model

Real Imag. Damping Nat. Freq. (rad/s)

-0.52 4 45.761 0.0113 45.76

-0.52 —45.76i 0.0113 45.76

-0.49 4 99.52i 0.0049 99.52

-0.49 -99.52i 0.0049 99.52

-1.35 + 265.37i 0.0051 265.37

-1.35 - 265.371 0.0051 265.37
0.87 —— Measured 1 a0t

Simulated model

Amplitude (dB)

70.2 70.3 70.4 70.5 10 10
Time (s) Frequency (rad/s)

(a) Cross-validation (b) Amplitude Bode plot

70 70.1

Fig. 9.13. Cross-validation results on a short section of the 8th-period data set and
comparison of ETFE (‘x’) and SRIVC model (solid line) frequency responses for
the flexible robot arm
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Fig. 9.14. Biological process

Model Structure Selection

The in vitro uptake of the photosensitising agent into cancer cells can be des-
cribed by a linear model with two compartments, as shown in Figure 9.14(b).
The two compartments are associated with the extracellular and intracellular
volumes, respectively. Parameters k, and k, are the uptake and release rates
respectively. Differential equations of this compartmental model are defined
as follows

du(t)

o = Rry(t) = k() + — (9.21)
WO _ koatt) ~ kgt 0.22)

with 2(0) = y(0) = 0. Substitution of z(¢) from (9.21) into (9.22), yields

1 dy(t)
ik ar Y@

T ky+ ks

(t) (9.23)

Accordingly, the equivalent first-order model used in the parameter estimation
step is
p+Jfo

with bg = k, and fy = k, + k.. The uptake yield rate and the initial uptake
rate of the photosensitiser uptake process are given by p = by / fo and vg = by.

Gise)(p) (9-24)
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Identification Results

The process identification is performed with the srivc algorithm on two in
vitro data sets. The estimated transfer function models for the two protein
concentrations take the form

i 162.7(£21.45) 41.1(£7.18)
Coo (o) = . . 9.25
0%(P) = S 03sao050) %P T S Tosmaory 0P
3
o
O  [Sel=0%
®  [Sel=9% o
250 .
ot ]
151 .
1k ]
05 .
[
% 0 5 10 15 20 25

Time (h)

Fig. 9.15. Measured (‘e’ and ‘o’) and simulated uptake responses (solid lines)

Model Validation

Figure 9.15 shows the two estimation data sets and the simulated uptake re-
sponses obtained from CJO% and Gg%. In experimental biology, identical experi-
ments often produce different outcomes. This variability of the measurements
is mainly due to the high sensitivity of living cells to external disturbances.
Accordingly, cross-validation tests are usually not applicable in such a bio-
logical context. Here, however, the identified model has been validated by
biologists [6].
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Fig. 9.16. Winding process

9.6.3 Multi-variable Winding Process
Pilot description

The present section turns to a multiple-input, multiple-output system based
on a winding pilot plant [5]. Winding systems are, in general, continuous, non-
linear processes. They are encountered in a wide variety of industrial plants
such as rolling mills in the steel industry, plants involving web conveyance
including coating, papermaking and polymer film extrusion processes. The
main role of a winding process is to control the web conveyance in order to
avoid the effects of friction and sliding, as well as the problems of material
distortion that can also damage the quality of the final product.

As illustrated in Figure 9.16, the main part of this MIMO pilot plant is a
winding process composed of a plastic web and three reels. Each reel is coupled
with a direct-current motor via gear reduction. The angular speed of each
reel (S, Sz, S3) is measured by a tachometer, while the tensions between the
reels (T1, T5) are measured by tension meters. At a second level, each motor
is driven by a local controller. Two PI control loops adjust the motor currents
(1) and (I3) and a double PI control loop drives the angular speed (Sz).
The setpoints of the local controllers (I5, S5, I3) constitute the manipulated
inputs of the winding system u(t) = [I;(t) S5(t) I5(t)] T Essentially, driving
a winding process comes down to controlling the web linear velocity and the
web tensions (77) and (T3) around a given operating point. Consequently, the
output variables of the winding system are y(t) = [T1(t) T5(t) S2 (t)]T. The
process is described in more detail in [4]. The relevant MATLAB® files in the
CONTSID toolbox are idcdemo7.m and winding.mat.
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Experiment Design

Discrete-time internal binary sequences were used as excitation signals. The
sampling period is set to 10 ms. The mean and linear trend of the signals
were removed and the resulting input/output signals are shown in Figures
9.18 and 9.17.

1
0 5 10 15 20 25 30
Time (s)

Fig. 9.17. Output signals for the winding process

Model Structure Selection

The system order n = 3 has been chosen by analysing the evolution of the
mean square error between the process and model outputs with respect to
n. No significant decrease has been observed for n > 3. Note, however, that
the algorithm makes it possible to estimate the system order along with the
model parameters if it is not known a priori.

Identification Results

The process identification is performed with the 4SID-based GPMF algorithm
sidgpmf. The identification result is given as a CT state-space model that
takes the form
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Fig. 9.18. Input signals for the winding process

(9.26)

with

—1.6414 —0.9874 —0.4773 | 4.4994 —3.1047 —4.0889

—0.1261 —2.7725 —1.3205 | 2.0652 —3.3796 —9.0513

A B 0.4517 2.1746 —4.2674 [11.7889 9.6855 —15.4186
C D —1.1073 0.4345 —0.0536
0.1442 —0.1717 —0.2537 O

—0.2047 —0.4425 0.1120

Model Validation

Cross-validation results are plotted in Figure 9.19 where it may be observed
that there is a very good agreement with quite high values for the coefficient
of determination.

9.7 Conclusions

This chapter has outlined the main features of the MATLAB® CONTSID
toolbox and illustrated its potential in practical applications. The toolbox,
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Determination Coefficient: 0.936

-0.1

0 5 10 15 20 25 30
Time (s)

Fig. 9.19. Cross-validation results for the winding process. Measured (solid line)
and model (dashdot line) outputs.

which provides access to most of the time-domain continuous-time model
identification techniques that allow for the identification of continuous-time
models from discrete-time data, is in continual development. Planned new
releases will incorporate routines to solve errors-in-variables and closed-loop
identification problems, as well as non-linear continuous-time model identifi-
cation techniques.
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