Appendix

Table of common unilateral z-transforms

The table below provides a number of z-transforms and their region of convergence (ROC).

Signal	z-transform	ROC
$\delta(n)$	1	All z
$\delta(n-i)$	z^{-i}	$z \neq 0$
u(n)	$\frac{z}{z-1}$	z > 1
nu(n)	$\frac{z}{(z-1)^2}$	z > 1
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\frac{z(z+1)}{(z-1)^3}$	z > 1
$a^n u(n)$	$\frac{z}{z-a}$	z > a
$na^nu(n)$	$\frac{az}{(z-a)^2}$	z > a
$n^2 a^n u(n)$	$\frac{az(z+a)}{(z-a)^3}$	z > a
$cos(\omega_0 n)u(n)$	$\frac{z(z-\cos(\omega_0))}{z^2-2\cos(\omega_0)z+1}$	z > 1
$\overline{sin(\omega_0 n)u(n)}$	$\frac{\sin(\omega_0)z}{z^2 - 2\cos(\omega_0)z + 1}$	z > 1

Remarks:

• The notation for z found in the table above may differ from that found in other tables. For example, the basic z-transform of a unit discrete-time step u(n) can be written as either of the following two expressions, which are equivalent:

$$Z(u(n)) = U(z) = \frac{z}{z-1} = \frac{1}{1-z^{-1}}$$

• The ROC for a given sequence x(n), is defined as the range of z for which the z-transform converges. Since the z-transform is a power series, it converges when $x(n)z^{-n}$ is absolutely summable. Stated differently,

$$\sum_{n=0}^{+\infty} |x(n)z^{-n}| < \infty \quad \text{must be satisfied for convergence.}$$

Property 1. if x(n) is of finite duration, then the ROC is the entire z-plane, except possibly z=0 and/or $z=\infty$.

Property 2. The ROC does not contain any poles.

Useful properties of the unilateral z-transform

Some useful properties which have found practical use in signal processing are summarized below.

Property	signal	z-transform
linearity	ax(n) + by(n)	aX(z) + bY(z)
delays (or shifts)	x(n-1)	$z^{-1}X(z) + x(-1)$
	x(n-2)	$z^{-2}X(z) + x(-2) + z^{-1}x(-1)$
	x(n-i)	$z^{-i}X(z) + x(-i) + z^{-1}x(-i+1) + \dots$
		$\dots + \mathbf{z}^{-i+1}x(-1)$
convolution	$y(n) = [h \star e](n)$	Y(z) = H(z)E(z)
	$y(n) = \sum_{k = -\infty}^{\infty} h(k)e(n - k)$	
differentiation	nx(n)	$-z\frac{dX(z)}{dz}$
accumulation	$\sum_{k=0}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$
initial value theorem	if $x(n) = 0$ for $n < 0$	$x(0) = \lim_{z \to +\infty} X(z)$
final value theorem	$\lim_{n \to +\infty} x(n) = \lim_{z \to 1} (z - 1)X(z)$	if the limit exists

Useful properties of geometric series

Some useful properties of geometric series are summarized below.

$\sum_{n=0}^{N} q^n = \frac{1 - q^{N+1}}{1 - q} \text{if } q \neq 1$ infinite sum of geometric series $\lim_{N \to +\infty} \sum_{n=0}^{N} q^n = \frac{1}{1 - q} \text{if } q < 1$	finite sum of geometric series	$\sum_{n=0}^{N} q^n = N + 1$	if $q = 1$
infinite sum of geometric series $\lim_{N\to+\infty}\sum_{n=0}^N q^n=\frac{1}{1-q}$ if $ q <1$		$\sum_{n=0}^{N} q^n = \frac{1 - q^{N+1}}{1 - q}$	if $q \neq 1$
11-0	infinite sum of geometric series	$\lim_{N \to +\infty} \sum_{n=0}^{N} q^n = \frac{1}{1-q}$	if $ q < 1$