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Instrumental variable methods for continuous-time model
identification in closed-loop

Marion Gilsort, Hugues Garniér Paul Van den Haf

Abstract— System identification in closed-loop has been of of high dimension in terms of inputs and outputs, it can be
considerable interest in the last two decades. Most of the attractive to rely on methods that do not require non-convex
existing methods have been developed for discrete-time models. optimization algorithms.

In this paper, various instrumental variable-based methods are E | d-| identificati basic IV estimator has b
proposed for identifying continuous-time models of systems Or closed-loop identincation a basic 1V estimator has been

operating in closed-loop. The accuracy of these methods is Proposed [7], and more recently the so-called tailor-made |
also investigated leading to the definition of the optimal IV algorithm [8], where the closed-loop plant is parametrized

estimator which gives minimum variance. As this needs the using (open-loop) plant parameters has been suggested. The
exact knowledge of the noise model, it cannot be used directly ¢a55 of algorithms denoted by BELS (for Bias-Eliminated
in practice. Several alter_natlves are pherefqre prqposed to qe Least-Squares), e.g. [9], is also directed towards the use
with this drawback and illustrated with a simulation example. - I v
of linear regression algorithms only. It has recently been
shown that these algorithms are also particular forms of 1V
. INTRODUCTION estimation schemes [10], [8]. Then, when comparing the
System identification is an established field in the areseveral available IV algorithms, the principal question to
of systems and control. It is aimed at determining usefuiddress should be: how to achieve the smallest variance of
models for dynamical systems based on observed inputise estimate? An optimality result has been recently devel-
and outputs. Although dynamical systems in the physicaped for the closed-loop DT model identification problem,
world are actually in continuous-time (CT) domain, moskhowing consequences for the optimal choice of the design
system identification schemes have been based in the ppatameters [11]. The same reasoning can be applied to the
on discrete-time (DT) models without concern for the meritglosed-loop CT model identification case.
of the native CT models. The development of CT modein this paper, several instrumental variable methods are
based system identification techniques began in the middieoposed to handle the identification problem of CT models
of the last century but was overshadowed by the oveof linear dynamic systems operating in closed-loop, and
whelming developments of DT methods. This was mainlyhe influence for the several design variables (related to
due to the 'go completely digital’ trend that was spurredptimal variance) is considered. Since for optimal varé&anc
by parallel developments in digital computers. Interest ithe noise model has to be known exactly, several bootstrap
CT approaches to system identification has however beemethods are also proposed for approximating this required
growing in the last decade (see e.g. [1], [2]). information from measurement data. These proposed me-
Recent investigations [3], [4] have drawn attention to difthods are compared by means of a simulation example,
ficulties that can be encountered when utilizing standarshowing that a near optimal estimator can be obtained by
DT estimation algorithms under conditions, such as rapidlgin appropriate choice of the design parameters.
sampled data and dominant system modes with widely dif-

X ; Il. PRELIMINARIES
ferent natural frequencies. However, there are many issues

which have not received adequate attention so far in the ¢60(t)
case of CT model identification. One such issue is the Ho(p)
identification of closed-loop systems. ri(t) otp
Many results were established during the last decade in w0(t)
this area [5], [6]. When looking at methods that can r,(t) +Y u(t) 4+ y(t)
consistently identify plant models of systems operating  + C(p) Go(p)

in closed-loop while relying on simple linear (regression)

algorithms, instrumental variable (IV) techniques seeieto
attractive, but not often applied. On the other hand, when Fig. 1.
dealing with highly complex processes that involve models
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The process is denoted b§,(p) = Bo(p)/Ao(p) and with the pair(P, Q) assumed to be coprime. In the follow-
the controller byC'(p) wherep is the differential operator ing, the closed-loop system is assumed to be asymptotically
(p = d/dt). u(t) describes the process input signglt) stable andr(t) is a signal that is persistently exciting of
the process output signal. For ease of notation we alsufficient high order.

introduce the reference signalt) = ri(t) + C(p)ra(t).

Moreover, it is also assumed that the CT signals) and [1l. CONTINUOUS-TIME MODEL IDENTIFICATION IN

y(t) are uniformly sampled &f. A colored disturbance is CLOSED-LOOP

acting on the qup. This haise term representecb&(y) . Let us first consider the data generating system. From
Hy(p)eo(t) has in the light of the spectral factorisation it can also be written as

theorem been modelled as filtered white noise. The extern(a]ﬂ)’

si_gnal r(t) is assumed to be uncorrelated with the noise g™ (8,) = ¢ (t)00 + vo(ts) )
disturbancev(t).

In order to avoid the mathematical difficulties due to thevhere

manipulation of a CT noise, it has been chosen to use a

particular modelling for the noise contribution (by follag ¢ (tk) =~y " (tx) - - — y(tr)ul™ (tx) - - - u(tx)] (8)
the same reasoning as in [12]). LBt denotes the sampling
period and assume thdteo,} is a zero-mean normally
distributed DT noise sequence with covariance

and vo(tx) = Ao(p)Ho(p)eo(tr). =9 () denotes theith
time-derivative of the CT signak(t) at time-instantt.
There are two main time-domain approaches to estimate
]E{eOieoTj} = Ao0ij (2) a CT model. The first is to estimate from the sampled
» data an initial DT model and then convert it into a CT
In addition, we assume thab(t) = eo(kTs) for kTs < model. The second approach consists in identifying diyect!
t < (k+ 1T, i.e. e(t) is assumed constant during 3 cT model from the DT data. In comparison with the DT
the sampling interval. According to standard time seriesonterpart, CT model identification raises several tezini
analysis, it follows that the spectral density for} IS jssues. The first point is related to implementation. Unlike
constant in the frequency rander/T; 7/Ti]. As the e gifference equation model, the differential equation
Fourier transform of the sampled signal is periodic withyoge is not a linear combination of samples of only the
a period equal to the sampling frequency = 27/Ts,  measurable process input and output signals. It also eantai
we conclude that the noise sequengey} has constant iyt and output time-derivatives which are not availalsle a
spectral density for all frequencies smaller than This  eagurement data in most practical cases. Various types
noise model can then describe any rational spectral densgly =T fiters have been devised to deal with the need
for the sampled noise process in the relevant frequengy reconstruct these time-derivatives [2]. The CONtinuous
range[—x /T, m/Ts] [12], [13]. _ , , Time System IDentification (CONTSID) toolbox has been
The CT model identification problem is to find estimates OBeveIoped on the basis of these methods [14].
Go(p) from finite sequencesry }ily, {urbiiy, {vrtii, Suppose that a causal stable analog filter with Laplace
of external, input and output DT data. The model t0 b ,nfer functionF'(s) of minimal ordern, is selected. By
identified is then described by the following equation passing both input and output measuremer(ts andy(¢)
M y(ty) = Glp, 0)ulty) + H(p, 0)e(ty), 3) through this f_ilter, the_time-der?vati_ves of Fhe filteredrsids
may be obtained. This operation is applied to model (3) at
wheree(t;) is a discrete-time white noise, with zero mearntime instantt = ¢;, leading to the expression of the equation
and variance\. A parameterized process model is considerror

ered ep(tr) = g™ () — &F (t4)0 9
B(p,0) bo+bip+---+bn,p"
:G(p,0)= = - 4 i
g (p ) 14(p7 9) ao+ap+ -+ p"“ ( ) with
yvhteren;%,trrz]a denote the order? ofI the r:jum_?r:attr(])r T&; (jlge)nornﬁ?(tk):[—y}n“l)(tk) = yr(te) Uﬁvnb)(tk) o ug(ty)]
inator of the process respectively and wi e fair L) = F ), wr(ty) = F(p)ult 10
assumed to be coprime. The process model parameters are yr (t) (P)y(t) () (PJut) (10)
stacked columnwise in the parameter vector or by using inverse Laplace transforft!

0 =[an,—1 -~ ag by, -~ bo]" € R™FmH - (5) Y (1) = LS F(s)Y (5)], u{(t) = L7Vs'F(s)U (s)]

The numerator and denominator ordets and n, are

. For simplicity, it has been assumed that the differential
supposed to be known. The controltéfp) is also assumed plcity

to be known and given by equation model (3) is_ir_1i_tially at _rt_ast. Note however thgt iq
the general case the initial condition terms do not vanish in
Qlp) q+@ap+--+qn,p"™ equation (9). Whether they require estimation or they can be
Clp) = P(p) - Po+ pip+ -+ phe ©) neglected depends upon the selected signal pre-processing




method. There is much choice for the pre-filter. Four typicalo the case of the CT model estimate given by (3). As a

filters are as follows [2]: result, under the assumptions formulated in section Il and
3 \"™ 3 na+1 Gy € G, 0;, is asymptotically Gaussian distributed
ne-(5)" me-(25) o
s+ s+ VN (0, — 0") 5" N(0, Py (16)
1\ 1— e s\ ™ )
Fs(s) = <g) Fy(s) = (f) (12)  with ¢* represents the limit of;, whenN — oo and where

) ) the covariance matrix is given by
whereF; (s) and Fy(s) represent the filters used in the case

of the minimal order multiple filter method and generalised Pi, = Ao[Ezf(tk) o} (tr)] [Ezpr(ti)z fr ()] 17

Poisson Moment Functionatyymf) approach respectively; [(Bzp(ti)oT (t) 1" )
. . . : Yk

F5(s) denotes the usual multiple integral operation while

Fy(s) is referred to a linear integral filtetif(). with z 7 (tr)=Ho(p)Ao(p)zf(tk), Ao variance of{eq(tx)}.

IV. BASIC INSTRUMENTAL VARIABLE ESTIMATORS V. EXTENDED INSTRUMENTAL VARIABLE ESTIMATORS
The open-loop process transfer function parameters
can be estimated using a basic instrumental variable (I\Q
estimator. The CT version of the basic IV estimatedas

given by

In CT model identification, the extended-1V estimate of
is obtained by pre-filtering the input and output data
appearing in (13) and by generalizing the so-called basic IV
estimates of) by using an augmented instrumer{t) €

R 1 . - R™= (n, > ng +np + 1) so that an overdetermined system
Oi=sol NZF(p)Z(tk)F(p)[y(tk) “—¢" (tr)0]=0p (13)  of equations is obtained
k=1

N
where N denotes the number of data an@;) gathers the i .
. . . e . v = ti) L t 0
instruments. In contrast with the DT model identification arg ;Zf( k) LP)9s (t)
scheme, a filter already appears in the basic IV in order N B 2
to handle the derivatives of the input/ouput signals. For B ne
this particular reason, the instrument&;) have also to I;Zf(tk)L(p)yf (t) 0 (18)

be filtered byF(p) to get the unknown derivatives of the

instrumental variable signal. where L(p) is a stable pre-filter, andlz||?, = 27 Qx,

with @ a positive definite weighting matrix. The estimate

) i i ) ) is then obtained by solving a least-squares problem. This
By inserting (7) filtered byF(p) into (13) and using eyended-IV gives a parameter estimator that requires more

the filtered signals, the following well-known equation iscompytations than the basic-IV. However, the enlargement

obtained of the IV vector could be used for improving the accuracy

N of the parameter estimates [16].

—1r N
> Zf(tk)ﬂ(tk)} lz 2 (tk)vgy (tk)l (14)
k=1

k=1

wherewvos(tr) = F(p)vo(tr). It can be deduced from the  The consistency conditions are easily obtained by gener-
previous equation that;, is a consistent estimate 6fif!  alizing (15) to the estimator (18)E[zf(tk)L(p)¢Jf(tk)] is

{E[Zf(tk)qs?(tk)] is nonsingular (15) nonsingular ands{zy (ti) L(p) vy (t)] = 0.

Elzs(tr)vgy(tr)] = 0 B. Covariance properties

A. Consistency properties

giv = 00+

A. Consistency properties

Different IV variants are obtained by different choices of The asymptotic distribution of parameter vector (18) is
the instruments:(t;), respecting the conditions given by obtained by following the same reasoning as in section
(15). IV-B. Therefore, by considering the assumptions given in
section II, equation (18), and under the assumptigre g,

B. Covariance p.rope.rue.zs . feiv is asymptotically Gaussian distributed
The asymptotic distribution of the parameter (13) es-
dist

timated by an IV type of method has been extensively VN (00 — 0%) 5" N(0, Pyin) (19)
investigated in the open-loop DT context (e.g. [16], [15]). _ o
More recently, this work has also been carried out to th&@here the covariance matrix is given by

closed-loop DT model identification framework [11]. By T T e T T .
considering equation (13), the former results can be applid =iv = Aol Q] B QEzpr(tk)zpr (th)JQR[R” QR]

The notationE[.] = limy—oc & Y p_; E[] is adopted from the with R = Ezf(tk)L(p)&?(tk)' Whereﬁg?(tk) is the noise-
prediction error framework of [15] free part ofg;(tx) and z;r(t) = L(p)Ho(p)Ao(p)zs (2).



VI. OPTIMAL INSTRUMENTAL VARIABLE ESTIMATORS
A. Theoretical results

The choice of the instrumentst), of ., of the weight-
ing matrix @ and of the prefilted.(¢) may have a consider-
able effect on the covariance mati;;,. In the open-loop
DT situation the lower bound of,;, for any unbiased

identification method is given by the Cramer-Rao boung,

in practice) will only cause second-order effects in the

resulting accuracy. Therefore it is considered to be s#fiici

to use consistent, but not necessarily efficient estimates
of the dynamics and of the noise when constituting the

instrument and the prefilter [15].

Additionally for obtaining the necessary preliminary mtsde

a restriction is made to linear regression estimates inrorde
keep computational procedures simple and tractable.

[15]’ [17]. Optimal choices of the above mentioned design 1) First solution: Several bootstrap IV methods have
variables exist 5o thalty., regches the Cram?’r R_ao bou_nd'been proposed, in an attempt to approximate the optimal IV
For the clo_sed-loop case, thls_ typ_e of reasoning is n_ot_mab}nethod, see €.g.[18], [17], [15] for the open-loop situatio
for.IV est|mat.es, as the ObJeCF'V? of rea_chmg minimum, g [11] for the closed-loop one. A first solution consists in
variance conflicts with the restriction that instrumentsl anextending one of these algorithms to the CT situation. Here
noise should be uncorrelated. However it has been Sho"?@developed the application of the IV4 method [15] to the

n [7]. that therg indeed eX'StS, a minimum 'value _Of theet closed-loop framework. The only difference between
covariance matrix’,;,, as a function of the design variables

z(t), L(¢g) and@, under the restriction that(t) is a function
of the external signat(t) only. All these works rely on the

use of a DT model. However, even in the CT identification, jica free part of
case, the covariance matrix can be optimized with respegtr models are es
to the design variables. By following the same reasoning.l
as in the DT case, the covariance matrix optimal value i(s

given by
opt opt I~ -1 7T T
Py > P, Py =ML [(Ao(p)Ho(P)) o (tk)]
~ —1
|(Ao(p)Ho(p) " OF (8]}
(20)
P°P! is then obtained by taking e.g.

T
(tk:)i| , My =MNg +Np + 1a
(21)

zr(ty) = [(AO(p)HO(p))_l (25?
Q=1, L(p) = [Ao(p)Ho(p)] "

Then, the optimal IV estimator can only be obtained if

the true noise (and process) mod&)(p)Hy(p) is exactly

open-loop and closed-loop cases is that in the latter, Abso t
input is correlated with the noise. Therefore, the instmise
have to be uncorrelated with(t) but correlated with the
(t). Moreover, according to section I,
timated to represent the transfers between
e filtered outputy(¢x)) and the filtered excitation signal
T (tx)) as well as for the transfer between the filtered input
(us(tx)) and the filtered excitation-signat (¢ )); but DT
models are used to estimate the noise contribution.

Method clivca.

1) Write the model structure as a linear regression

(tr, 0) = &7 (tx)6.

~(1a)

Yy (22)

Estimated by a least-squares method and @e;
along with the corresponding CT transfer function

known and therefore optimality cannot be achieved exactly

in practice. A solution to cope with this problem is to use
bootstrapping methods, as it will be discussed in the next

section.
Remark. In this framework, the filtet'(p) is supposed

to be fixeda priori by the user and by the way, it is not

included into the design variables of the method.

B. Approximate implementations

As the optimal IV method cannot be achieved in practice,
approximate implementations of the optimal IV method
will be considered. For this purpose one will need to take

care that firstly a model ofiyH, is available in order to
construct the prefilted.(¢) and the instruments(¢), and
secondly a first model of+y(¢) is needed to compute the
noise free part of the regressé(t).

Gls(p)'
2) Generate the instruments;,(tx) as
i __CWGub)
Gpis(te) = 100G 7(tk) (23)
u s t = ~ < t 24
U pis(tx) T 00) ls(p)rf( k) (24)
zps(tn) = =952 (te) -+ = Gpus(te)
A () - aps(tn)]” (25)

zr15(tx) represents the noise-free part of the regressor
¢¢(tx). Determine the IV estimate df in (22) as

A A N
97?’11 - szlsd)fRZflsyf

(26)

The corresponding estimated transfer function is

given by iy, (p) = 52

Let w(tx) = y{"* (tx) — é¢(t)s. This equation
holds for the CT case, and therefore it is still true at
the sampling instants. By the way, an AR model of or-

3)

The choice of the instruments and prefilter in the IV
method affects the asymptotic variance, while consistency
properties are generically secured. This suggests thairmin
deviations from the optimal value (which is not available

der2n,, can be postulated fab(t): L(¢g~H)w(ty) =
e(ty).

Estimate L(¢~') using a least-squares method and
denote the result by.(¢71).



4) Generate the instruments;, (tx) as can be considered as one of the more efficient method to
(na—1) B handle the time-derivative problem. This latter has been
zfiv(te) = [=0pp (k) - = Griv(ti) associated here with the two estimatodive4, clived)
ﬁ%z)(tk) ()T (27) presented abovg. To .iIIustrate.the effectiveness of the al-
gorithms and to investigate their performance, Monte Carlo
with 7, (1) anda g, (tx) computed as in equations simulations 0f200 runs with about4000 data points have

(23)-(24) on the basis of7;,(p). Using these instru- peen performed for a signal to noise ratio
ments z;, (t;) and the prefilterL(¢~!), determine

the IV estimate of) in (22) as SNR = 10log (@) _0 dB (31)
. ; . o2 ’
9M1 - R;1 ¢ TRZfivllfT7 (28) . .
X et where o denotes the standard deviatioR,, denotes the
where ¢¢r(ty) = L(¢g ')¢s(tx) and ypr(ty) = average power of the noise-free output fluctuation.
L(g Ny (t). The gpmf transform of minimal order 3 has been applied

2) Second solutionit has been shown previously that aand the Poisson filter coefficients have been set o5 =
first consistent estimation of the noise and process modéis(SeeFx(s) in equation (11)). .
has to be known in order to construct the instruments ant® Process parameters are estimated by using methods
the pre-filter. Since, the second order statistical prg,perplivc4 andclive3. Moreover, the results stemmed from the
is not of crucial importance, a simple solution consists ifirst closed-loop IV method developed by [7] and adapted to
estimating these models by using a least-squares estimatb CT model identification are also analyzed. This methods
The result will be obviously biased but the final estimatéeferenced aglivc, has been first presented in [19] and
will not be affected by an inaccurate model obtained in thi§ONsists in using the reference signal time-derivatives as
first step. Furthermore, in order to simplify the procedurdstruments; the estimate is thus given by
and to avoid the noise modelling, it was chosen to restrict N -1y
the second algorithm to the ARX models. In this particular 5 T , (na)
case, the pre-filte.(p) (eq (21)) is equal to 1. Betiv = l; Cr(te)oy (tk)] ;Cf (Be)yy ™ (t)
Method clive3. (32)
1) Write the moqlel structure as a linear regression (eq'CfT(tk) _ [T}zﬁnb(tk) ceorp(te)] € Rretmotl(33)
(22)), and estimaté by a least-squares method.
Then, get@ls along with the process and noise modeld-urthermore, the results stemmed from the bias-eliminated

G, (p) = Bi(p) (p) = —— respectively. least-squares method presented in [20] are also given for
moute th b oisefree Ak illustrati This method is denotedbats
2) Compute the noise-free part of the regressor iustration purposes. This method IS denoledasc
~ - Bode diagrams of the 200 estimated CT models for the
Py (tr) = [*ﬂ;'[;’_ ) - — s (te) clivc, the belsg clive4 and clive3 methods are plotted in
ﬂ;’;ﬁ)(tk) ()T Figures 2 to 5. It can be seen that both near optimal

IV techniques ¢livc4 and clive3) are more accurate than
with §715(tx) and g (t,) computed as in (23)-(24). the belsc and theclive algorithms. The proposedlivc4

Generate the instruments ag(t;) = ¢¢(tx). and clive3 methods give similar results and offer desirably
3) Using the instrument(t;), determine the IV esti- accurate estimates, but in the particular case of an ARX
mate in (22) as model, the latter is numerically much cheaper to implement.
O, = R;f1¢f R.,y;. (29)

VIl. EXAMPLE

The following numerical example is used to compare the
performances of the proposed approaches. The process to
be identified is described by equation (1), where

p+1 10p + 15
Go(p) = PEN—T C(p) =

and v (tx) = Ho(p)eo(tr) iIs a white Gaussian noise as
defined in section Il. The excitation is chosen to be a
pseudo-random binary signal of maximum length generated
from a shift register of order 9 and a clock period equals
to 8. The sampling period’ is chosen equal to 1 ms.

From the comparative studies recently presented [2], the Fig. 2. Bode plots of thelivc models
generalized Poisson moment functionadprf) approach

(30)

Frequency (rad/s)



not reachable in practice. Several methods have thus been
developed to determine the design parameters which allow
to approximate the optimal closed-loop IV estimator. These
methods have been compared to the recently suggested
aol . ] ‘ ‘ ‘ BELS methods which are known to lead to unbiased plant
estimates in closed loop. However for arriving at estimates
] with attractive variance properties it is preferably to lspp

1 bootstrap IV methods as considered in this paper.

B N
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Magnitude (dB)
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Fig. 5. Bode plots of thelive3 models



