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Instrumental variable methods for continuous-time model
identification in closed-loop

Marion Gilson1, Hugues Garnier1, Paul Van den Hof2

Abstract— System identification in closed-loop has been of
considerable interest in the last two decades. Most of the
existing methods have been developed for discrete-time models.
In this paper, various instrumental variable-based methods are
proposed for identifying continuous-time models of systems
operating in closed-loop. The accuracy of these methods is
also investigated leading to the definition of the optimal IV
estimator which gives minimum variance. As this needs the
exact knowledge of the noise model, it cannot be used directly
in practice. Several alternatives are therefore proposed to cope
with this drawback and illustrated with a simulation example.

I. I NTRODUCTION

System identification is an established field in the area
of systems and control. It is aimed at determining useful
models for dynamical systems based on observed inputs
and outputs. Although dynamical systems in the physical
world are actually in continuous-time (CT) domain, most
system identification schemes have been based in the past
on discrete-time (DT) models without concern for the merits
of the native CT models. The development of CT model
based system identification techniques began in the middle
of the last century but was overshadowed by the over-
whelming developments of DT methods. This was mainly
due to the ’go completely digital’ trend that was spurred
by parallel developments in digital computers. Interest in
CT approaches to system identification has however been
growing in the last decade (see e.g. [1], [2]).
Recent investigations [3], [4] have drawn attention to dif-
ficulties that can be encountered when utilizing standard
DT estimation algorithms under conditions, such as rapidly
sampled data and dominant system modes with widely dif-
ferent natural frequencies. However, there are many issues
which have not received adequate attention so far in the
case of CT model identification. One such issue is the
identification of closed-loop systems.
Many results were established during the last decade in
this area [5], [6]. When looking at methods that can
consistently identify plant models of systems operating
in closed-loop while relying on simple linear (regression)
algorithms, instrumental variable (IV) techniques seem tobe
attractive, but not often applied. On the other hand, when
dealing with highly complex processes that involve models
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of high dimension in terms of inputs and outputs, it can be
attractive to rely on methods that do not require non-convex
optimization algorithms.
For closed-loop identification a basic IV estimator has been
proposed [7], and more recently the so-called tailor-made IV
algorithm [8], where the closed-loop plant is parametrized
using (open-loop) plant parameters has been suggested. The
class of algorithms denoted by BELS (for Bias-Eliminated
Least-Squares), e.g. [9], is also directed towards the use
of linear regression algorithms only. It has recently been
shown that these algorithms are also particular forms of IV
estimation schemes [10], [8]. Then, when comparing the
several available IV algorithms, the principal question to
address should be: how to achieve the smallest variance of
the estimate? An optimality result has been recently devel-
oped for the closed-loop DT model identification problem,
showing consequences for the optimal choice of the design
parameters [11]. The same reasoning can be applied to the
closed-loop CT model identification case.
In this paper, several instrumental variable methods are
proposed to handle the identification problem of CT models
of linear dynamic systems operating in closed-loop, and
the influence for the several design variables (related to
optimal variance) is considered. Since for optimal variance,
the noise model has to be known exactly, several bootstrap
methods are also proposed for approximating this required
information from measurement data. These proposed me-
thods are compared by means of a simulation example,
showing that a near optimal estimator can be obtained by
an appropriate choice of the design parameters.

II. PRELIMINARIES
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Fig. 1. Closed-loop configuration.

Consider a stable linear SISO closed-loop system shown
in Figure 1. The data generating system is assumed to be
given by the relations

S :

{

y(t) = G0(p)u(t) + H0(p)e0(t)

u(t) = r(t) − C(p)y(t)
(1)



The process is denoted byG0(p) = B0(p)/A0(p) and
the controller byC(p) wherep is the differential operator
(p = d/dt). u(t) describes the process input signal,y(t)
the process output signal. For ease of notation we also
introduce the reference signalr(t) = r1(t) + C(p)r2(t).
Moreover, it is also assumed that the CT signalsu(t) and
y(t) are uniformly sampled atTs. A colored disturbance is
acting on the loop. This noise term represented byv0(t) =
H0(p)e0(t) has in the light of the spectral factorisation
theorem been modelled as filtered white noise. The external
signal r(t) is assumed to be uncorrelated with the noise
disturbancev0(t).
In order to avoid the mathematical difficulties due to the
manipulation of a CT noise, it has been chosen to use a
particular modelling for the noise contribution (by following
the same reasoning as in [12]). LetTs denotes the sampling
period and assume that{e0k} is a zero-mean normally
distributed DT noise sequence with covariance

E{e0ie
T
0j} = λ0δij (2)

In addition, we assume thate0(t) = e0(kTs) for kTs ≤
t < (k + 1)Ts, i.e. e0(t) is assumed constant during
the sampling interval. According to standard time series
analysis, it follows that the spectral density of{e0k} is
constant in the frequency range[−π/Ts π/Ts]. As the
Fourier transform of the sampled signal is periodic with
a period equal to the sampling frequencyωs = 2π/Ts,
we conclude that the noise sequence{e0k} has constant
spectral density for all frequencies smaller thanωs. This
noise model can then describe any rational spectral density
for the sampled noise process in the relevant frequency
range[−π/Ts π/Ts] [12], [13].
The CT model identification problem is to find estimates of
G0(p) from finite sequences{rk}N

k=1, {uk}N
k=1, {yk}N

k=1

of external, input and output DT data. The model to be
identified is then described by the following equation

M : y(tk) = G(p, θ)u(tk) + H(p, θ)e(tk), (3)

wheree(tk) is a discrete-time white noise, with zero mean
and varianceλ. A parameterized process model is consid-
ered

G : G(p, θ)=
B(p, θ)

A(p, θ)
=

b0 + b1p + · · · + bnb
pnb

a0 + a1p + · · · + pna
(4)

wherenb, na denote the orders of the numerator and denom-
inator of the process respectively and with the pair(A,B)
assumed to be coprime. The process model parameters are
stacked columnwise in the parameter vector

θ = [ana−1 · · · a0 bnb
· · · b0]

T ∈ R
na+nb+1. (5)

The numerator and denominator ordersnb and na are
supposed to be known. The controllerC(p) is also assumed
to be known and given by

C(p) =
Q(p)

P (p)
=

q0 + q1p + · · · + qnq
pnq

p0 + p1p + · · · + pnp
(6)

with the pair(P,Q) assumed to be coprime. In the follow-
ing, the closed-loop system is assumed to be asymptotically
stable andr(t) is a signal that is persistently exciting of
sufficient high order.

III. C ONTINUOUS-TIME MODEL IDENTIFICATION IN

CLOSED-LOOP

Let us first consider the data generating system. From
(1), it can also be written as

y(na)(tk) = φT (tk)θ0 + v0(tk) (7)

where

φT (tk)=[−y(na−1)(tk) · · ·−y(tk)u(nb)(tk) · · ·u(tk)] (8)

and v0(tk) = A0(p)H0(p)e0(tk). x(i)(tk) denotes theith
time-derivative of the CT signalx(t) at time-instanttk.
There are two main time-domain approaches to estimate
a CT model. The first is to estimate from the sampled
data an initial DT model and then convert it into a CT
model. The second approach consists in identifying directly
a CT model from the DT data. In comparison with the DT
counterpart, CT model identification raises several technical
issues. The first point is related to implementation. Unlike
the difference equation model, the differential equation
model is not a linear combination of samples of only the
measurable process input and output signals. It also contains
input and output time-derivatives which are not available as
measurement data in most practical cases. Various types
of CT filters have been devised to deal with the need
to reconstruct these time-derivatives [2]. The CONtinuous-
Time System IDentification (CONTSID) toolbox has been
developed on the basis of these methods [14].
Suppose that a causal stable analog filter with Laplace
transfer functionF (s) of minimal orderna is selected. By
passing both input and output measurementsu(t) andy(t)
through this filter, the time-derivatives of the filtered signals
may be obtained. This operation is applied to model (3) at
time instantt = tk leading to the expression of the equation
error

εf (tk) = y
(na)
f (tk) − φT

f (tk)θ (9)

with

φT
f (tk)=[−y

(na−1)
f (tk) · · · − yf (tk) u

(nb)
f (tk) · · · uf (tk)]

yf (tk) = F (p)y(tk), uf (tk) = F (p)u(tk) (10)

or by using inverse Laplace transformL−1

y
(i)
f (t) = L−1[siF (s)Y (s)], u

(i)
f (t) = L−1[siF (s)U(s)]

For simplicity, it has been assumed that the differential
equation model (3) is initially at rest. Note however that in
the general case the initial condition terms do not vanish in
equation (9). Whether they require estimation or they can be
neglected depends upon the selected signal pre-processing



method. There is much choice for the pre-filter. Four typical
filters are as follows [2]:

F1(s) =

(

β

s + λ

)na

F2(s) =

(

β

s + λ

)na+1

(11)

F3(s) =

(

1

s

)na

F4(s) =

(

1 − e−lTss

s

)na

(12)

whereF1(s) andF2(s) represent the filters used in the case
of the minimal order multiple filter method and generalised
Poisson Moment Functional (gpmf) approach respectively;
F3(s) denotes the usual multiple integral operation while
F4(s) is referred to a linear integral filter (lif ).

IV. BASIC INSTRUMENTAL VARIABLE ESTIMATORS

The open-loop process transfer function parametersθ
can be estimated using a basic instrumental variable (IV)
estimator. The CT version of the basic IV estimate ofθ is
given by

θ̂iv=sol

{

1

N

N
∑

k=1

F (p)z(tk)F (p)[y(tk)na−φT (tk)θ]=0

}

(13)

whereN denotes the number of data andz(tk) gathers the
instruments. In contrast with the DT model identification
scheme, a filter already appears in the basic IV in order
to handle the derivatives of the input/ouput signals. For
this particular reason, the instrumentsz(tk) have also to
be filtered byF (p) to get the unknown derivatives of the
instrumental variable signal.

A. Consistency properties

By inserting (7) filtered byF (p) into (13) and using
the filtered signals, the following well-known equation is
obtained

θ̂iv =θ0+

[

N
∑

k=1

zf (tk)φT
f (tk)

]−1[
N

∑

k=1

zf (tk)vT
0f (tk)

]

(14)

wherev0f (tk) = F (p)v0(tk). It can be deduced from the
previous equation that̂θiv is a consistent estimate ofθ if1

{

Ē[zf (tk)φT
f (tk)] is nonsingular

Ē[zf (tk)vT
0f (tk)] = 0

(15)

Different IV variants are obtained by different choices of
the instrumentsz(tk), respecting the conditions given by
(15).

B. Covariance properties

The asymptotic distribution of the parameter (13) es-
timated by an IV type of method has been extensively
investigated in the open-loop DT context (e.g. [16], [15]).
More recently, this work has also been carried out to the
closed-loop DT model identification framework [11]. By
considering equation (13), the former results can be applied

1The notationĒ[.] = limN→∞

1

N

∑

N

k=1
E[.] is adopted from the

prediction error framework of [15]

to the case of the CT model estimate given by (3). As a
result, under the assumptions formulated in section II and
G0 ∈ G, θ̂iv is asymptotically Gaussian distributed

√
N(θ̂iv − θ∗)

dist→ N (0, Piv) (16)

with θ∗ represents the limit of̂θiv whenN → ∞ and where
the covariance matrix is given by

Piv = λ0[Ēzf (tk)φT
f (tk)]−1[ĒzfT (tk)zT

fT (tk)]

[(Ēzf (tk)φT
f (tk))−1]T

(17)

with zfT (tk)=H0(p)A0(p)zf(tk), λ0 variance of{e0(tk)}.

V. EXTENDED INSTRUMENTAL VARIABLE ESTIMATORS

In CT model identification, the extended-IV estimate of
θ is obtained by pre-filtering the input and output data
appearing in (13) and by generalizing the so-called basic IV
estimates ofθ by using an augmented instrumentz(tk) ∈
R

nz (nz ≥ na + nb + 1) so that an overdetermined system
of equations is obtained

θ̂xiv = arg min
θ

∥

∥

∥

∥

∥

[

N
∑

k=1

zf (tk)L(p)φf (tk)

]

θ

−
[

N
∑

k=1

zf (tk)L(p)yna

f (tk)

]∥

∥

∥

∥

∥

2

Q

(18)

where L(p) is a stable pre-filter, and‖x‖2
Q = xT Qx,

with Q a positive definite weighting matrix. The estimate
is then obtained by solving a least-squares problem. This
extended-IV gives a parameter estimator that requires more
computations than the basic-IV. However, the enlargement
of the IV vector could be used for improving the accuracy
of the parameter estimates [16].

A. Consistency properties

The consistency conditions are easily obtained by gener-
alizing (15) to the estimator (18):̄E[zf (tk)L(p)φT

f (tk)] is
nonsingular and̄E[zf (tk)L(p)vT

0f (tk)] = 0.

B. Covariance properties

The asymptotic distribution of parameter vector (18) is
obtained by following the same reasoning as in section
IV-B. Therefore, by considering the assumptions given in
section II, equation (18), and under the assumptionG0 ∈ G,
θ̂eiv is asymptotically Gaussian distributed

√
N(θ̂xiv − θ∗)

dist→ N (0, Pxiv) (19)

where the covariance matrix is given by

Pxiv = λ0[R
T QR]−1RT Q[ĒzfT (tk)zT

fT (tk)]QR[RT QR]−1

with R = Ēzf (tk)L(p)φ̃T
f (tk), whereφ̃T

f (tk) is the noise-
free part ofφf (tk) andzfT (t) = L(p)H0(p)A0(p)zf (t).



VI. OPTIMAL INSTRUMENTAL VARIABLE ESTIMATORS

A. Theoretical results

The choice of the instrumentsz(t), of nz, of the weight-
ing matrixQ and of the prefilterL(q) may have a consider-
able effect on the covariance matrixPxiv. In the open-loop
DT situation the lower bound ofPxiv for any unbiased
identification method is given by the Cramer-Rao bound
[15], [17]. Optimal choices of the above mentioned design
variables exist so thatPxiv reaches the Cramer Rao bound.
For the closed-loop case, this type of reasoning is not viable
for IV estimates, as the objective of reaching minimum
variance conflicts with the restriction that instruments and
noise should be uncorrelated. However it has been shown
in [7] that there indeed exists a minimum value of the
covariance matrixPxiv as a function of the design variables
z(t), L(q) andQ, under the restriction thatz(t) is a function
of the external signalr(t) only. All these works rely on the
use of a DT model. However, even in the CT identification
case, the covariance matrix can be optimized with respect
to the design variables. By following the same reasoning
as in the DT case, the covariance matrix optimal value is
given by

Pxiv ≥ P opt
xiv , P opt

xiv = λ0

{

Ē
[

(A0(p)H0(p))
−1

φ̃T
f (tk)

]T

[

(A0(p)H0(p))
−1

φ̃T
f (tk)

]}

−1

,

(20)

P opt
eiv is then obtained by taking e.g.

zf (tk) =
[

(A0(p)H0(p))
−1

φ̃T
f (tk)

]T

, nz = na + nb + 1,

Q = I, L(p) = [A0(p)H0(p)]−1. (21)

Then, the optimal IV estimator can only be obtained if
the true noise (and process) modelA0(p)H0(p) is exactly
known and therefore optimality cannot be achieved exactly
in practice. A solution to cope with this problem is to use
bootstrapping methods, as it will be discussed in the next
section.

Remark. In this framework, the filterF (p) is supposed
to be fixeda priori by the user and by the way, it is not
included into the design variables of the method.

B. Approximate implementations

As the optimal IV method cannot be achieved in practice,
approximate implementations of the optimal IV method
will be considered. For this purpose one will need to take
care that firstly a model ofA0H0 is available in order to
construct the prefilterL(q) and the instrumentsz(t), and
secondly a first model ofG0(q) is needed to compute the
noise free part of the regressorφ̃(t).
The choice of the instruments and prefilter in the IV
method affects the asymptotic variance, while consistency
properties are generically secured. This suggests that minor
deviations from the optimal value (which is not available

in practice) will only cause second-order effects in the
resulting accuracy. Therefore it is considered to be sufficient
to use consistent, but not necessarily efficient estimates
of the dynamics and of the noise when constituting the
instrument and the prefilter [15].
Additionally for obtaining the necessary preliminary models
a restriction is made to linear regression estimates in order
to keep computational procedures simple and tractable.

1) First solution: Several bootstrap IV methods have
been proposed, in an attempt to approximate the optimal IV
method, see e.g.[18], [17], [15] for the open-loop situation
and [11] for the closed-loop one. A first solution consists in
extending one of these algorithms to the CT situation. Here
is developed the application of the IV4 method [15] to the
CT closed-loop framework. The only difference between
open-loop and closed-loop cases is that in the latter, also the
input is correlated with the noise. Therefore, the instruments
have to be uncorrelated withu(t) but correlated with the
noise-free part ofu(t). Moreover, according to section II,
CT models are estimated to represent the transfers between
the filtered output (yf (tk)) and the filtered excitation signal
(rf (tk)) as well as for the transfer between the filtered input
(uf (tk)) and the filtered excitation-signal (rf (tk)); but DT
models are used to estimate the noise contribution.

Method clivc4.

1) Write the model structure as a linear regression

ŷ
(na)
f (tk, θ) = φT

f (tk)θ. (22)

Estimate θ by a least-squares method and getθ̂ls

along with the corresponding CT transfer function
Ĝls(p).

2) Generate the instrumentszfls(tk) as

ỹfls(tk) =
C(p)Ĝls(p)

1 + C(p)Ĝls(p)
rf (tk) (23)

ũfls(tk) =
1

1 + C(p)Ĝls(p)
rf (tk) (24)

zfls(tk) = [−ỹ
(na−1)
fls (tk) · · · − ỹfls(tk)

ũ
(nb)
fls (tk) · · · ũfls(tk)]T (25)

zfls(tk) represents the noise-free part of the regressor
φf (tk). Determine the IV estimate ofθ in (22) as

θ̂iv = R̂−1
zflsφf

R̂zflsyf
(26)

The corresponding estimated transfer function is
given by Ĝiv(p) = B̂iv(p)

Âiv(p)
.

3) Let ŵ(tk) = y
(na)
f (tk) − φf (tk)θ̂iv. This equation

holds for the CT case, and therefore it is still true at
the sampling instants. By the way, an AR model of or-
der2na can be postulated for̂w(tk): L(q−1)ŵ(tk) =
e(tk).
EstimateL(q−1) using a least-squares method and
denote the result bŷL(q−1).



4) Generate the instrumentszfiv(tk) as

zfiv(tk) = [−ỹ
(na−1)
fiv (tk) · · · − ỹfiv(tk)

ũ
(nb)
fiv (tk) · · · ũfiv(tk)]T (27)

with ỹfiv(tk) and ũfiv(tk) computed as in equations
(23)-(24) on the basis of̂Giv(p). Using these instru-
ments zfiv(tk) and the prefilterL̂(q−1), determine
the IV estimate ofθ in (22) as

θ̂M1
= R̂−1

zfivφfT
R̂zfivyfT

, (28)

where φfT (tk) = L̂(q−1)φf (tk) and yfT (tk) =
L̂(q−1)yf (tk).

2) Second solution:It has been shown previously that a
first consistent estimation of the noise and process models
has to be known in order to construct the instruments and
the pre-filter. Since, the second order statistical property
is not of crucial importance, a simple solution consists in
estimating these models by using a least-squares estimator.
The result will be obviously biased but the final estimate
will not be affected by an inaccurate model obtained in this
first step. Furthermore, in order to simplify the procedure
and to avoid the noise modelling, it was chosen to restrict
the second algorithm to the ARX models. In this particular
case, the pre-filterL(p) (eq (21)) is equal to 1.

Method clivc3.
1) Write the model structure as a linear regression (eq.

(22)), and estimateθ by a least-squares method.
Then, get̂θls along with the process and noise models
Ĝls(p) = B̂ls(p)

Âls(p)
, Ĥls(p) = 1

Âls(p)
respectively.

2) Compute the noise-free part of the regressor

φ̃f (tk) = [−ỹ
(na−1)
fls (tk) · · · − ỹfls(tk)

ũ
(nb)
fls (tk) · · · ũfls(tk)]T

with ỹfls(tk) and ũfls(tk) computed as in (23)-(24).
Generate the instruments aszf (tk) = φ̃f (tk).

3) Using the instrumentzf (tk), determine the IV esti-
mate in (22) as

θ̂M2
= R̂−1

zf φf
R̂zf yf

. (29)

VII. E XAMPLE

The following numerical example is used to compare the
performances of the proposed approaches. The process to
be identified is described by equation (1), where

G0(p) =
p + 1

p2 + p − 2
, C(p) =

10p + 15

p
(30)

and v0(tk) = H0(p)e0(tk) is a white Gaussian noise as
defined in section II. The excitation is chosen to be a
pseudo-random binary signal of maximum length generated
from a shift register of order 9 and a clock period equals
to 8. The sampling periodTs is chosen equal to 1 ms.
From the comparative studies recently presented [2], the
generalized Poisson moment functionals (gpmf) approach

can be considered as one of the more efficient method to
handle the time-derivative problem. This latter has been
associated here with the two estimators (clivc4, clivc3)
presented above. To illustrate the effectiveness of the al-
gorithms and to investigate their performance, Monte Carlo
simulations of200 runs with about4000 data points have
been performed for a signal to noise ratio

SNR = 10 log

(

Pyd

σ2
e

)

= 0 dB, (31)

where σ denotes the standard deviation.Pyd
denotes the

average power of the noise-free output fluctuation.
The gpmf transform of minimal order 3 has been applied
and the Poisson filter coefficients have been set toλ = β =
1 (seeF2(s) in equation (11)).
The process parameters are estimated by using methods
clivc4 and clivc3. Moreover, the results stemmed from the
first closed-loop IV method developed by [7] and adapted to
the CT model identification are also analyzed. This methods
referenced asclivc, has been first presented in [19] and
consists in using the reference signal time-derivatives as
instruments; the estimate is thus given by

θ̂cliv =

[

N
∑

i=1

ζf (tk)φT
f (tk)

]−1
N

∑

i=1

ζf (tk)y
(na)
f (tk)

(32)

ζT
f (tk) =

[

rna+nb

f (tk) · · · rf (tk)
]

∈ R
na+nb+1 (33)

Furthermore, the results stemmed from the bias-eliminated
least-squares method presented in [20] are also given for
illustration purposes. This method is denoted asbelsc.
Bode diagrams of the 200 estimated CT models for the
clivc, the belsc, clivc4 and clivc3 methods are plotted in
Figures 2 to 5. It can be seen that both near optimal
IV techniques (clivc4 and clivc3) are more accurate than
the belsc and theclivc algorithms. The proposedclivc4
andclivc3 methods give similar results and offer desirably
accurate estimates, but in the particular case of an ARX
model, the latter is numerically much cheaper to implement.
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Fig. 2. Bode plots of theclivc models
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Fig. 3. Bode plots of thebelscmodels
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VIII. C ONCLUSION

The identification problem of CT models of linear dy-
namic systems operating in closed-loop has been addressed
in this paper by using closed-loop dedicated methods based
on the instrumental variable techniques. Several closed-
loop IV estimators have been studied along with their
explicit expression for the covariance matrix of estimation
errors. It is then shown that a minimal value of this
covariance matrix can be achieved for a particular choice of
instruments and prefilters. This minimal value requires the
knowledge of the true system parameters and is therefore
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Fig. 5. Bode plots of theclivc3 models

not reachable in practice. Several methods have thus been
developed to determine the design parameters which allow
to approximate the optimal closed-loop IV estimator. These
methods have been compared to the recently suggested
BELS methods which are known to lead to unbiased plant
estimates in closed loop. However for arriving at estimates
with attractive variance properties it is preferably to apply
bootstrap IV methods as considered in this paper.
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