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Weather forecasts help you decide if you should bring an umbrella before leaving

home

Pollution forecasts help you decide to better plan your sport activities or take
adequate measures to reduce exposure (Air pollution costs every human an average 2

years life expectancy...)

We rely on

forecasts in

RANCE > NANCY
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our daily life
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We rely on forecasts in our daily life

Forecasting is a natural part of human behaviour

Evolution de la population mondiale
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Time series modelling & forecasting methods:
A major decision-making tool

La tendance des nouveaux cas en France

Nombre de nouveaux cas quotidiens depuis juillet 2020 Moye
jours, par date du dépistage

Tests positifs sur 24h | Tests positifs sur 24h lissé

Maximum : 26 oct.
48 079 cas

06 nov.
7 232 cas quot.

30 oct.
5 864

Source : SpF

T dataspgt
Actualisation 10 nov. 05h
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Course organization and prerequisites

e (Qrganization
— 6h00 of lecture

— 10h00 of tutorials

e Skill assessments

— Team project where you will work on a forecasting problem using
real-life data

— Oral presentation of your time series analysis and forecasting

* Prerequisites
— A sound knowledge about probability and statistics
— Regression analysis

— Basic programming proficiency in Matlab /

S

5 H. Garnier
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Time series: definition

e A time series is

— a series of data points indexed in
time order

— a sequence taken at successive
equally spaced points in time
— itis a sequence of discrete time
data
Xt = (xlr ...,XN)

where trepresents time in second, hour,
day, month, quarter, year,...

e The main goal is to forecast the
future values of the time series

XN+1 XN+2 =

Time series data

A Demand

Observable past

Past | Future

H. Garnier



UNIVERSITE POLYTECH®
DE LORRAINE NANCY

Time series analysis

e Time series analysis is
concerned with:

— ldentifying patterns

Seasonal

110 T T T T T

105 1
1.00 1
0.95 1
0.90 + 1
0.

p q
. 1— L | L — B, = | 1 6; L
— Modeling patterns ( ;¢ ) = ( N ; >€t

— Forecasting values with
uncertainty intervals

FIGURE 1.1 Values of a time series with forecast function and 50% probability limits.
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Time series analysis: fields of application

e Until recently, the use of time series data was mainly related to
fields of science, such as

— economics
— finance
— astronomy

— industry

* However, in recent years, as the ability to collect data improved
with the use of digital devices such as computers, mobiles,
sensors, or satellites

e Time series data analysis is now exploited everywhere !

8 H. Garnier
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Historical developments for time series analysis

* Tools available find their sources in four historical phases:

— Graphic representation method: diagrams appeared in Astronomy, the
oldest known dating back to the 10th century

— Deterministic methods: they appeared in the 18th and 19th centuries, there
are two very important ways:
* frequency analysis of a time series (Fourier analysis)
* decomposition of a time series into trend, cyclical, seasonal and accidental
components

— Model-based stochastic methods: they emerge in the middle of the 20th
century, as for example

¢ the ARIMA model method

— Data-based methods: they emerge in the beginning of the 21st century with
the deluge of data collected every day. It goes beyond our ability to observe,
analyze, and exploit them

* the machine learning and deep learning methods

9 H. Garnier
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An overview of 8 different time series analysis methods

Nl

TIME SERIES
4 yAN ‘

www.youtube.com/watch?v=d4Snény 5LI
11 mn
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Introduction to time series analysis and forecasting

Before exploring recent machine learning and deep learning methods, it is good idea to ensure
you have tried classical and statistical time series forecasting methods. These methods are still
performing well on a wide range of problems when the number of data is relatively limited

Course outline

. Main characteristics of time series data

Course outline

. Time series decomposition

lll.  Basic time series modelling and forecasting methods

IV. Stochastic time series modelling and forecasting: ARIMA method

11
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Software requirements for the course

We will make extensive use of Matlab and of the Econometrics Toolbox

All  Examples Functions  Apps

Econometrics Toolbox

Model and analyze financial and economic systems using statistical methods

Econometrics Toolbox™ provides functions for analyzing and modeling time series data. It offers a wide range of
visualizations and diagnostics for model selection, including tests for autocorrelation and heteroscedasticity, unit roots and
stationarity, cointegration, causality, and structural change. You can estimate, simulate, and forecast economic systems
using a variety of modeling frameworks. These frameworks include regression, ARIMA, state-space, GARCH, multivariate
VAR and VEC, and switching models. The toolbox also provides Bayesian tools for developing time-varying models that
learn from new data.

Get Started
Learn the basics of Econometrics Toolbox

Data Preprocessing
Format, plot, and transform time series data

Model Selection
Specification testing and model assessment

Time Series Regression Models
Bayesian linear regression models and regression models with nonspherical disturbances

Conditional Mean Models
Autoregressive (AR), moving average (MA), ARMA, ARIMA, ARIMAX, and seasonal models

Conditional Variance Models
GARCH, exponential GARCH (EGARCH), and GJR models

Multivariate Models
Cointegration analysis, vector autoregression (VAR), vector error-correction (VEC), and Bayesian VAR models

Markov Models
Discrete-time Markov chains, Markov-switching autoregression, and state-space models

12
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Software requirements for the course

We will also make use of the recent Econometrics Modeller App

@ ® Econometric Modeler - Model Summary(AR_y1)
ECONOMETRIC MODELER PLOTS VIEW B4 BEaeb
. 1 o Lo
&l Difference Detrend - ‘ 2 e N ) 1t &
Import  New S | - L S —_ Residual Export
v | Testw £as0na 12 | L] Log AR MA ARMA  ARIMA Hiorostics ==
IMPORT = TESTS TRANSFORMS MODELS DIAGNOSTICS | EXPORT
Data B... ™ | Time Series Plot(y1) | ACF(y1) | Model Summary(AR_y1) ACF(AR_y1) | Histogram(AR_y1)
w Time Series
yl - Model Fit
= Parameters
12 ‘l Parameter | Value |Standard Error| tSta
% ) k\ ) Qh Constant 0.6876 0.2125
1 | ﬂ u A ’kw\ j'\‘ ‘ AR(1} 0.7615 0.0509
11“ | ]! ?bb | ﬁ' f M JU(’M el ‘ \f AR} 0.1714 0.0516
W ‘P )UH \"M“ {f LF ‘J r‘ ;S”l *0“) b “n‘]g\’ ‘Ef Variance 0.1013 0.0077
M 1Y \;! 'Y’ 1N V\ | W
| r/ J ‘J\ | §
9 ] \ !
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AR y1 o Residual l@ L Q G)\ o
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l J ' ’ f “ , " | “ ﬂ\ 1 ’ g, | BIC 243.0495
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There is a wealth of books on time series

TIME-SERIES
FORECASTING

Practical

Time Series
Analysis

(most are focused on using the R platform)

RIES

CTION

Chris Chatfield

TR

ey
7= Gy
e 4

ik, S M, L s g ., e

WILEY

Nonlinear Time Series
Semiparametric and
Nonparametric Methods

Peter . Brockwell
Richard A. Davis

Introduction
to Modern Time
) i

The Analysis
of Time Series

An Introduction

An Intuitive Introduction to
Deep Learning for Applied
Time Series Modeling

W rshaier nd) T

Handbook of
Time Series Analysis

s -l

FT {AGP( )}

Paul .. Cowpertwait
AndrewV. Metcalfe

Analysis

1 GUSTI NGURAH AGUNG

Time Series
Data Analysis

Using EViews

DATA MINING ror
BUSINESS ANALYTICS

CONCEPTS, TECHNIQUES AND
APPLICATIONS IN PYTHON

- WILEY

et by & Schoter o

introduces

QUANTITATIVE
FINANCE

Computational
Intelligence in Time
Series Forecasting

Time Series
Analysis and Its
Applications
With R Examples

|
SRR W

Robert H. Shumway
David S. Stoffer

PRACTICAL
TIME SERIES
FORECASTING wi R

A HANDS-ON GUIDE

Galit Shmueli
Kenneth C. Lichtendahl Jr.

14
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Course website & recommended textbooks

Website of the course
— wa3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching

Recommended textbooks

 FIETH EDITION

WILEY

The bible !

Forecasting:
Principles and Practice

Preface

" FORECASTING

PRINCIPLES AND PRACTICE

Free online textbook
otexts.com/fpp2/

SECOND EDITION

PRACTICAL
TIME SERIES

FORECASTING wm R

A HANDS-ON GUIDE

Galit Shmueli
Kenneth C. Lichtendahl Jr.

Free online videos
bit.ly/2gM%eHL

Introduction to Time Series
Forecasting with Python

How to Prepare Data and Develop
Models to Predict the Future

A masterpiece
for Python fans

15
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Introduction to classical time series analysis methods along with
implementation on real-life data examples

Key takeaways from the course

Understand the importance of forecasting for planning and decision making
Have a basic knowledge of the main fields where forecasting is used

Be familiar with the difference between descriptive and forecasting goals
Know how to visualize time series data for discovering their main components
Be familiar with the concepts of stationarity and autocorrelation

Know ARIMA methods and be able to choose adequate methods for different
types of data

Understand how different models and methods can be used for forecasting
Know how to evaluate and compare the performance of forecasting methods

Time series modelling & forecasting

is a discipline of Data Science

that requires practical skills and experience

16 H. Garnier



WL

UNIVERSITE
DE LORRAINE

>

All models are wrong,
but some are useful.

George Box, British statistician (1919 -2013)

17 H. Garnier
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Course outline

Introduction to time series analysis and forecasting

Main characteristics of time series data -
. Time series decomposition
lll.  Basic time series modelling and forecasting methods

IV. Stochastic time series modelling and forecasting:
The Box-Jenkins method for ARIMA models

18 H. Garnier



WL

UNIVERSITE
DE LORRAINE

o,

Steps in the statistical iterative modeling process

Define Goal
Get Data
C Explore & )
Visualize Series

Pre-Process Data

Partition Series

Apply Forecasting
Method(s)

Evaluate &
Compare
Performance

Implement
Forecasts/System

From Galit Schmueli
Practical time series forecasting with R

POLYTECH’
NANCY

H. Garnier
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Pr e -Process Data

Pa tition Series

Apply Forecasting

( eod ) Time series analysis: Goals

aluate &
Compar
Performance

Implement
Forecasts/System

Description

* Determine the main features of the series: trend, seasonal,
cyclical patterns

Explanation

* Understand the mechanism generating the series. Find a model
to describe the time dependence in data, assess the impact of
an event

Forecasting

 Forecast the future value(s) based on the past
Control

» of the process producing the time series
Predictive maintenance

* to predict when equipment failure might occur and to prevent its
occurrence by performing maintenance

POLYTECH’
NANCY
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Visualize Series
- Time series: Visualization
Method(s)

Evaluate &
Compare

Performance
Implement
Forecasts/System

* The first thing to do is to make a time plot "

and look for patterns

e The following may be observed:

— a trend pattern, which is a long term increase or decrease in the
variable of interest

— a seasonal/periodic pattern appears when a time series is affected
by seasonal factors such as time of the year or the day of the week

— a cyclical pattern, which is one where there are rises and falls but
not of regular period, generally thought of as longer in time, e.g.,
several years

— no special or random pattern, the irregular variation seems to be
stochastic

Combinations of the above first three types of pattern occur frequently

21 H. Garnier
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Millions

400 T T T T
©Q Time series data
== == Estimated trend
350
A
”
-
/0/
300 =
-
o
”
”
-
250 .4
-
-
- o
”
-
| o
200 =
-
-
_ L
-
-
150 =-%0
-
.3
100 | | 1 | | |
1940 1950 1960 1970 1980 1990 2000 2010
years

Polynomial pattern: example

Population of the U.S.A
T T

It seems to be a simple linear pattern. It could be
quadratic or cubic, ...

2020

Define Goal

¢ B

Explore &
Visualize Series

POLYTECH’
NANCY

Partition Series

Apply Forecasting
Method(s) )

Evaluate &

Compare

N

Performance

Implement
Forecasts/System

22
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Seasonal pattern: example CD-

Pre-Process Data
Partition Series

Apply Forecasting

Minimum daily temperatures in Melbourne e
30 Evaluate &
T T  § T T T T T T compare
Performance
Implement
Forecasts/System
25 g

20 §

s L

10

0 1 I 1 1 1 1 1 1 1

\9?’\' \9%1 \9?’3 xq%b' \9%6 \9%6 \9?’1 \9%% \9%9 \9(56

Date
It seems to be a clear annual periodicity: we talk about seasonal pattern,

which occurs when time series are affected by seasonal factor (day of the
week, month of the year. . . ). The period is fixed and known

23 H. Garnier
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Define Goal

Combination of patterns: example C-D-
e ocessos|

)

Pre-Process Data

Partition Series

Apply Forecasting

Method(s)
Evaluate &
Compare

Performance

X N Implement
600 Forecasts/System

500 7

400 7

300 7

200 7

100 7

=100 7

=200 7

=300 1

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

0 100 200 300

t

It seems to be a linear pattern and a seasonal pattern

24
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Cyclical pattern: example

Vlsuallze Series
Annual number of sunspots observed at the surface of the Sun Pre- Process Data

Partltlon Series

Apply Forecasting
( Method(s) )

Evaluate &

L i Compare
250 Performance

Implement
Forecasts/System

200

T
—
|

150

|
it | |
) \HJU I i

0 | | | | | |
1750 1800 1850 1900 1950 2000

Years

It seems to be a cyclical pattern: rises and falls are every 11 years

25 H. Garnier
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SGD

No special pattern: example

Air Asia Berhad Stock Price
T T T

5 T T T

4.5 n

25 T

1.5 .

0‘5 1 1 1 1 1 1 1 1 1
Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018 Jul 2018

Timeline

It seems to be no special pattern as it is often the
case for daily stock market time series

C Explore & D
Visualize Series

(

Define Goal

Get Data

Pre-Process Data

Partition Series

Apply Forecasting
Method(s)

Evaluate &
Compare

Performance

Implement
Forecasts/System

26
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Pre-process data

Time series data often requires cleaning, scaling, and
even transformation. For example:
— Qutliers

e data can be corrupted or extreme outlier values that
need to be detected and handled

C

(

POLYTECH’
NANCY

Define Goal

Explore &
Visualize Series

Pre-Process Data

Partition Series

Apply Forecasting
Method(s)

Evaluate &
Compare
Performance

Implement
Forecasts/System

Downsampled Shampoo Sales dataset

— Missing
e Data can have gaps or missing data
that need to be interpolated or imputed

— Baseline (offset) removing
— Pattern removing
— Smoothing
— Filtering
— Resampling

e Data can be provided at a frequency that is too high to
model or is unevenly spaced through time recwiring
downsampling for use in some models or methods

0 " .
Q1 Q2 Q3 4 Q01 Q2 Q3 o Q Q@ 0 o
1902 1903

27
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B artition the time series data

Partition Series

Apply Forecasting

Method(s)
Evaluate &
Compare

Performance

Implement
Forecasts/System

2600

Training Validation | Future

2400
|

2200
1

e To address the problem of overfitting,

Ridership
2000

an important preliminary step before

1800
|

applying any forecasting method is

1600
|

data partitioning where the series is
split into two periods

1400
|

T T T T T T T T T T T T T T T T
1991 1993 1995 1997 1999 2001 2003 2005

e The model is learned using the training dataset only

* The estimated model is used to make predictions on the validation dataset and see
how it performs

* The evaluation of these predictions will provide a good indication for how the
model will perform when it will be used operationally (in the future)

28 H. Garnier
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Explore &

Common predictive accuracy measures ( .
e Given {y,,...,yy} actual observations of a time series {y,}, and let y, be
the forecast value at time t

e \We can calculate the residuals or forecast errors and e; = y; — ¥,

e Common predictive accuracy measures based on the residuals are:
— Root Mean Square Error (RMSE)

1 ~
RMSE= \/ﬁzé\,ﬂ(% — J)?
— Mean Absolute Percentage Error (MAPE)

MAPE= 100 N Ye—Vt
N t=1 yt Compute some function Then, average across all
of the forecast error: records:
e, Average Error
. . . . le,| Mean absolute error (MAE)
e Video from Galit Schmueli: bit.ly/2gM%eHL
(e)? Mean Squared Error (MSE)

—  Performance 4: Predictive metrics & charts or take a root (RMSE)

le./ y.|x100% Mean absolute % error (MAPE)

29 H. Garnier
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Course outline

Introduction to time series analysis and forecasting

Main characteristics of time series data
. Time series decomposition -
. Basic time series modelling and forecasting methods

IV. Stochastic time series modelling and forecasting:
The Box-Jenkins method for ARIMA models

30 H. Garnier
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Time series: basic characteristics

* Trend component
* long-term increase or decrease in the data over time

+ Seasonal component

* influenced by seasonal factors (e.g. quarter of the year, month, or day
of the week)

* exact repetition in regular pattern (seasonal series often called periodic,
although they do not exactly repeat themselves)

+ Cyclical component
* data exhibit rises and falls that are not of a fixed period
« Random or stochastic component
* irregular variation data without any special pattern
« Correlation between the series and its past value
* we need to build a model that is able to deal with such dependencies

31 H. Garnier



UNIVERSITE POLYTECH®
DE LORRAINE NANCY

Time series: standard decomposition model

- Data: y; where tindexes time, e.g. hour, day, month, year

- Standard model: y, = f(my, s¢, x¢)

* m; is a trend-cycle component
* S¢ is a seasonality component

* X is a stationary random component

 Standard functional forms for f

« Additive (linear): Ye =M + 5S¢ + X
* Multiplicative (non linear):  y, = my X s¢X x¢

* Mixed (non linear): Ve =My X S + Xp

32 H. Garnier
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Time series: standard decomposition

Additive model

yt=mt+St+xt

— assumes constant variability of the time series

Multiplicative model

yt = mt X StX xt
— assumes that variability (seasonal and random)
is amplified with trend

Mixed model

Ve = My X S + X
— assumes that variability is amplified with trend

but the random component remains constant
over time

x
600
500
400
300
200
100
0
-100
-200

-300

x1
4000 7
3000 7
2000 7

1000 7

x2
700 7

model

..............................

T T
0 100

T
200

T
300

T
100

—T
200

33
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Guide to choose the model form

* Visual inspection can help to decide whether the model should be
additive or multiplicative is given by the patterns below, suggested first
by Pegels in 1969

| No ) Additive ] Multiplicative
Seasonal Effect Seasonal Effect Seasonal Effect
No
Trend Effect \
v, v

Additive
Trend Effect

Multiplicative
Trend Effect

— The additive model assumes constant variability of the time series

— The multiplicative model assumes that variability is amplified with trend

34 H. Garnier
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Time series analysis:
The standard decomposition procedure

- The primary goal of time series decomposition is to provide the analyst
with a better understanding of the underlying behavior and patterns of
the time series

- Usual assumption: additive model
Ve = My + S¢ + X
- If the model is multiplicative, apply first a log transformation on the data
Yy =log(y:)
- Standard parametric decomposition procedure
* m; and s; are first estimated
* they are subtracted from y; to have left the stationary process x;

* Xx; can be further analyzed and modelled using time series modeling
approaches if necessary

35 H. Garnier
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Modelling the trend component
Ve = f(my, s¢, x¢)
- Polynomial model (in t) 1

Exponential model (in t)

My = Bo + Bat + Bot® + oo+ Bpt?
Which polynomial order to select ?

* Use model selection to select among the predicting variables (t, tZ,..., tP)
 Cautious! Strong correlation among the predicting variables

Commonly used small order polynomial (p=1 or 2)
* linear: m;y = By + it
 quadratic: my= By + Byt + Bot?

Parameters

» Estimated by using linear regression where the predicting variables are (¢, t,..., tP)

my = moe®
Parameters

« Estimated by using linear regression where the predicting variables are (t, t?,..., tP)
after the use of the log for the exponential case

36 H. Garnier
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Modelling the seasonal component
ye = flmy, s¢, x¢)
Single periodic component 1
St = St+d
How to determine the period d ?

 Visual inspection
» Fourier analysis (see course on digital signal processing from last year)

Harmonic seasonal model

* uses of sine and cosine functions to describe the pattern of fluctuations

seen across period
S/2 , .
21it (2wt
Sy = Z a;COS (T) + b;sin (T)
=1
« Sis the number of seasons, a; and b; are the parameters to be estimated

37 H. Garnier
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Modelling the random component
Stationarity assumption Ve = flme, s, x)

1

x¢ is modelled as a realization of a stochastic process X,

A stochastic process is a collection of random variables {X¢,t € T}
defined on a probability space (Q, F, P)

The stochastic process X; is assumed to be stationary
- Its probability distribution does not change when shifted in time
- Realizations of a stationary stochastic process, vary over time in a stable
manner about a fixed mean
- It is (weakly) stationary if it can be described by its first two moments only
- Mean, variance

- AutoCorrelation Function (ACF)

- ACF is also very useful for describing/testing the stationary property of a
random component

38 H. Garnier
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Some intuitions for (weak) stationary time series

The properties of one section of a data are much like the properties of the
other sections of the data

- no systematic change in the mean i.e., no trend
- no systematic change in variation

- no periodic fluctuations

For non-stationary time series, some transformations (such as differencing,
decomposition or logarithm, ...) can be applied to get stationary time
series

39 H. Garnier
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Moments of a probability distribution
A brief review

Moments of a random variable X with density fx(x):
- [-th moment

(00)

mj = E[XY] = [ x'fy(x) dx

— [-th central moment

m = E[(X — 0)!] = j (x = W' () dx

Examples of low-order moments
« Expectation: my = p = E[X]
« Variance: my, = ¢? = E[(X — n)?]

AN
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Autocorrelation function (or correlogram)

Autocorrelation

(serial correlation)

Correlation between the
series and its past values

Lag-1 autocorrelation:

betweeny, andy, ,
Correlation between

pairs of values Lag-2 autocorrelation:
at a certain lag between y, and y, ,
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Autocovariance function: stationarity

e Autocovariance function of a stationary time series {x;}
Ve(W)=Cov(xipn, x)=E[(xeyn—) (xc—)]  |R <N

with the following 3 properties v, (R)
1. y,(0)=0, , .
2. lyx (W] < 72(0) ‘. ‘.l
3. ¥x(h) = yx(=h) IR S .
| 0 Z<— lag
e Autocorrelation function of a stationary time series {x;}
h
ooy =M oy
Vx(0)

with all the properties of the autocovariance function, except p,(0) =1

e They measure the linear correlation between x; and x;,,,
— It is of most interest in statistical time series analysis
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Sample or empirical statistics

Given {x;,..., xy} observations of a stationary time series {x;},

estimate the sample mean, variance and autocovariance
— Sample mean

f=x= Zl 1 Xi

— Sample variance

= _ZN 1(xl ﬁ)z

— Sample autocovariance functlon

1
Vx(R) =N2(xj+h—f)(xj—f), 0<h<N,

with 9 (h) = 7, (=h), ~-N<h<0
— Sample autocorrelation function

. RO
px(h) = 5(0)’

|lh| < N
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Autocorrelation function properties
of basic trend and seasonal patterns

e |[fthe time series {x;}, 1< ¢<N, is a deterministic pure linear trend

B [ [ T T

px(h) — 1

«©
=)

% A4
N—+o0 3

<
o

e |[f the time series {x;}, 1< ¢t<N, is a deterministic pure seasonal pattern, as
for example

" X; =COS (ZT ) then for all h

:||||I. fffffffffffffffffffffffffffffffffffff ,-l||||
L T

<10 05 00 05 1.0

px(h) —— cos (Znh)

N—+oco T

* The presence of basic trend and seasonal patterns is easily observable in
the autocorrelation plot

— It can also help to measure the value of the period of the seasonality
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If there is seasonality, the ACF at the seasonal lag will be large and positive

Annual seasonality in monthly data can be observed from the ACF where a large value will

POLYTECH’
O NANCY

Number of Airline passengers

Testing for seasonality in a time series

from the ACF plot

be seen at lag 12 and possibly also at lags 24, 36, . . .

Monthly Passengers
700 T T T

Sample Autocorrelation Function
T T T

600 - 0.8 -

o

=]

=]

o

o
T

IS
[=]
o

Sample Autocorrelation
o
S

w
=}
[}
o
[N}
T

200 |

-0.2

00 I I I 1 L I I 1 I I
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 & 5

1
15
Lag

I
20

L
25

30
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White noise

* The most fundamental example of a (weakly) stationary process is a
sequence of independent and identically distributed random
variables

— Such a process may also be referred to as a white noise process
— Its probability function can be uniform, Gaussian, ...
— They are uncorrelated, have mean zero, and common variance

— Because independence implies that its variables are uncorrelated at

different times, its autocovariance function is simply a Kronecker
impulse

Ye(h)
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Testing for white noise from ACF plots

e |f a time series is white noise, it is unpredictable. The best forecast is zero

Sample Autocorrelation Function
T T ¥ T T

1
[ =
S 08 B
kS
£ o6 1
o
o
2 04r :
=
<
% 0.2 =}
g 0 T . o d T . '3 'y - T L]
(%] 3 & A ‘ I * l 3

-02 I I I I P I L L I I
0 2 4 6 8 10 12 14 16 18 20
Lag

e |f the series of forecast errors (=residuals) are not white noise, it suggests
improvements could be made to the predictive model

Sample Autocorrelation Function
T T T T T

1¢ T T T T

08 1
0.6 - 1
0.4 - s

0.2}

. Py Py )
hJ 1 () 1 ko L 2 4 b d Y I 1

Sample Autocorrelation

0 2I 4; é é 1‘0 1‘2 1;1 1‘6 1‘8 20
Lag
—  ACF shows some signiticant autocorrelation at lags 1, 2, 3,...

— ACF at lag 12 may indicate some slight seasonality

These show the time series is not a white noise. There is information left in the residuals that should
be used in computing forecasts

e See also the Ljung-Box test for testing white noise
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Gaussian white noise

* [tis a white noise whose probability function is Gaussian

n Matlab
>> e=randn(200,1);

POLYTECH’
NANCY

>> plot(e) >> autocorr(e)
a : SimuIaFed whittla noise process ‘
5 »{! ' ' ] ‘Sample IAutocon"elation Ifunc’tionI
H \ \' | u‘ | | ‘ S o
a“ ! H\ ‘ ““ ’. I I A s 08
I O 0 LY ]
u“‘;“ \‘" ) \‘ ‘m W‘ 1 ‘ ”‘\ |\ \H‘U ,‘ “”‘ .'\“\‘ M \”‘C“‘” ‘J“H‘\H 8 o4l
OHM‘ “\\‘.u“.‘t | ‘\,\ | ‘ I ‘ “““"\ \‘( | ‘“\ I \J\ | ol j&’ e
AL 5 o 1 S O
AN “H B il | “ | " ‘\ | \“” Ml - : : : l : l : ‘ :
\\J ‘M ¥ | “I\‘ (' \ \ | [ “{ [ I ' 6 8 10 12 14 16 18
o (AL B L L
2 , . { “1 ‘
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Gaussian probability function
A brief review

1 (x-m 2
1 _2( o ) m : mean
f(x)= e
(%) oN2rm o : standard-deviation
LX)
1
s2n |  /

Pim-osx=m+0)=67%
P(m-20<x=m+20)=95%
Pim-30c<x=m+30)=99%
Pim-4o0<x<=<=m+40)=99,9%

m-c m mto X
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Gaussian probability function
Review

* |mportant properties

— Two Gaussian random signals x;, and x; for k& # I are uncorrelated
(property of white noise) and therefore independent (property of
Gaussian probability density)

— The Gaussian probability density is the only law for which there is
equivalence between non-correlation and independence

— Gaussian laws preserve their Gaussian character in any linear
operation: derivation, integration, convolution, filtering
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Sampling distribution of autocorrelations
White noise case

e Sampling distribution of y,(h) for a white noise is asymptotically
Gaussian N (0,1)
N

1.96
W

_ Itis common to plot limit lines at + =22 when plotting the ACF Yo (h)
P ~ plotting

— 95% of all y,(h) must lie within

— If this is not the case, the series is probably not WN
1.96

e Example: If N = 125, critical values at i\/1—75 = +0.175
§ Sample Autocorll'elation Ifunci:ion|
é 0.8
Tt) 0.6
8
2 04f
z
% 0.2 =
g 0 T 7 ¢ T . 2 e !
n 'y | B N l L b ry
-0.2 ' ‘ ' ' ' ' ‘ ‘
0 2 4 6 8 10 12 14 16 18 20

Lag

— All ACF coefficients lie within these limits, confirming that the data are white
noise (more precisely, the data cannot be distinguished from white noise)
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Example of non-stationary time series:
The random walk

e A random walk {z;} is the cumulative sum of a white noise {x;} with
mean u and variance ¢?2

Simulated random walk process
25 T T T T T

Zt=Zt—1 T Xt

20

or

H: Xog = O, Zy = 3::1 x]'

* We cannot see any trend in the time plot !

e |ts mean and variance vary with time Comow oo momm e m
 Mean: Elz;] = ut

« Variance: Var|z] = ot

* Arandom walk is a non-stationary process
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Random walk - Example

* In Matlab
>> z=cumsum(randn(200,1);
>> plot(z) >> autocorr(z)
Simulated random walk process
25 T T T T T T T T T
20 | /‘N“‘ _ 3 ” ‘ ISample ‘Autocorll'elation function‘ | |
'f-:) 0.8 1y ) K A }
15 1 § 0.6 - ? . ° % -
8 [ Y 5 4
L 04 i
E
10 = D 02| =]
Q
“’\‘ - E
[ , s 0
5 bl \ / ' i 0.2 1 1 1 1 1 1 1 1 1
- N | / 0 2 4 6 8 10 12 14 16 18 20
|V ‘ ‘w f A Lag
or [ “ | ‘\1“ v. .
R Random walks are often highly correlated
0 20 40 60 80 100 120 140 160 180 200
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First difference of a random walk

e As seen before, a non—stationary
random walk {z,} is defined as

Zt=Zt—1 T Xt

where {x,} is white noise

e The first difference of a random walk

given by

Zt— Zt—1 = Xt

form a purely random process, which
is stationary !

Simulated random walk process
25 ' ) i i |
20+
15 -
10
st
|
|
ol
0 20 40 60 80 100 120 140 160 180 200
5 Simulated white noise process
| i T g ;
2 [ " l |
' \ \ “/‘ | I \l\ || |
i I | Y ) | |
1 J ‘\ i\ ‘\ | H Il ‘ Il U [ I
I A A W
11 ‘ " Wi MH (T (N M
il | MY ‘, Il ‘H‘ | [ i IR \V
ollll] \“M ‘ H il “‘M ““‘\“!‘\ ‘\M\‘ i \” ‘”\‘H\‘:"\ " |
IR if o IO [ (T w I
l I A A A AT
R COLEN O
A \' }“ \‘ ‘ ‘\‘ [ ‘\‘\ | ‘M\‘H“! MH I \f
At i (1 VIR I ‘ | il
m Wit [ ‘ ‘ b \ A
L | I
I - | [
ot \{‘ ‘ | | {
-3 L L L
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Example of a time series exploratory analysis:
Average monthly Temperatures in Atlanta, USA

Average monthly temperature in Atlanta

Celsius

Time

Time series: Average monthly temperature starting from 1878 until 2020

e Available from iWearherNet.com

* The National Weather Service began keeping weather records for Atlanta
142 years ago on October 1, 1878

* Investigate the structure of the dataset. Is an additive model acceptable ?
* Perform a decomposition of the time series
« After removing trend and seasonality, is the residual stationary?
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Time series exploratory analysis: general approach

1. Plot the series and check for a trend-cycle pattern, a seasonal component, any
apparent sharp changes in behavior (accidental component), any outliers

2.  Estimate the trend component and plot the detrended time series

3. Plot the sample autocorrelation function of the detrended time series and
check for a seasonal and cyclical pattern

4.  Estimate the seasonal component from the detrended time series.
Deseasonalize the time series by substracting the seasonality component from
the original time series

5. Compute and plot the estimated random component or residuals

6. Plot the sample autocorrelation function of the residuals and check for
stationary residuals close to a white noise
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1. Plot of the original time series

A Average monthly temperature in Atlanta
[

Celsius

-5
1875 1900 1925 1950 1975 2000 2025
Time

« Although temperature is slowly changing over years, global warming effects
can be observed as the maximum temperatures are slightly higher since 1975
than before 1925

=> Needs to be modelled by a slight linear increase trend
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2. Plot of the detrended time series

o0 Detrended average monthly temperature in Atlanta
T T {

10 1H

Celsius
o

-10 -

-15 -

-20 |
1900 1925 1950 1975 2000

Years

» The slight linear increase trend has been removed from the original time series

« There is still a clear and expected seasonal pattern of 1 year (12 months) which
can be confirmed from the ACF of the detrended time series
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3. Sample autocorrelation function
of the detrended time series

Sample Autocorrelation Function
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[e)
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Lag

* The seasonal pattern of 12 months is clearly observed from the ACF
=> Needs to be modelled by a seasonal pattern of 1 year
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Celsius

30

25

20

15

10

-10

The estimated trend and seasonal patterns (=estimate of the random component)
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4. Plot of the detrended and deseasonalized

time series

Deseasonalized average monthly temperature in Atlanta

I

|

1900

1925

1950
Years

1975

have now been removed from the original time series

There is no obvious cyclical pattern

2000

60

H. Garnier



UNIVERSITE POLYTECH®
DE LORRAINE NANCY

5. Sample autocorrelation functions
of the detrended and deseasonalized time series

: Sample Autocorrelation Function
\ \ \

o
)
[
|

=
o
I

Sample Autocorrelation
o o
o I
| |
|

o
-
=1
lo
o
| o
| =
| e
| o

0 2 4 6 8 10 12 14 16 18 20
Lag

* There is no more obvious trend, seasonal or cyclical patterns

e The ACF shows that the residuals have some stationarity but they would need
further modelling to capture the remaining correlation in the time series

=> could be captured by an ARMA model (see next lectures)
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Monthly average temperature in Atlanta

Time series decomposition

Decomposrtlon - Altlanta Temperature
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