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Course outline

Introduction to time series analysis and forecasting

I. Main characteristics of time series data

II. Time series decomposition

III. Basic time series modelling and forecasting methods

IV. Stochastic time series modelling and forecasting: 
The Box-Jenkins method for ARIMA models
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Classification of time series forecasting methods

Forecasting 
methods

Decomposition 
methods

Regression methods

Smoothing 
methods

- Moving average

- Exp. smoothing

The Box-Jenkins 
method

- ARIMA models

- SARIMA models

Deep learning 
methods

- LSTM models

- GRU models, etc

• ARIMA methodology of forecasting is different from most methods because it does not 
assume any particular patterns in the historical data of the time series to be forecast
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The Box-Jenkins method for ARIMA models

• It uses an interactive approach of identifying a possible model from a 
general class of models, named ARIMA
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𝜃!𝐿! 𝜀&

• The chosen model is then checked against the historical data to see if it 
accurately describes the series

• The Box-Jenkins method
– has been remarkably successful  
– has excellent performance on small data sets 
– remains quite close to the performance of recent 

cutting edge methods 
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ARIMA models

• AutoRegressive Integrated Moving Average (ARIMA) models were 
popularized by George Box and Gwilym Jenkins in the early 1970s

• ARIMA models rely heavily on autocorrelation patterns in the data

• ARIMA models do not involve independent variables in their construction
– They make use of the information in the series itself to generate forecasts
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Family of ARIMA models

Time series

Stationary

AR models

MA models 

ARMA models

Non-stationary

Non-seasonal

ARIMA models

Seasonal

SARIMA models

• ARIMA models are a class of black-box models that is capable of 
representing stationary as well as non-stationary time series 
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Major assumption: stationarity of the time series
• The properties of one section of a data are much like the properties of the other 

sections. The future is “similar” to the past (in a probabilistic sense)

• A stationary time series has

- no trend / no seasonality

- no systematic change in variation

- no periodic fluctuations

• One of the first steps in the Box-Jenkins method is to transform a non-stationary 
time series into a stationary one (by using a detrending or differencing method)
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• Autocorrelation and partial autocorrelation plots are heavily used in time 
series analysis and forecasting

• These are plots that graphically summarize the strength of a relationship 
with an observation in a time series with observations at prior time 
instants 

• The difference between autocorrelation and partial autocorrelation plots 
can be difficult and confusing for beginners to time series forecasting

• Plots of the autocorrelation and partial autocorrelation functions for a 
time series tell a very different story and are very useful to select the 
order of an ARIMA model

Key statistics for time series analysis:
Autocorrelation and partial autocorrelation functions
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Autocorrelation function (ACF)

• Statistical correlation summarizes the 
strength of the relationship between 
two different variables 

• We can calculate the correlation for 
time series observations with 
observations with previous time 
instants, called lags. This is called an 
autocorrelation 

• A plot of the autocorrelation of a time 
series in terms of lags is called the 
AutoCorrelation Function, or its 
acronym ACF

• Sample ACF at lag h, denoted as 𝛾( ℎ , 
measures the linear correlation between 
𝑦& and 𝑦&)*
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ACF: stationarity case

• Autocovariance function of a stationary time series 𝑦!
𝛾" ℎ =Cov 𝑦!#$ , 𝑦! =Ε (𝑦!#$−𝜇)(𝑦!−𝜇) ℎ < 𝑁

with the following 3 properties

1. 𝛾!(0) ≥ 0,

2. 𝛾!(ℎ) ≤ 𝛾!(0)
3. 𝛾! ℎ = 𝛾! −ℎ
⇒ even function. ACF is usually plotted for positive lags)

• Autocorrelation function of a stationary time series 𝑦!

𝜌" ℎ =
𝛾"(ℎ)
𝛾"(0)

0 ≤ ℎ < 𝑁

with all the properties of the autocovariance function, except 𝜌( 0 = 1

• It measures the linear correlation between 𝑦! and 𝑦!#$

0

𝛾! ℎ

ℎ
.𝑦"

𝜎"

lag
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• ACF: measures the speed of variation of temporal evolutions

Autocorrelation function (ACF)

– we compare the time series with itself but shifted by t (or h)
– it allows us to see how the time series at a given time is influenced 

(linear autocorrelation) by what happened at a previous time
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Autocorrelation function (ACF)
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Sample statistics
• Given 𝑦&, . . . , 𝑦' observations of a stationary time series 𝑦! ,

estimate the sample mean, variance, autocovariance and ACF
– Sample mean

!𝜇 = $𝑦 = /
0
∑12/0 𝑦1

– Sample variance

!𝜎3 = /
04/

∑12/0 𝑦1 − !𝜇 3

– Sample autocovariance function 

1𝛾" ℎ =
1
𝑁
3
()&

'*$

𝑦(#$ − 4𝑦 𝑦( − 4𝑦 , 0 ≤ ℎ < 𝑁,

with 1𝛾! ℎ = 1𝛾! −ℎ , −𝑁 < ℎ ≤ 0
– Sample autocorrelation function (ACF)

1𝜌" ℎ =
1𝛾"(ℎ)
1𝛾"(0)

, ℎ < 𝑁
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y	=	[0	1	1	1	0] N=5

4𝑦 =
1
56
!"#

$

𝑦! = 0.6

9𝛾% ℎ =
1
56
&"#

$'(

𝑦&)( − 4𝑦 𝑦& − 4𝑦 , ℎ = 0, 1,2, 3,4

9𝜌% ℎ =
9𝛾%(ℎ)
9𝛾%(0)

, ℎ = 0, 1,2, 3,4

9𝜌% = [1 − 0.13 − 0.26 − 0.4 0.3]

In Matlab : 

y=[0 1 1 1 0]; 
[rho_hat_y,Lag]=xcov(y,’norm’);
stem(Lag,rho_hat_y)
Or
autocorr(y)

Sample ACF - Example

*𝛾! 0 =
1
50
"#$

%

𝑦" − 3𝑦 𝑦" − 3𝑦 = 0.24

*𝛾! 1 =
1
5
0
"#$

&

𝑦"'$ − 3𝑦 𝑦" − 3𝑦 = −0.0320

*𝛾! 2 =
1
5
0
"#$

(

𝑦"') − 3𝑦 𝑦" − 3𝑦 = −0.0620

*𝛾! 3 =
1
5
0
"#$

)

𝑦"'( − 3𝑦 𝑦" − 3𝑦 = −0.0960

*𝛾! 4 =
1
5
0
"#$

$

𝑦"'& − 3𝑦 𝑦" − 3𝑦 = 0.0720

(Matlab econometrics toolbox)
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Partial autocorrelation function (PACF)
• The autocorrelation for an observation 𝑦;

and an observation at a prior time-instant 
𝑦;)( is comprised of both the direct 
correlation and indirect correlations between
𝑦; and 𝑦;)#, 𝑦;)<, … , 𝑦;)('#

• These indirect correlations are a linear 
function of the correlation of the 
observation, with observations at 
intermediate time-instants

• It is these indirect correlations that the partial 
autocorrelation function tries to remove 

• A plot of the partial autocorrelation of a time 
series in terms of lags is called the Partial 
Autocorrelation Function, or by its acronym 
PACF

• Sample PACF at lag h, denoted as 𝛼% ℎ , 
measures the linear correlation between 𝑦;
and 𝑦;)(, but after statistically removing the 
effect of 𝑦;)#, 𝑦;)<, … , 𝑦;)('#
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Plots of the ACF and PACF for a time series 
tell a very different story - Example
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The white noise process
The most fundamental example of stationary process

• A white noise process is a sequence of independent and identically 
distributed (i.i.d) random variables

– The sequences are uncorrelated, have zero mean, and constant variance
– A Gaussian white noise are i.i.d observations from 𝒩(0, 𝜎+)
– Because independence implies that its variables are uncorrelated at different

times, its ACF looks like a Kronecker impulse
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Sampling distribution of sample ACF

• Sampling distribution of ACF for a white noise is asymptotically

Gaussian 𝒩 0, #
$

– 95% of all ACF coefficients for a white noise must lie within ± #.-.
/

– It is common to plot horizontal limit lines at ± #.-.
/

when plotting the ACF

• If N = 125, critical values at ± #.&'
#"(

= ±0.175
– All ACF coefficients lie within these limits, confirming that the data are

white noise (more precisely, the data cannot be distinguished from white noise)



H. Garnier19

Properties of white noise process
• Best forecast of a white noise

– If a time series is white noise, it is unpredictable and so there is nothing to 
forecast. Or more precisely, the best forecast is its mean value which is zero

• Whitening test of the residuals
– At the validation stage of the Box-Jenkins methodology, we will check whether 

the forecast errors (=the residuals) are a white noise by plotting its sample ACF

– If the residual ACF does not resemble to the ACF of a white noise, it suggests that 
improvements could be made to the predictive model

– If the residual ACF resembles to the ACF of a white noise, the modelling procedure is 
finished. There is nothing else to capture in the residuals and the estimated ARIMA model 
can be used for forecast

Sample ACF shows 
some significant 
autocorrelations at 
lags 1, 2, 3 and 4.
This shows the 
residuals are not 
white here
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Models for stationary random signals or time series

𝑦; =
Θ(𝐿)
Φ(𝐿) 𝜀;
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General linear parametric model 
of stationary time series

• Box and Jenkins in 1970 (following Yule and Slutsky 1927)
– Many time series (or their derivatives) can be considered as a special class of 

stochastic processes: (weakly) stationary stochastic processes
• First two moments are finite and constant over time
• Defined completely by the mean, variance and autocorrelation function

• General parametric model of stationary stochastic processes (Wold 1938)
– All (weakly) stationary stochastic processes can be written as

𝑦& = 𝑐 +#
!"#

)0

𝜓!𝜀&1! + 𝜀&

where 𝑐 is a constant and 𝜀& is a white Gaussian noise

– 𝜀& is often called the innovation process because it captures all new 
information in the series at time t
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Lag or backward shift L operator

• The Lag or backward shift operator, L , is defined as

𝐿 𝜀! = 𝜀!*&

𝐿J 𝜀! = 𝜀!*J

• The general linear model of a stationary stochastic process can be written as

𝑦) = 𝑐 + ∑*+#,-𝜓*𝜀).* + 𝜀)

𝑦) = 𝑐 + 𝜓(𝐿) 𝜀)

Ψ 𝐿 = 1 + ∑*+#,-𝜓*𝐿*

• This model has an infinite-degree polynomial Ψ 𝐿 with infinite coefficients

which cannot be estimated from a finite amount of data in the time series 😩
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Towards AR, MA and ARMA models 
for stationary time series

• If Ψ 𝐿 is a rational polynomial, we can write it (at least approximately) as the 
quotient of two finite-degree polynomials

Ψ 𝐿 =
Θ(𝐿)
Φ(𝐿)

Θ 𝐿 = 1 + 𝜃#𝐿# +⋯+ 𝜃'𝐿'
Φ 𝐿 = 1 − 𝜙#𝐿# −⋯− 𝜙$𝐿$

• Wold’s theorem:  every stationary stochastic process can be written as

𝑦) = 𝑐 + /(1)
3(1)

𝜀)

– which has a finite number (p + q) of coefficients 

• This leads to the use of parsimonious models : AR, MA and ARMA models
– They are most useful for practical applications since these models can be quite easily 

estimated from a finite amount of data in the time series

(Matlab Econometrics 
toolbox notations)
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Family of ARMA models for stationary time series

• ARMA models: a way to “see” stationary time series as filtered white noise
– The filter takes different forms according to the time series properties

c is a constant (mean of the time series)

𝜀& ∼ 𝒩(0, 𝜎+)

𝑦)𝜀)

AR models ARMA modelsMA models

1
Φ(𝐿)

𝑦) = 𝑐 +
Θ(𝐿)
Φ(𝐿)

𝜀)

Θ(𝐿)
Φ(𝐿)

Θ(𝐿)
𝜀) 𝜀)

𝑦) = 𝑐 + Θ(𝐿)𝜀)𝑦) = 𝑐 +
1

Φ(𝐿)
𝜀)

𝑐
+

+

𝑐
+

+

𝑐
+

+

𝑦) 𝑦)
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AutoRegressive models: AR(p) models

• An autoregressive model of order p, AR(p), is defined by (Yule 1927)

𝑦) = 𝑐 +C
*+#

4

𝜙*𝑦).* + 𝜀)

– where 𝑝 ≥1, 𝑐 is a constant and 𝜀; ∼ 𝒩(0, 𝜎<)

• It can also be written in Lag-operator polynomial form:

Φ(𝐿) 𝑦) − 𝑐 = 𝜀)
Φ 𝐿 = 1 − 𝜙#𝐿# −⋯− 𝜙4𝐿4

• Stationarity conditions

– An AR(p) process is stationary if all roots of Φ 𝐿 are outside the unit circle

• Special case

– if one or more roots lie on the unit circle (i.e., have absolute value of one), the 
model is called a unit root process model, which is non-stationary

• When p=1 and 𝑐 = 0, 𝜙#=1, 𝑦& = 𝑦&1# + 𝜀& is a non-stationary random walk, 
which is a unit root process

(Matlab Econometrics 
toolbox notations)
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Different forms of an AR(2) model 
Example  

• An autoregressive model AR(2) of order 2 is given
𝑦) = −0.5𝑦).# − 0.9𝑦)." + 𝜀)

• It can also be written in Lag-operator polynomial form:
𝑦) + 0.5𝑦).# + 0.9𝑦)." = 𝜀)
(1 + 0.5𝐿# + 0.9𝐿")𝑦) = 𝜀)
Φ(𝐿)𝑦) = 𝜀)
Φ 𝐿 = 1 + 0.5𝐿# + 0.9𝐿"

• Stationarity condition
– This AR(2) process is stationary since the two roots of Φ 𝐿 are outside the unit 

circle (𝐿!,# = −0.28 ± 1.02𝑖) 

– Note that the polynomial 𝛷 𝐿 is written in a different form than usually used in Control Engineering or 
Signal Processing where the backward operator 𝑞$! is used so that the polynomial would be                 
𝛷 𝑞$! = 1+ 0.5𝑞$! + 0.9𝑞$#. With this negative power notation for the polynomial, the filter would be 
stable if the roots of 𝛷 𝑞$! are inside the unit circle. Do not be confused by the Lag-operator polynomial 
form used here and apply the appropriate rule to test the stationarity of the AR process! 
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Properties of AR(p) process
• Autocorrelation function

lim
*→)0

𝛾( ℎ = 0

– The sample ACF exponentially decreases 
to 0 when h→ +∞

• Partial autocorrelation function
𝛼( ℎ = 𝜙* for ℎ = 𝑝
𝛼( ℎ = 0 for ℎ > 𝑝

– The sample PACF of an AR(p) process 
cuts off after p lags

• Order selection of an AR process
– PACF is the plot to be used to 

select the order p of an AR process
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AR(1) process example:
𝑦! = 0.8𝑦!*& + 𝜀!

PACF cuts off after 1 lag ⇒AR(1) process
PACF(1) =𝜙$=0.8
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AR(1) process example:
𝑦! = −0.8𝑦!*& + 𝜀!

PACF cuts off after 1 lag ⇒AR(1) process
PACF(1) =𝜙$=-0.8



H. Garnier30

AR(2) process example:
𝑦) = −0.9𝑦)." + 𝜀)

PACF cuts off after 2 lags ⇒AR(2) process
PACF(2) =𝜙) =-0.9
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AR(2) process example:
𝑦) = −0.5𝑦).# − 0.9𝑦)." + 𝜀)

PACF cuts off after 2 lags ⇒AR(2) process
PACF(2) =𝜙)=-0.9
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Moving Average models: MA(q) models
• A moving average model of order q , MA(q), is defined by (Slutsky 1927)

𝑦) = 𝑐 +C
*+#

5

𝜃*𝜀).* + 𝜀)

– where q ≥1, c is a constant and 𝜀; ∼ 𝒩(0, 𝜎<)

• It can also be written in Lag polynomial form:

𝑦) − 𝑐 = Θ(𝐿)𝜀)
Θ 𝐿 = 1 + 𝜃#𝐿# +⋯+ 𝜃5𝐿5

• Stationarity and invertibility conditions
– An MA(q) process is always stationary (to the second order)

– An MA(q) process is invertible if all its roots are outside the unit circle (required to be able to 
compute forecast)

Moving Average models and related methods should not be confused 

with Moving Average smoothing methods !

(Matlab Econometrics
toolbox notations)
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Different forms of an MA(2) model 
Example  

• A moving average model MA(2) of order 2 is given
𝑦) = 𝜀) − 0.8𝜀).# + 0.5𝜀)."

• It can also be written in Lag polynomial form:
𝑦) = (1 − 0.8𝐿# + 0.5𝐿")𝜀)
𝑦) = Θ(𝐿)𝜀)
Θ 𝐿 = 1 − 0.8𝐿# + 0.5𝐿"

• Stationarity and invertibility conditions

– The MA(2) process is stationary (always) and invertible since the two roots 
of Θ 𝐿 are outside the unit circle (𝐿#,+ = 0.8 ± 1. 16𝑖)
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Properties of MA(q) process
• Autocorrelation function

𝛾( ℎ = 0 for ℎ > 𝑞

– The sample ACF of an MA(q) process cuts 
off after q lags

• Partial autocorrelation function
lim
*→)0

𝛼( ℎ = 0

– The absolute value of the sample PACF 
exponentially decreases to 0 when            
h→ +∞

• Order selection of an MA(q) process
– ACF is the plot to be used to select 

the order q of an MA process
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MA(1) process example:
𝑦! = 𝜀! − 0.8𝜀!*&

ACF cuts off after 1 lag ⇒MA(1) process
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MA(1) process example:
𝑦! = 𝜀! + 0.8𝜀!*&

ACF cuts off after 1 lag ⇒MA(1) process
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MA(2) process example:
𝑦) = 𝜀) − 0.5𝜀).# + 0.4𝜀)."

ACF cuts off after 2 lags ⇒MA(2) process
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Moving Average Autoregressive models: 
ARMA(p,q) models

• An ARMA(p,q) of order p	and q is defined by (Slutsky 1927)

𝑦& = 𝜃4 +#
!"#

$

𝜙!𝑦&1! +#
!"#

'

𝜃!𝜀&1! + 𝜀&

– where p ≥1, q ≥1, 𝜃4 = 𝑐𝛷 𝐿 and 𝜀! ∼ 𝒩(0, 𝜎")

• It can also be written in Lag-operator polynomial form:

Φ 𝐿 𝑦3 = 𝜃4 + Θ 𝐿 𝜀3
or Φ 𝐿 (𝑦3−𝑐) = Θ 𝐿 𝜀3

Θ 𝐿 = 1 + 𝜃#𝐿# +⋯+ 𝜃'𝐿'
Φ 𝐿 = 1 − 𝜙#𝐿# −⋯− 𝜙$𝐿$

• Stationarity  and invertibility conditions

– An ARMA(p,q) process is stationary if all roots of Φ 𝐿 are outside the unit circle

– An ARMA(p,q) process is invertible if all roots of Θ 𝐿 are outside the unit circle

(Matlab econometrics
toolbox notations)
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Different forms of an ARMA(1,1) model 
Example  

• A moving average model ARMA(1,1) is given
𝑦) = 0.8𝑦).# + 𝜀) − 0.5𝜀).#

• It can also be written in Lag-operator polynomial form:
𝑦) − 0.8𝑦).# = 𝜀) − 0.5𝜀).#
(1 − 0.8𝐿)𝑦)= (1 − 0.5𝐿)𝜀)
Φ 𝐿 𝑦) = Θ 𝐿 𝜀)

Θ 𝐿 = (1 − 0.5𝐿)
Φ 𝐿 = (1 − 0.8𝐿)
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Properties of ARMA process

• Autocorrelation function
– The ACF of an ARMA(p,q) process exponentially decreases to 0

when h→ +∞ from order q+1

• Partial autocorrelation function
– No special properties

• Order selection of an ARMA(p,q) process
– There are no such simple rules for selecting the p and q orders from 

the ACF and PACF plots
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ARMA(1,1) process example:
𝑦! = 0.8𝑦!*& + 𝜀! − 0.5𝜀!*&

No simple rules for selecting the p and 
q orders from the ACF and PACF plots
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AR(p), MA(q) and ARMA(p,q) processes
Summary of ACF and PACF properties

– An AR(p) process has PACF 𝛼𝑦 ℎ = 0 for ℎ > 𝑝 and 𝛼( 𝑝 = 𝜙$

– An MA(q) process has ACF 𝜌𝑦 ℎ = 0 for ℎ > 𝑞

– For ARMA(p, q) processes, there are no such simple rules for selecting the 
orders of ARMA(p, q) processes from its ACF or PACF
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Families of ARIMA models

Time series

Stationary

AR models

MA models 

ARMA models

Non-stationary

Non-seasonal

ARIMA models

Multiplicative 
Seasonal

SARIMA models
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Identifying stationary/non-stationary time series

• Stationary time series: 
– is roughly horizontal
– has constant variance
– Has no trend nor seasonality
– has no patterns predictable in the long-term 
– its ACF drops to zero relatively quickly

• Non-stationary time series
– has trend and seasonality
– its ACF decreases slowly
– the ACF value at lag 1 is often large and 

positive
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Non-stationary time series:
standard decomposition model

• Recall the standard decomposition model of a non-stationary process 𝑦&

𝑦! = 𝑇! + 𝑆! + 𝑥!

• 𝑇& is a trend-cycle component
• 𝑆& is a seasonality component
• 𝑥& is a stationary random component

• Since the Box-Jenkins methodology is for stationary models only, it is first required to detrend 
and deseasonalize the nonstationary series by using one of the two methods below
- Estimate (by linear regression) and then remove a deterministic trend and seasonality
- Difference the time series

Note that Box-Jenkins seemed to prefer the differencing method
while several others prefer the deterministic trend removal method
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• Let ΔS be the operator of lag-T 

Δ?𝑦) = 1 − 𝐿? #𝑦) = 𝑦) −𝑦).?

A lag-T differencing of order 1 is applied to the time series

• Applying ΔS d times in a successive way to a time series 

Δ? @𝑦) = 1 − 𝐿? @𝑦)

A lag-T differencing of order d is applied to the time series

Operator of lag-T
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Lag-1 differencing to remove polynomial trend 
and achieve stationarity

• Let 𝑦! be a time series with a polynomial trend of order k : 

𝑦! =3
J)T

U

𝛽𝑡J + 𝑥!

• Applying the operator of lag-1 𝛥& to the time series

𝛥&𝑦! = 𝑦! − 𝑦!*&

– Then, the lag-1 differenced time series will have a polynomial trend 
of order k-1

– lag-1 difference reduces by 1 the degree of a polynomial trend

⇒ Applying successive Lag-1 differencing removes trend 
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• To remove deterministic trends
– Apply lag-1 differencing of order d on the time series

Δ& V𝑦! = 1 − 𝐿 V𝑦!
– When d=1, we have the simple first difference of the time series

Δ#𝑦) = 1 − 𝐿 𝑦) = 𝑦) − 𝑦).#
– When d=2, we have the double difference of the time series

Δ# "𝑦) = 1 − 𝐿 "𝑦) = 𝑦) −2 𝑦).# + 𝑦)."

• How to choose the order d of lag-1 differencing ? 
– In practice d = 0 ; 1; 2

• d=0: no differencing (no trend)
• d=1: perform differencing once (to remove linear trend)
• d=2: double-differencing (to remove quadratic trend)

How to choose the order d of lag-1 differencing ?
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Lag-s differencing to remove seasonality trend
and achieve stationarity

• Let 𝑦) be a time series with a trend 𝑇) and a season pattern 𝑆) of period s 
(𝑆),A = 𝑆)): 

𝑦! = 𝑇! + 𝑆! + 𝑥!
• Applying the operator 𝛥A to the time series

𝛥W𝑦! = 𝑦! − 𝑦!*W = (𝑇! − 𝑇!*W)+ (𝑆! − 𝑆!*W) + ( 𝑥! − 𝑥!*W)
𝛥W𝑦! = (𝑇! − 𝑇!*W)+( 𝑥! − 𝑥!*W)

– Then, the lag-s differentiated time series does not present any more seasonal 
pattern

⇒ Applying lag-s differencing removes a seasonal pattern of period s
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How to choose the order D of lag-s differencing? 

• To remove deterministic seasonality
– Apply lag-s differencing of order D on the time series

ΔW X𝑦! = 1 − 𝐿W X𝑦!

• How to choose the order D of lag-s differencing? 
– In practice D = 0 ; 1

• D=0: no differencing (no seasonality)
• D=1: perform differencing once (to remove seasonality)

• Example
– if s=12, we have the lag-12 differencing of the series as (for monthly time 

series data and annual seasonality for example) 

Δ&Y𝑦! = 1 − 𝐿&Y 𝑦! = 𝑦! − 𝑦!*&Y
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Differencing in practice

• Advantage: 
– easy to understand 
– allows forecast since we can forecast ΔA𝑦) and then go back to 𝑦)

• In practice: 
– Start by removing the seasonality trend by applying Δ5
– Plot the deseasonalized time series and check whether it seems stationary
– If it does not visually seem stationary, apply then again Δ#
– Plot the deseasonalized and differenced time series and check whether it 

now seems stationary
– If not, apply again Δ#, but try to keep small the value for the number of 

differencing times 

Beware of over-differencing
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Converting nonstationary to stationary time series
by differencing - Example

The data look nonstationary, with a linear 
trend and seasonal periodicity

The ACF does not die out quickly and 
shows a cyclical pattern of period 12. 
This also points to nonstationarity in the 
time series
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Converting nonstationary to stationary time series 
by differencing - Example

The differenced series appears now 
much more stationary

Although the sample ACF and PACF of 
the differenced series still show significant 
autocorrelation at certain lags, they seem 
correspond to a stationary process. 
The remaining autocorrelation could be 
captured by an ARMA model

A seasonal differences of length 12 has been applied. The linear trend has been removed by first-differencing the data.
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ARIMA models for non seasonal time series data

• The general non-seasonal model is known as ARIMA(p,d,q):

Φ 𝐿 (1 − 𝐿)V (𝑦!−𝑐) = DΘ 𝐿 𝜀!

• 𝑦) is an ARIMA(p,d,q) model if (1 − 𝐿)@(𝑦)−𝑐) is an ARMA(p,q) model

(1 − 𝐿)@(𝑦) − 𝑐) =C
*+#

4

𝜙*𝑦).* +C
*+#

5

𝜃*𝜀).* + 𝜀)

AR part
of order p

MA part
of order q

Lag-1 differencing
of order d
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Consider the following ARIMA(2,1,1) model:

(1 − 𝜙#𝐿# − 𝜙+𝐿+) (1 − 𝐿) (𝑦&−𝑐) = 1 + 𝜃#𝐿 𝜀&

The model includes all consecutive AR and MA lags from 1 through their respective 
orders p and q

Understanding ARIMA(p,d,q) model orders
Example

AR part
of order p=2

MA part
of order p=1

Lag-1 differencing
of order d=1
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Understanding ARIMA models

• The general non-seasonal model is known as ARIMA(p,d,q):

𝛷 𝐿 (1 − 𝐿)V(𝑦!−𝑐) = 𝛩 𝐿 𝜀!

• The intercept c of the model and the differencing order d have an 
important effect on the long-term forecasts: 

– c=0   and  d=0 ⇒ long-term forecasts will go to 0 

– c=0   and  d=1 ⇒ long-term forecasts will go to constant ≠ 0 

– c=0   and  d=2 ⇒ long-term forecasts will follow a straight line 

– c≠ 0 and  d=0 ⇒ long-term forecasts will go to the mean of the data 

– c≠ 0 and  d=1 ⇒ long-term forecasts will follow a straight line 

– c≠ 0 and  d=2 ⇒ long-term forecasts will follow a quadratic trend 
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Special ARIMA models

- ARIMA(0,1,0) = random walk

- ARIMA(0,1,1) without constant = simple exponential smoothing 

- ARIMA(0,2,1) without constant = linear exponential smoothing 

- ARIMA(1,1,2) with constant = damped-trend linear exponential  
smoothing 
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• Two situations can occur, depending on your goal: 
– obtain an understanding of the model 
– obtain a very good forecast 

• General tips 
– Start by differencing the series if needed, in order to obtain 

something visually stationary 
– Look at the ACF and PACF plots and identify possible model orders 
– Estimate several models and select the best one by using model 

selection criteria such as AIC or BIC 

How to choose ARIMA orders (p, d, q) 
in practice ?
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SARIMA models for seasonal time series data

• The multiplicative seasonal model is known as SARIMA(p,d,q)×(P,D,Q)s:

(1 − 𝜙#𝐿# −⋯− 𝜙4𝐿4)(1 − Φ#𝐿B −⋯−ΦB𝐿AB) 1 − 𝐿 @ 1 − 𝐿A C(𝑦) − 𝑐) =
1 + 𝜃#𝐿 + ⋯+ 𝜃#𝐿5 (1 + Θ#𝐿D +⋯+ ΘD𝐿AD)𝜀)

– p is the number of non-seasonal AR terms
– d is the order of non-seasonal first difference (lag-1)
– q is the number of non-seasonal MA terms
– s is the number of time periods for a season
– P is the time lag seasonal AR (SAR) terms
– D is the order of seasonal differences (lag-s) 
– Q is the time lag seasonal MA (SMA) terms
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Consider the following SARIMA (2,1,1)×(2,1,1)12 model:

(1 − 𝜙#𝐿# − 𝜙+𝐿+) 1 − Φ#+𝐿#+ −Φ+6𝐿+6 (1 − 𝐿)(1 − 𝐿#+)(𝑦&−𝑐) = 𝑐 + 1 + 𝜃#𝐿 1 + Θ#+𝐿#+ 𝜀&

– The period of the season is s=12
– The model includes all consecutive AR and MA lags from 1 through their respective orders p 

and q 
– The lags of the SAR and SMA polynomials are consecutive multiples of the period (s=12) 

from 12 through their respective specified order P and Q, times 12

Understanding SARIMA(p,d,q)×(P,D,Q)s model orders
Example

AR part
of order p=2

MA part
of order q=1

Lag-1 
differencing
of order d=1

SAR part
of order P=2

Lag-12 
differencing
of order D=1

SMA part
of order Q=1
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• The seasonal part of an AR or MA model can be seen in the seasonal 
lags of the ACF and PACF

• Examples

– an SARIMA(0,0,0)(1,0,0)12 will show
§ a spike at lag 12 in the PACF, and no other significant spikes
§ an exponential decay in the seasonal lags of the ACF

– an SARIMA(0,0,0)(0,0,1)12 will show
§ a spike at lag 12 in the ACF, and no other significant spikes 
§ an exponential decay in the seasonal lags of the PACF

How to choose SARIMA orders (P,D,Q)s
in practice
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• Use visual inspection to observe the trend and seasonality
– Look at the ACF and PACF plots and identify possible orders

• General tips 
– Use differencing to remove the trend and seasonality
– Keep the orders simple

• According to Box-Jenkins
– “the maximum value of each SARIMA model orders p, d, q, P, D, Q is 2”

• According to Robert Nau, Duke University
– “In most cases, either p or q is zero and p+q ≤ 3”

• 𝐝 = 𝟎 ; 𝟏; 𝟐 , 𝐩 + 𝐪 ≤ 3
• 𝐃 = 𝟎 ; 𝟏 , P= 𝟎 ; 𝟏 , Q= 𝟎 ; 𝟏
• Standard value for the period s =12 for an annual seasonality if monthly time 

series data

How to choose all the orders (p,d,q)×(P,D,Q)
of a SARIMA model in practice
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The Box-Jenkins methodology

• The Box-Jenkins methodology 
refers to a set of stages for 
identifying, fitting, and checking 
ARIMA models for time series data

• The basis of Box-Jenkins approach 
to modeling time series consists of 
three main stages:

1. Identification
2. Estimation
3. Diagnostics

• Forecasts follow directly from the 
form of fitted model
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The Box-Jenkins methodology: 
Estimation and model selection

• Once the orders (p, d, q) are selected, Maximum Likelihood Estimation 
(MLE) through optimization algorithms can be used to estimate the 
model parameters

• MLE cannot be used to choose orders(p,d,q)
– the larger (p, d, q) ⇒ the larger the number of parameters ⇒ the more 

flexible the model ⇒ the larger the likelihood 

– MLE should be penalized by the complexity of the model (≃ number of 
parameters to be estimated)

• Some model selection criteria can be used. The idea is to test a range 
of possible model candidates and to compute the criteria for each 
model structure tested
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The Box-Jenkins methodology: 
Model selection 

• Let L(θ) denote the value of the maximized likelihood objective function for 
a model with a total of np parameters fitted to N data points

• Information criteria are likelihood-based measures of model fit that include 
a penalty for complexity, specifically, the number of parameters np

• Different information criteria are distinguished by the form of the penalty, 
and can favor different models

– Akaike information criterion (AIC) : −2logL(θ) +2 np

– Bayesian information criterion (BIC) : −2logL(θ) + np log(N) 

• When you compare values for a set of model candidates, smaller values of 
the criterion (AIC or BIC) indicate a better, more parsimonious model 
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Occam's Razor Rule
designates by metaphor the opportunity to "cut off", as with a razor, the superfluous assumptions of a theory
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The Box-Jenkins methodology: 
Forecasting 

• It is impossible to forecast without error

• The good engineer should
– forecast what can be forecast
AND
– provide uncertainty intervals

•67
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Confidence intervals 

• Assuming that the residuals are normally distributed, we can usefully 
assess the accuracy of a forecast by using MSE as an estimate of the 
error

where MSE= #
$
S)+#

$ 𝑦) − 1𝑦) "

• An approximate prediction interval for the next observations is

1𝑦!#& ± 𝑧 MSE

where z is a quantile of the normal distribution. 
Typical values used are given in the table 

• This enables, for example, 95% or 99% confidence intervals to be set 
up for any forecast 

•68
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The Box-Jenkins methodology in details

I. Identification 
1. Data preparation

a. Transform data to stabilize variance (apply logarithm, etc)
b. Differencing data to obtain stationary series 

2. Model selection 
a. Examine data to identify potential models
b. Examine ACF, PACF 
c. Use automatic search methods

II. Estimation
1. Estimate parameters in potential models
2. Select best model using suitable information criteria (AIC, BIC,…) 

III. Diagnostics
1. Check ACF/PACF of residuals
2. Are the residuals white noise? 
3. Do more statistical tests of residuals
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home.ubalt.edu/ntsbarsh/stat-data/BJApproach.gif
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Let us apply the Box-Jenkins methodology to

- ARIMA model estimation and forecast - Australian Consumer Price Index

- SARIMA model estimation and forecast - International airline passenger data

For each case study
1. Plot the time series and check whether the variance needs to be stabilized
2. Check whether it is stationary. Does it show trends and seasonality? 
3. Apply the differencing method to remove possible trend and seasonal pattern
4. Specify the period of the seasonal pattern (if any), the degree of the polynomial trend. 
5. Check whether the differenced series seems stationary? Does it look like a white noise? 
6. If not, determine the best ARMA model structure for the time series and estimate the 

full model form
7. Use your best model to forecast the time series over the next 5 years

Two case studies
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– Data available are the logarithm Australian CPI. The variance of the log CPI remains constant over 
time. There is no need for further transformation

First case study – Australian Consumer Price Index (CPI)
Step 1 – Identification

– From the time plot, the time series is nonstationary, with a clear upward trend, also noticeable from 
the slow decrease of the ACF

– We need to remove the linear trend by first differencing the data
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Step I.2 – Model selection
Differencing data to obtain stationary data. Observe its ACF and PACF

The differenced series appears now 
stationary although not zero mean

The sample ACF of the differenced series decays 
more quickly
The sample PACF cuts off after lag 2. This 
behavior is consistent with a second-order 
autoregressive AR(2) model
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Step 2 – Estimation
Estimate parameters of the chosen model structure

• The following ARIMA(2,1,0) model has been selected as a potential model:

1 − 𝜙#𝐿# − 𝜙$𝐿$ 1 − 𝐿 (𝑦a−𝑐) = 𝜀a

• The constant c and two AR (𝜙# and 𝜙+) model parameters have been estimated 
by Maximum Likelihood through optimization algorithms (see estimate in Matlab)

Non-seasonal AR(2) First difference No non-seasonal MA part in the model
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Step 3 – Diagnostics
Analysis of the residuals

All ACF and PACF coefficients lie within the limits, indicating that the residuals are white 
(more precisely, the residuals cannot be distinguished from white noise)
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Step 4 – Forecasting
Use of the estimated model to forecast the next 5 years
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Step 1 – Identification
Transform data to stabilize variance by applying logarithm

Second case study – Airline passengers 
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Step 1 – Identification
Differencing data to obtain stationary series

– Because these is monthly data, we use seasonal differences of length 12
– We also remove a linear trend by first differencing the data

–



H. Garnier79

Step I.2 – Model selection
Examine data, ACF and PACF

The differenced series appears now 
stationary

The sample ACF and PACF of the differenced 
series still show significant autocorrelation at lags 
that are multiples of 12. There is also potentially 
significant autocorrelation at smaller lags. It has 
been shown that this autocorrelation can be best  
captured by an SARIMA(0,1,1)×(0,1,1)12  model 
(from AIC and BIC model selection tests, not 
shown here)
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Step 2 – Estimation
Estimate parameters of the chosen model structure

• The following SARIMA(0,1,1)×(0,1,1)12 model has been selected as a 
potential model:

1 − 𝐿 1 − 𝐿#$ 𝑦% = 1 + 𝜃#𝐿 (1 + 𝛩#$𝐿#$)𝜀%

• The MA (𝜃#) and SMA (𝛩#) model parameters have been estimated by 
Maximum Likelihood through optimization algorithms (see estimate in Matlab)

S
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Step 3 – Diagnostics
Check residuals

All ACF and PACF coefficients lie within the limits, indicating that the residuals are white 
(more precisely, the residuals cannot be distinguished from white noise)
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Step 4 – Forecasting
Use of the estimated model to forecast the next 5 years
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Takeaway messages
• We have just introduced basics and the core ideas behind time series 

analysis and forecasting

• Obviously, each problem has its own subtleties and demands special 
steps: proper data preparation, way of handling missing values, or 
defining evaluation metric satisfying some domain conditions

• It is impossible to come up with a general approach that can handle all 
situations
– The Box-Jenkins method has been remarkably successful  
– More complex models and methods exist as

§ Interrupted models to include the influence of critical effects
§ GARCH models for generalized autoregressive conditional heteroscedasticity models 
§ State-space models and methods
§ Recursive methods 
§ Deep learning-based methods…


