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Abstract

The simplified refined instrumental variable method
for continuous-time model identification is extended to
multiple input-single output systems where the char-
acteristic polynomials of the transfer functions associ-
ated with each input are not constrained to be identi-
cal. Some experimental data are analyzed to indicate
the applicability and the properties of the proposed
approach.

1 Introduction

System identification is an established field in the
area of system analysis and control. It aims at de-
termining particular models for dynamical systems
based on observed inputs and outputs. Although dy-
namical systems in the physical world are native to
continuous-time (CT) domain, most system identifica-
tion schemes have been based in the past on discrete-
time (DT) models without concern for the merits of the
native continuous-time models. The development of
CT model based system identification techniques orig-
inated in the middle of the last century but was over-
shadowed by the overwhelming developments of DT
methods. This was mainly due to the ‘go completely
digital’ trend that was spurred by parallel develop-
ments in digital computers. Interest in CT approaches
to system identification has however been growing in
the last decade (see [1] and [2], [3], [4], [5], [6] for more
recent references). Recent publications ([7], [8]) have
drawn attention to difficulties that can be encountered
when utilizing DT estimation algorithms under condi-
tions that are non-standard, such as rapidly sampled
data and systems with widely different natural frequen-
cies.

Moreover, practical applications of estimation meth-
ods to real-life processes lead to consider multi-input
single output (MISO) systems. In DT model estima-
tion, the proposed approaches combine either exten-
sions of linear regression techniques like pseudo-linear,

multi-linear regression, filtering, instrumental variable,
or non linear optimization techniques [9]. The latter
techniques often require a good initial parameter set to
converge to the global minimum of the cost function.
For the CT case, as far as the authors are aware, the
parameter estimation procedures for MISO systems
have usually been developed by a straightforward ex-
tension of procedures devoted to SISO systems, which
only allows transfer function estimation with common
denominator. Since this case is not very realistic in
many applications, this paper aims at presenting a new
method to estimate MISO models written in terms of
CT transfer functions with different denominators.

Amongst the different estimation procedures avail-
able, a so-called simplified refined instrumental vari-
able (IV), denoted as srivc from hereon, has been cho-
sen. This IV-type method has indeed often proved to
be particularly useful in practical applications (see e.g.
[10]). It was first proposed for DT model estimation
[11, 12] and then extended for DT MISO systems with
different denominators [13]. The approach has also
been extended for SISO CT model estimation [14]. It
has recently been revisited [15] and adapted to handle
the case of non uniformly sampled data [16]. These IV
approaches are known, for discrete-time model iden-
tification, to be robust against the properties of the
noise [12], as well as against the number of samples [17]
and the initial parameter set. Moreover, it has been
shown by Monte Carlo simulations and also on real-
life processes that these refined IV approaches present
interesting performances. The aim of this paper is to
present how the srivc method can be extended to iden-
tify multiple input systems described by multiple CT
transfer functions.

The paper is organized in the following way. Section 2
states the problem. The proposed method and deriva-
tion of the algorithm are described in section 3. The
properties of the proposed algorithm are illustrated
through Monte Carlo simulation in section 4. Section 5
presents the results of the identification of a pilot wind-
ing process. Finally, section 6 gives some concluding
remarks.



2 Problem statement

Consider a MISO CT linear time-invariant causal sys-
tem that can be described by the following multi-input
transfer functions (MITF)!
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where u(t) = [ui(t) ... un, (t)] is the vector of uncorre-

lated input signals, y,(¢) the system response to u(t).
p is the differential operator, i.e. px(t) = dg;—gt).

The polynomials F?(p) and B?(p) are assumed to be
relatively prime and the roots of the polynomials F?(p)
are assumed to have negative real parts; the system
under study is therefore assumed to be asymptotically

stable.

The first equation in (1) describes the output at all
values of the continuous-time variable ¢ and can also
be written as a set of ordinary differential equations

FEoYu: () + Syl (8) + - +y 00 (8)
= Woui(t =) -+ W " (E = 10), ()

?
where () (t) denotes the I*" time-derivative of the
continuous-time signal z(t). 7 denotes the time-delay
between the output and the ith corresponding input.

G?(p) describes the true dynamics of each system
which is subject to an arbitrary set of initial condi-
tions

W= - ul ], 90 = [y, Yo, ]+ (6)

W) = [ui(O) uM(0) uimi‘”(o)] eR™, (7)

W= @ B0 V) R @)

It is furthermore assumed that the disturbances that
cannot be explained from the input signal can be
lumped into the additive term v(¢t) (1). The distur-
bance term v(¢) is assumed to be independent of the
input u(t), i.e. the case of the open-loop operation of
the system is considered. For the identification prob-
lem, it is also assumed that the continuous-time signals
u(t) and y(t) are sampled at regular time-interval 7.

Lwith slight abuse of notation, we refer to G?¢(p) as the trans-
fer function of the system

The goal is then to build a model of equation (1) based
on sampled input and output data. Models of the fol-
lowing form are considered

Yu; (tr, 0:) = Gi(p, 0;)u(ty, — 7;)
G 1S yu(te, 05) = D0 Yu, (b, 05) 9)
Y(te) = yu(te, 0i) + v(tk)

where z(t);) denotes the sample of the continuous-time
signal x(t) at time-instant ¢t = kT, and G;(p, 0;) is the
ith plant model transfer function given by

B; b; b; st by ™
Gi(p;az’) _ (p) _ ,0+ ,1p+ + s 1pn, ,
Fi(p) fio+ fiap+ -+ fin 0™
(10)
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and 0; = [bim, .- bio fim—1 - fio]" € R with

np, = N; +m; + 1, where n; and m; denote the denom-
inator and numerator orders of G;(p, ;) respectively.
Therefore, the sought parameter vector is

o=1[0T ... 671" ermx (11)

n
with n, = > v n
g =1 ""Pi"

Note that estimation methods presented in this paper
focus on identifying the parameters of each plant trans-
fer function G;(p, ;) rather than the additive noise ap-
pearing in (1). The disturbance term is modelled here
as a zero-mean discrete-time noise sequence denoted as
v(tx). Moreover, the pure time-delays are supposed to
be multiple integers of the sampling period 7; = ny, 1.

The identification problem can now be stated as
follows: determine the orders n; and m; and es-
timate the parameter vector § = [9{---6‘;&]21 of
the continuous-time plant model from N sampled
measurements of the input and the output ZV =

{y(te)ua (tr) - wn, (t) by

3 srivc for MISO systems

3.1 CT model identification

There are two ways to obtain a CT model. The first is
to estimate from the sampled data an initial DT model
and then convert it into a CT model. The second ap-
proach consists in identifying directly a CT model from
the DT data. In comparison with the DT counterpart,
CT model identification raises several technical issues.
The first point is related to implementation. Unlike
the difference equation model, the differential equation
model is not a linear combination of samples of only
the measurable process input and output signals. It
also contains input and output time-derivatives which
are not available as measurement data in most practi-
cal cases. Various types of continuous-time filters have



been devised to circumvent the need to reconstruct
these time-derivatives [1], [6]. As recently shown, these
filters can be regarded as regularizing the problem of
the numerical differentiation of noisy signals [18]. Fur-
thermore, the advantage of these filters is to allow the
specification of a frequency band where the model is
desired to well-fit the system [19]. The CONtinuous-
Time System IDentification (CONTSID) toolbox? has
been developed on the basis of these methods [20].

Most of the CT system identification methods have
been developed for the SISO or MISO common denom-
inator (CD) models. To make the presentation clearer,
the SISO case is considered first in this section (the ex-
tension to MISO CD is straightforward). Most of the
methods presented in [6] aim at identifying a model of
the following form

A(p, 0)y(tx) = B(p, O)u(ty — 7) +e(ty) (12)

with
n—1 m
A(p,0) =Y ap' +p" and B(p,0) =Y bp' (13)
1=0 =0

Suppose that a causal stable analog filter with Laplace
transfer function L(s) of minimal order n is selected for
the identification procedure. By passing both excita-
tion and output measurements u(t) and y(¢) through
this filter, the time-derivatives of the filtered signals
may be obtained. This operation when applied to sys-
tem (12) for time-instant ¢ = ¢, yields

n—1 m
ST ) + i () = > bul (b — 1) +ep(t)
1=0 1=0
(14)
where ¢ (t) denotes the equation error, (V) (t;) repre-
sents the [*" derivative of the signal z:(¢) at time-instant
t =t and

with £7! denoting the inverse Laplace transform. For
simplicity, it has been assumed that the differential
equation model is initially at rest. Note however that
in the general case the initial condition terms do not
vanish in equation (14). Whether they require esti-
mation or they can be neglected depends upon the se-
lected pre-filtering method. The parameters can then
be estimated by using an IV approach using an aux-
iliary model. There is a multitude of choice for the
pre-filter (see e.g. [6] for a detailed study). It has been
shown that the pre-filter L(s) should be designed in
such a way that it has frequency response characteris-
tics close to the system to be identified. Therefore, the

2see http://www.cran.uhp-nancy.fr/

srive method originally suggested in [14] develops opti-
mal approaches to CT transfer function model estima-
tion, in which the pre-filters are automatically selected
in an iterative manner.

3.2 srive for SISO and MISO CD models
This method is based on the Maximum Likelihood
(ML) approach where the error function is given by

= 518 zgu“’“ ) (17)
- F(; 0) [F'(p, 0)y(tr) — B(p, O)u(ty — 7))

(18)

with
n—1 m
F(p,0)=> fir' +p" and B(p,6) = bip' (19)
1=0 1=0

Equation (18) can also be written as follows
v(tk,0) = F(p, 0)ys(tr) — B(p,O)uys(t —7)  (20)

where y¢(tx) and uy(tx) are the variables pre-filtered
by L(p,0) = ﬁ. The problem with this formulation
is that 6 and therefore F(p,0) are unknown a priori.
To cope with this drawback, a ‘relaxation’ optimization
procedure is used. This latter consists in adaptively
adjusting an initial estimate 0° of § iteratively until it
converges on an optimal estimate. Therefore, at each
step, a linear in the unknown parameter 6 equation has
to be solved

U (b, 07) = OF (1, 07)071 + 4 (11, 07) (21)
ST (tr, 07) = [u;m>(tk — ) gt — 7 09)
T, 07) =yt )] (22)

where 67 is the parameter vector estimated at the jth
step of the algorithm, and 671! is the parameter vector
to be estimated.

Moreover, the noise is usually colored and this prob-
lem is solved in the second stage of the CT identifi-
cation procedure, by exploiting IV estimation within
the iterative optimization algorithm. The instrumen-
tal variable is generated from the following auxiliary
model

5 _ B(p.9)
Yu(tr, 0) = ~u(ty —T) (23)

F(p,0)
The algorithm presenting the main steps of the srivc
method dedicated to SISO model (or MISO CD mod-

els) is given in [15].

3.3 srive for MISO DD models
The proposed method derives from the equivalent ap-
proach for DT model [13]. It aims at identifying MISO



model with different denominators (DD) for each in-
put (9), which is more realistic than the previous CD
case. The model is however no longer linear in the pa-
rameters and the proposed MISO version of srivc lies
therefore in the multi-linear regression. This consists
in converting the MISO model (9) into n,, SISO models
as follows

v(tr,0) = &if(th, 0) — Yu, s (tr, 0i) (24)
ir(tr0) = yp(te) — D Yu, r(th,0;) (25)
=1

The parameter vector 0 is partitioned into classes
01,...,0,, such that the error is affine with respect
to the parameters of any of these classes when the pa-
rameters of all others are fixed [21]. It is then possible
to search for 0 by applying successively the SISO ver-
sion of the srivc to estimate the parameters of each
class in turn, with a cyclic exploration of all classes.
This is achieved by following the same type of ‘relax-
ation’ procedure described in section 3.2 and used in
[13]. It is then possible to search for

7 (1, 07) = T (tx, 07)07 " + &34 (1, 07) (26)
0T (tas07) = [ul (= 72, 0%) . wig (= 73, 0)
f(m_l)(tk,éj) *&f(tk,éj)] (27)

where the filter is L;(p,0;) = m.
is solved by applying an IV techn{que. At each step,
the value of the cost decreases toward some constant
value. Nothing guarantees that the estimate of 6 thus
obtained corresponds to a global minimim of the cost
function. However, the tests carried out in simulation
and on data stemming from industrial processes show

the relevance of this MISO version of the srive.

This equation

3.4 Algorithm
The proposed iterative srive algorithm summarizes the
method developed section in 3.3.

1l.i=1...n4

Estimate initial parameter vectors

H0 70 £0 T
91‘ = bi,mi . b e 1,0

7 nlfl

between w;(t) and y(t) by a SISO estimation

method.

Generate the auxiliary model outputs by

Bi (pa é?)
70

ui(ty — 7i).
F’L(p791 (k )

Yu; (tkv é?) =

2. 5=0...Nper —1,i=1...n4

. For i =1...n,, éi =

(a) Generate an estimate of the noisy response
to u; to apply the multi-linear regression,

Ny

Eu (b, 0) = y(te) — >y (ta, 6)).

I=1,l%i

Filter the latter variable, the input signal
and the auxiliary model output to overcome
the unmeasurable derivative signals

A 1
Ui g (tk,ef-) = mui(tk),
1 i
Aj)fui (tkn 91‘)7

i (e, 00) =
glf(k ) Fz(pvg

i

Ny 1
w (e, 0)) = —————1, t,01
Yus , (h, 07) F(pﬁl)yi(k ):

(b) Generate the regressor (27) and the instru-
ments

ZL (tr, 07) = (28)
[ (m l)(tk —7'“91)...uif(tk —Tiﬁ{),
*yy:; )(tka 05) e T yuif (tk,ézj)L
(29)

Calculate the IV estimate of the parameter
vector 671

] =

ézj-H = Zif (tlﬁéi)(bz; (t/ﬁég)
1

Z] (b, 60y (4, 07), (30

M7

=1

Use é{ o generate the auxiliary model
output

Bi(p.0]"")

(b, 0Ty = 208
Yo i 50 Fi(p,07™)

wi(ty — 7).

Repeat step 2 until the relative variation on the
parameters is sufficiently small :

Ny ni+mi+1

D

i=1 =1

i+l _ G
ail — 97,

— <, (31)
0

where éfl denotes the [*"

item of the parameter
6], ¢ is a given tolerance and Ny, is the final

iteration number.

ONer . Generate an es-
timate of the parametric covariance P; matrix
using the symmetric version of the IV algorithm

and assuming a white noise

N -1

Z iy (te, 0:) 27 (tr, 60:) (32)



where 62 denotes the empirical variance of the
simulation error

€(tr, 0) = y(tr) — yults,0).

The global parameter estimation and parametric co-
variance matrix are given by

0 = [of...08 " (33)
Poo - 0

p = 0 R (34)
P
0 -~ 0 P,

The initial step of the above algorithm is performed
by a SISO Generalized Poisson Moment Functionals
(GPMF) approach coupled with an auxiliary model IV
estimation procedure (ivgpmyf). This version is imple-
mented in the CONTSID toolbox.

3.5 Properties

This method is an IV-type estimation technique. If
the algorithm converges, it therefore gives consistent
estimates when the model belongs to the system class.
Moreover, some other interesting properties can be no-
ticed:

e this method can be implemented recursively [14];

e the convergence of the algorithm is not sensitive
to the choice of the initial parameter vector;

e an indication on the parameter uncertainties is
given which makes it possible to assess the model
quality.

3.6 Model order estimation

A key point to be solved in the identification proce-
dure concerns the model order selection. The method
available for SISO systems (see e.g. [15]) has been ex-
tended in the CONTSID toolbox (srivcstruc routine)
for MISO systems represented by MITF with common
and different denominators. While models are esti-
mated from an estimation data set, two statistical mea-
sures are calculated on a validation data set and used
to choose between a range of model orders. These are
RZ and YIC, which are defined as follows,

)
2 O¢
Ry =1- 52
y
&2 1 sz, )
YIC = log. {A;} + loge— Z -
o7 p L~ a3
j=1
where 65, 7.2 denote respectively the variance of the

measured output and the variance of the error between
the measured output and simulated model output, &?

is the squared value of the j** estimated parameter;
pj; is the jth diagonal element of the srivc estimated
parametric error covariance matrix P and p is the num-
ber of parameters. R2. is recognized as the coefficient
of determination based on the simulation error. It is a
measure of how well the model output fit to the system
output and must be close to 1. However, R% tends to
overestimate the model orders. The Young’s Informa-
tion Criterion (YIC) is more complex and provides a
measure of how well the parameters are defined statis-
tically: the more negative the YIC, the better the def-
inition. However it tends to underestimate the model
orders. Both criteria are inspected to find the orders
for which R2 is sufficiently close to 1 and YIC suffi-
ciently negative.

4 Numerical simulations

In this section Monte Carlo simulations are used to
illustrate the properties of the proposed algorithm on
a simulation example. The CONTSID toolbox, version
3.0 is used to perform the following simulations.

4.1 Simulation example presentation

The system considered is a two inputs one output sys-
tem, with second-order non-minimum phase transfer
functions. The first transfer function presents a reso-
nant mode, with a damping of 0.3 and a natural fre-
quency of 1 rad/s, while the second has two time con-
stants equal to 1 and 3 s. The data generating system
is given by

(t) = —0.5p+1 "
Yl = o 06p+ 1
y(tr) = yultr) +v(te).

ﬂu (t)
PPHap+3 7 (36)

(t) +

The measured output y(t) consists of a noise free out-
put y,(t) sampled at time ¢; on which is added an
additive perturbation term v(ty). {v(tx)}h_, is a zero-
mean independent identically distributed Gaussian se-
quence.

The system is excited by two multi-sines of 25 frequen-
cies with starting and end frequencies at 0.1 rad/s and
half of the Nyquist frequency %% Moreover, the two
inputs are uncorrelated. The sampling period is equal
to Ty = 50 ms.

Monte-Carlo simulations are used for a signal-to-noise
(SNR) of 10 dB. The SNR is defined as

P,
SNR = 10log ; (37)

v
where P, denotes the average power of the noise-free
output fluctuations while P, represents the average
power of the zero-mean additive noise.



4.2 Monte Carlo simulation results

The system orders are first assumed known and Monte-
Carlo simulations of 1000 realizations are used to study
the sensitivity of the method to the initialisation, to
the nature of the additive noise, and to the number
of samples. The model order selection procedure de-
scribed in section 3.6 is then evaluated.

The following criteria are selected for the performance
evaluation

e the bias energy (||bg2),

e the energy of the estimated parameter standard
deviation ||65/? ,

e the energy of the mean square error (||bg||2 +
I5al1%),

e the energy of the parameter standard deviation
estimated for a maximum-likelihood minimum
variance estimator [|637"||?, obtained by the the-
oretical Cramér-Rao lower bound; in the case
where v(t) is white noise, this value is given by
matrix P (34).

These criteria are applied to the normalized parame-
ters. The number of iterations Ny, of the srive algo-
rithm is also considered in the performance evaluation.

Sensitivity to the initialisation: The SISO
ivgpmf routine [6] is used to produce an initial esti-
mate. This approach requires to specify a priori the
cut-off frequency A of the first-order cascaded filter.
Four different values for A have been tested for a num-
ber of samples N = 2000. The results are shown in
Table 1. It can be noticed that whatever the quality
of the initialisation, the srivc routine still gives similar
accurate estimates, with a slight larger number of it-
erations, when the initial estimate is far from the true
one.

IVGPMF SISO

A 0.5 2 10 15
16512 + ll6al1> | 5433822  2.625535  0.676442  1.047361
SRIVC MISO DD
155112 + 165112 | 0.113991  0.084859  0.087825  0.089527

Niter 10.124 8.253 7.266 7.232

Table 1: Sensitivity to the initialisation

Sensitivity to the sample number: The
srive routine is applied to 3 data sets of different size.
The results are given in Table 2. Obviously, the bias,
the variance and the number of iterations decrease
when the sample number increases. The variance of
the parameters is close to the theoretical minimum
(Il657%|?). This adequacy is stronger when N is large,
but remains acceptable for smaller V.

N | IBel? logll>  16Y 51 Nieer

2000 0.001571 0.086242  0.080235 8.2
5000 0.000376  0.033893  0.033739 5.4
10000 | 0.000101  0.018380  0.018184 4.9

Table 2: Sensitivity to the sample number

Sensitivity to the additive noise type:
Three different types of noise are chosen to illustrate
the robustness of the method when the working hy-
potheses are no longer verified. {v(t;)}Y_, is then ei-
ther a zero-mean independent identically distributed
(ii.d.) Gaussian sequence (g.w.n.), or an ii.d. uni-
formly distributed sequence (u.w.n.) or an i.i.d. Gaus-
sian sequence colored (g.c.n.) by

_0.1944¢7' —0.1673¢ > .
-~ 1—-1.792¢71 + 0.8187¢ 2

U(tk) (tk).

The results for N = 10000 are given in Table 3. It
can be seen that the performance of the method are,
as expected, a slightly less good when a colored noise
is applied but they remain very acceptable for N large
enough. Moreover, the results are accurate whatever
the type of noise, therefore the method does not de-
pend strongly on the type of additive noise. Note that
in the case of colored noise, the estimated covariance
matrix estimate given by P (34) does not hold true.

noise | [Bal>  l8al> 163 FI Nreer

g.w.n. 0.000101  0.018380  0.018184 4.9
u.w.n. 0.000200  0.018093  0.018268 5.0
g.c.n. 0.000108  0.179917  0.018548 7.6

Table 3: Sensitivity to the noise

Model order selection: The model order se-
lection procedure presented in section 3.6 is applied to
the simulation example.

The srivestruc algorithm is applied to search all models
in the range [n1,na, my, ma, nky, nke] = [1,1,0,0,0,0]
to [3,3,2,2,0,0]. This procedure is applied on the pre-
vious data set in the case of a white Gaussian noise.
The first half is used for parameter estimation while
the criteria (R% and YIC) are computed on the sec-
ond half of the set. Table 4 shows the best 15 model
orders sorted in increasing Y IC.

The best obtained model is indeed of orders
[2,2,1,1,0,0]. It presents the most negative YIC =
—9.52 with a RT = 0.905 very close to the best one.

Comparison srive CD - srive DD: Both
srive algorithms for CD and DD are applied to iden-
tify system (36). To investigate the performance of the
algorithms, Monte Carlo simulation of 200 runs have



my  R% YIC

ni nz mi
2 2 1 1 0.905 —9.52%
3 2 0 1 0.889  -8.71
2 2 0 1 0.844  -8.49
2 2 2 1 0.905 -5.88
3 2 1 1 0.904  -4.99
3 3 0 2 0.842 -3.84
2 2 0 2 0.844  -3.68
3 3 2 2 0.896  -3.46
2 3 0 1 0.843  -3.15
3 3 1 2 0.867  -1.77
2 3 1 2 0.867  -1.68
2 3 2 2 0.864  -1.68
2 3 2 1 0.903  -1.33
3 3 0 1 0.888  -1.26
2 3 1 1 0.907  -1.25

Table 4: Best 15 model orders

been performed when a Gaussian white noise is added
to the output and N = 2000. Bode diagrams of the
200 estimated CT models for both methods are plot-
ted in Figure 1. These plots illustrate, as expected,
the relevance of the proposed version of the srivc al-
gorithm dedicated to DD models. Indeed, it can be
seen that the method considering common denomina-
tors fails to give a good estimate because the same
dynamic is used for the two transfer functions. On the
contrary, the srivc algorithm which considers different
denominators give very accurate result with no bias
and a very slight variance.

5 Winding process application

5.1 Process description

The main part of this MIMO pilot plant is a wind-
ing process composed of a plastic web and three reels.
Each reel is coupled with a direct-current motor via
gear reduction. The angular speed of each reel (57,
Sa, S3) is measured by a tachometer while the tensions
between the reels (T}, T3) are measured by tension me-
ters. At a second level, each motor is driven by a local
controller. Two PI control loops adjust the motor cur-
rents (I7) and (I3) and a double PI control loop drives
the angular speed (S3). The set-points of the local con-
trollers (I7, S5, I5) constitute the manipulated inputs
of the winding system u(t) = [I7(t) S3(t) I3 (t)]T.
Driving a winding process essentially comes down to
controlling the web linear velocity and the web ten-
sions (T7) and (73) around a given operating point.
Consequently, the output variables of the winding sys-
tem are y(t) = [T1(t) Ts(t) Sg(t)]T. The process is
described in more detail in [22].

5.2 Experiment design
It has been shown that the validity of a linear model of
the winding machine depends of the magnitude of the
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Figure 1: Bode plots of the 200 estimated CD and DD
models together with the true system (thicker
line)

radius of the reels [22]. The weaker these variations
are, the more the model can be reasonably considered
as linear. The excitation sequence duration has to be
sufficiently long to contain information about all the
dynamics of the system but relatively short to neglect
the radius variations. A solution consists to choose a
very short sampling period (Ts=10 ms) in order to get
an important number of samples (N=6000) over a short
observation period (1 mn). Discrete-time internal bi-
nary sequences were used as excitation signals, with a
sampling period set to 10 ms. Mean and linear trend
of the signals have been removed. The input-output
data set can be found in the Matlab file winding.mat
of the CONTSID toolbox.



5.3 Model order selection

The srive estimator presented in section 3.4 has been
used to determine a CT multiple transfer function of
the winding process. For each output a large num-
ber of models have been estimated for a wide range of
model orders and time-delays. Best model structures
according to validation criteria Y IC' and R% are given
in Table 5. Each model presented in this table respects
two conditions

e YIC < min(YIC) + log(2),

e R2 < max(R%) —0.01.

The model set defined in this way is rational according
to YIC and R2 criteria. Models which present the
smaller number of parameters and better YIC have
been chosen for cross validation purpose. They are
referenced by ! in Table 5. Results have been obtained

with the routines srivestruc.m and selcstruc.m of the
CONTSID toolbox.

my mo ms ni no ns R% YIC
Output 1, T (tx)
2 2 2 0 0 0 0962 -8.39'
2 2 2 0 0 1 0.969 -8.24
2 1 2 0 0 1 0.967 -8.21
2 2 2 0 1 1 0.970 -8.11
2 1 2 0 1 1 0.968 -8.00
1 1 2 1 0 1 0.964 -7.94

Output 2, T3 (tx)

2 2 1 1 0 0 0879 -7.86'
2 2 1 1 0 1 0.881 -7.47
2 2 1 1 1 0  0.882 -7.28
2 1 1 1 0 1 0.875 -7.22
Output 3, Sa(tx)
2 2 2 0 1 0 0993 -11.01
2 1 2 1 0 1 0991  -10.99
2 2 1 0 0 0 0991 -10.98*
2 1 2 1 1 1 0992 -10.96
2 1 1 0 1 0 0.990 -10.96
2 2 2 1 0 1 0993  -10.89
2 2 2 0 1 1 0994 -10.81

Table 5: Best model structures according to YIC et R%

5.4 Cross validation results

Cross-validation results are plotted on Figure 2 where
it may be observed that there is a very good agreement
with quite high values for the coefficient of determina-
tion. These identification results are comparable with

those previously obtained by using a subspace-based
method [23].

6 Conclusion

In this paper, the identification problem of continuous-
time models of linear dynamic MISO systems has been
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Figure 2: Cross validation results for the winding process

addressed by using a particular IV-type estimation
method. A new method has been proposed to estimate
multi-input transfer functions with different denomina-
tors. The performances of the method and its princi-
pal properties have been illustrated on the basis of a
simulated example through Monte Carlo simulations.
Finally the application of the proposed method to a
pilot plant which simulates industrial material trans-
port control problems has proved its efficiency in the
case of real-life data.
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