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Course outline

Introduction to time series analysis and forecasting

I. Main characteristics of time series data

II. Time series decomposition

III. Basic time series modelling and forecasting methods

IV. Stochastic time series modelling and forecasting: 
The Box-Jenkins method for ARIMA models
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Basic deterministic model based-forecasting methods

For more information on the exponential smoothing (Holt-Winter’s) 
forecasting methods, see for example 
• the free online textbook: otexts.com/fpp2/
• The free online video: bit.ly/2qM9eHL

• Non-parametric model-based approaches
§ Naïve approach method
§ Moving average smoothing method
§ Exponential smoothing (Holt-Winter) methods

• Parametric model-based approaches
§ Trend projection or linear regression method
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Time series modeling: smoothing

From Galit Schmueli, Free online videos supporting her book entitled, 
Practical time series forecasting with R, 2016

– bit.ly/2qM9eHL

Smoothing for better visualization and forecasting 
• Smoothing 1: moving average for visualization (4 mn)

• Centered moving average
• Trailing moving average

• Smoothing 2: moving average for forecasting (11 mn)

•𝑦!
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Time series smoothing for better visualization
Example in our daily life

Moving 
average of 
width 7 days
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Moving average methods

• Idea
• Smooth or low-pass filter the time series by using an average of several time 

series data limited to a window of a chosen width
• This is nothing else than applying a digital low-pass finite impulse response 

(FIR) filter to the time series 
• see course on digital signal processing from 4th year IA2R

• Uses
• Smoothing for better time series visualization
• Forecasting
• Non parametric estimate of the long term trend (first step of the 

decomposition procedure)

• Hyper parameter
• Width of the window
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Moving Average (MA) methods

• Two types of windowing
§ Centered MA: uses a window centered around time t (the filtering is 

not causal. This method cannot be used for forecasting)

§ Trailing MA: based on a window from time t and backwards (the 
filtering is causal. This method can easily be used for forecasting)

Centered MA Trailing MA
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Trend model for global surface temperature time series

Global warming seems to be 
clearly accelerating from 

1980 onwards

• Global surface temperature time series shown against time is the temperature anomalies (in °Celsius) 
relative to the 1951-1980 mean. The series is called GISTEMP after its producer, the NASA, New York, USA

• For more elaborated trend models, see paper by Manfred Mudelsee, Trend analysis of climate time series: 
A review of methods, Earth-Science Reviews 2019
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Trailing moving average of width 2
applied to the global surface temperature

The trailing moving average of width 2 is computed by: 𝑤!=
"
#
𝑦! +

"
#
𝑦!$"

The long term trend does not appear very clearly 

See routine movmean
in Matlab
Example
M=2; % M=width
w = movmean(y,[M-1 0]);
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Trailing moving average of width 10 years
applied to the global surface temperature

The trailing moving average of width 10 is computed by: 𝑤!=
"
"%
∑&'%( 𝑦!$&

The long term trend appears now more clearly 
The trailing moving average introduces a time-delay that can be observed in the smoothed time series
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Frequency response of the two MA filters

Matlab commands:
N=10;
B=1/N*ones(1,N);
A=1;
fs=1;	%	Ts=1	year
[H,f]=freqz(B,A,512,fs);
subplot(2,1,1)
plot(f,abs(H)),grid
subplot(2,1,2)
plot(f,angle(H)),grid
xlabel(‘frequency	(year^{-1})’)

The larger the window width, the lower the low-pass filtering of the time-series but 
the larger the delay (proportional to the phase) introduced
In Matlab, an alternative is to use the routine filtfilt so that no delay is introduced

H(z ) =
1
10

z−k
k=0

9

∑
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Source: https://global-climat.com/temperature-mondiale-actuelle/

Trailing moving average are commonly used to smooth 
time series data – An example found on Internet

The trailing moving average has been computed with a width of 12 months.  The introduced time-delay 
can be clearly observed in the smoothed time series
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Time series modeling: regression models

From Galit Schmueli, Free online videos supporting her book entitled, 
Practical time series forecasting with R, 2016

– bit.ly/2qM9eHL

Linear models for forecasting
• Regression 1: regression for forecasting (5 mn)

• Predictors are temporal patterns: t0, t1,…, tk

• Model estimated from training data
• Estimated models used to forecast

• Regression 2: linear trend models (7 mn)
• Regression 3: other trend models (8 mn)
• Regression 4: models for capturing seasonality (8 mn)
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Linear regression
A brief review
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Linear regression
A brief review
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Linear regression - Example
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Least squares estimate (0)
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Least squares estimate (1)
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Least squares estimate (2)
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Least squares estimate – Matrix formulation
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Least squares estimate in Matlab
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Example 1: the “well-known” linear fit y = ax + b 
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Example 1: The “well-known” linear fit y = ax + b
Matrix solution to be preferred
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Trend model for global surface temperature time series

• Global surface temperature time series shown against time is the temperature anomalies (in °Celsius) 
relative to the 1951-1980 mean. The series is called GISTEMP after its producer, the NASA, New York, USA

• For more elaborated trend models, see paper by Manfred Mudelsee, Trend analysis of climate time series: 
A review of methods, Earth-Science Reviews 2019
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Modelling trend components 
Review from the previous lecture

- Polynomial model (in t)
𝑚! = 𝛽% + 𝛽"𝑡 + 𝛽#𝑡# +⋯+ 𝛽)𝑡)

• Which polynomial order to select ? 
• Use model selection to select among the predicting variables (𝑡, 𝑡!,…, 𝑡")
• Cautious! Strong correlation among the predicting variables

• Commonly used small order polynomial (p=1 or 2)

• linear: 𝑚! = 𝛽" + 𝛽#𝑡
• quadratic:𝑚#= 𝛽$ + 𝛽%𝑡 + 𝛽!𝑡!

• Parameters
• Estimated by using linear regression where the predicting variables are (𝑡, 𝑡!,…, 𝑡")

- Exponential model (in t)
𝑚! = 𝑚%𝑒*!

• Parameters
• Estimated by using linear regression where the predicting variables are (𝑡, 𝑡!,…, 𝑡") 

after the use of the log for the exponential case

𝑦! = f(𝑚! , 𝑠! , 𝑥!)
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• At the minimum of the criterion, all partial derivatives have to be zero:

• The least squares estimates are given by :
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Sous Matlab
theta_hat = inv([sum(years.^2) sum(years);
                    sum(years) N])*...
                    [sum(years.*T);sum(T)]
T _hat = theta(1)* years + theta(2);
plot(years ,T ,'o',years ,T _hat )

Estimation of a linear trend model by LS
applied to the global surface temperature
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V α
β
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Estimation of a linear trend model by LS
applied to the global surface temperature

We can do better !
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Estimation of piecewise linear trend models
applied to the global surface temperature

This is much better !



H. Garnier29
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Estimation of a quadratic trend model
applied to the global surface temperature

This is also much 
better than the basic 
linear trend model !
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Basic deterministic model based-forecasting methods
for long term forecast

• Naïve approach forecast
Forecasts equal to last observed value : '𝑦t+h = 𝑦# ∀ ℎ > 𝑡

• Naïve seasonal approach forecast
Forecasts equal to last value from same season ∶ '𝑦t+h = 𝑦#&'()* ∀ ℎ > 𝑡

m = seasonal period and k =
ℎ − 1
𝑚

+1 where 𝑥 is the integer part of x

• Moving average forecast

/𝑦t+h =
𝑦! + 𝑦!$# +⋯+ 𝑦!$%&#

𝑀 ∀ ℎ > 𝑡

• Trend projection forecast
/𝑦t+h = 7𝛽" + 7𝛽#(𝑡 + ℎ) + 7𝛽'(𝑡 + ℎ)'+⋯+ 7𝛽((𝑡 + ℎ)( ∀ ℎ > 𝑡
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They are quite easy to implement, but the forecast cannot be trusted in long term and these basic 
methods do not provide any uncertainty intervals

Basic deterministic model based-forecasting
for global surface temperature time series
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Long term trend models are quite easy to estimate, but the forecast cannot be trusted in long term 
and these basic methods do not provide any uncertainty intervals

Basic polynomial trend model-based forecasts
for the US population
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Types of forecasts

• One-step-ahead forecast
– A one-step-ahead is a forecast for the next observation only

• Expanding one step-ahead forecast
– An expanding one step-ahead (or recursive window) forecast means 

that the initial estimation date is fixed but the additional 
observations are added one by one to the estimation time span

• Rolling one step-ahead 
– A rolling window is where the estimation time period is fixed but 

the start and end dates successively increase by 1

• Multi-step-ahead forecast
– A multi-step-ahead forecast is for 1,2,3,…h steps ahead
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Expanding versus rolling forecast for one step ahead 
prediction

• One-step ahead expanding forecast: 
– train set expands each time step. The data used for computing the one time step 

ahead forecast is expanded accordindly

• One-step ahead rolling forecast:
– train set expands each time step but the data used for computing the one time step 

ahead forecast is fixed
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Naive and moving average methods 
for one step ahead forecast

• Naïve approach forecast
Forecasts equal to last observed value : '𝑦t+1 = 𝑦# ∀ 𝑡

• Naïve seasonal approach forecast
Forecasts equal to last value from the last season ∶ '𝑦t+* = 𝑦#&'(* ∀ 𝑡

m = seasonal period

• Moving average forecast

/𝑦t+1 =
𝑦! + 𝑦!$# +⋯+ 𝑦!$%&#

𝑀 ∀ 𝑡

• Trend projection forecast 
• The model is first fitted on the training data set. It can be retrained as new 

data becomes available 

/𝑦t+1 = 7𝛽" + 7𝛽#(𝑡 + 1) + 7𝛽'(𝑡 + 1)'+⋯+ 7𝛽((𝑡 + 1)( ∀ 𝑡
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One step ahead forecast based on the naïve method
for global surface temperature time series
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One step ahead forecast based on based on the MA method
for global surface temperature time series


