

Traitement du signal

Hugues Garnier

Exercices supplémentaires pour ceux qui veulent se tester.

« J'entends, j'oublie. Je vois, je me souviens. Je fais, je comprends. » Confucius.

Exercice 1. Soit le filtre numérique décrit par:

$$s(k) = 0.6e(k) + 0.1e(k-1) + 0.6e(k-2) + 1.2s(k-1) - 0.4s(k-2)$$

- (a) Déterminer la fonction de transfert H(z).
- (b) Préciser le type de filtre : RIF ou IIR. Justifier.

Exercice 2. Soit le filtre numérique décrit par:

$$H(z) = 1 + 5z^{-1} - 3z^{-2} + 2.5z^{-3} + 4z^{-5}$$

- (a) Déterminer l'équation aux différences du filtre.
- (b) Déterminer et tracer la réponse impulsionnelle.
- (c) Préciser le type de filtre : RIF ou IIR. Justifier.

Exercice 3. Soit un filtre numérique décrit par la fonction de transfert

$$H(z) = \frac{1}{4} + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}$$

- (a) Déterminer l'équation aux différences du filtre.
- (b) Déterminer et tracer sa réponse impulsionnelle.
- (c) Préciser le type de filtre : RIF ou IIR. Justifier.
- (d) Tracer le diagramme des pôles et des zéros.
- (e) Le filtre est-il stable? Justifier.
- (f) Déterminer analytiquement la réponse fréquentielle.
- (g) En dédduire le module et la phase de la réponse fréquentielle.
- (h) Tracer l'allure de la réponse fréquentielle en amplitude et en phase pour $f_e = 10kHz$. Pour le tracé de la réponse fréquentielle en amplitude, on pourra exploiter la relation

$$\cos^2(a) = \frac{1}{2} + \frac{1}{2}\cos(2a)$$

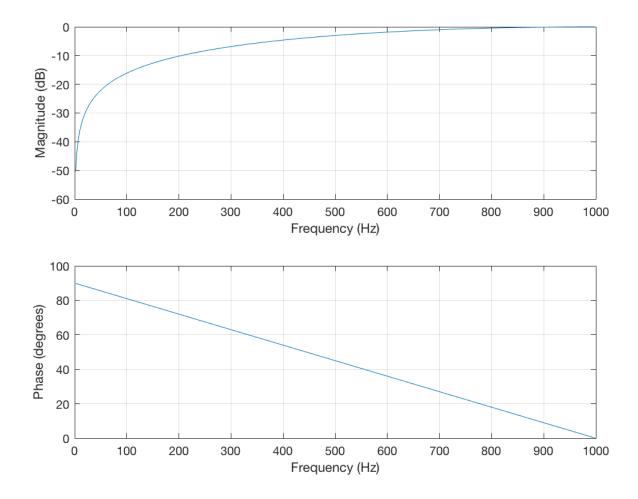


Figure 1: Diagramme de Bode en amplitude et phase d'un filtre numérique

(i) En déduire le type de filtrage réalisé et préciser la valeur de la fréquence de coupure.

Exercice 4. Le diagramme de Bode en amplitude et phase d'un filtre numérique est tracé sur la figure 1 pour $0 \le f \le \frac{f_e}{2}$. De ces tracés, déduire en justifiant :

- (a) le type de filtre (RIF ou RII). Justifier.
- (b) la fréquence d'échantillonnage f_e en Hz.
- (c) le type de filtrage réalisé (passe-bas, passe-haut, ...).
- (d) la fréquence de coupure f_c en Hz.

Exercice 5. Afin de traiter un son bruité, on souhaite concevoir un filtre numérique passe-pas.

- (a) On décide de choisir une structure de type RII. Quels sont les avantages et inconvénients respectifs des filtres RIF et RII ?
- (b) La fonction de transfert du filtre analogique de type Butterworth est choisie :

$$H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$$

Ce filtre analogique est-il stable? Justifier.

- (c) La fréquence d'échantillonnage est fixée à $f_e=4\rm kHz$. Déterminer la fonction de transfert du filtre numérique équivalent par la méthode bilinéaire.
- (d) Le filtre numérique est-il stable ? Justifier.
- (e) Donner l'équation de récurrence du filtre numérique obtenu.