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We rely on forecasts in our daily life

• Weather forecasts help you decide if you should bring an umbrella before leaving 
home

• Pollution forecasts help you decide to better plan your sport activities or take 
adequate measures to reduce exposure (Air pollution costs every human an average 2 
years life expectancy…)

plumelabs.com/en/
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We rely on forecasts in our daily life
Forecasting is a natural part of human behaviour
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Time series modelling & forecasting methods: 
A major decision-making tool
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Course organization and prerequisites 

• Organization
– 6h00 of lecture

– 10h00 of tutorials  

• Skill assessments
– Team project where you will work on a forecasting problem using 

real-life data
– Oral presentation of your time series analysis and forecasting

• Prerequisites
– A sound knowledge about probability and statistics
– Regression analysis 
– Basic programming proficiency in Matlab
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Time series: definition

• A time series is
– a series of data points indexed in 

time order
– a sequence taken at successive 

equally spaced points in time
– it is a sequence of discrete time 

data
𝑥! = 𝑥", … , 𝑥#

where t represents time in second, hour, 
day, month, quarter, year,…

• The main goal is to forecast the 
future values of the time series

𝑥#$", 𝑥#$%…
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Time series analysis

• Time series analysis is 
concerned with:

– Identifying patterns

– Modeling patterns

– Forecasting values with 
uncertainty intervals
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Time series analysis: fields of application

• Until recently, the use of time series data was mainly related to 
fields of science, such as 
– economics
– finance 
– astronomy
– industry

• However, in recent years, as the ability to collect data improved 
with the use of digital devices such as computers, mobiles, 
sensors, or satellites

• Time series data analysis is now exploited everywhere !
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Historical developments for time series analysis

• Tools available find their sources in four historical phases: 
– Graphic representation method: diagrams appeared in Astronomy, the 

oldest known dating back to the 10th century

– Deterministic methods: they appeared in the 18th and 19th centuries, there 
are two very important ways:

• frequency analysis of a time series (Fourier analysis)
• decomposition of a time series into trend, cyclical, seasonal and accidental 

components
– Model-based stochastic methods: they emerge in the middle of the 20th 

century, as for example 
• the ARIMA model method

– Data-based methods: they emerge in the beginning of the 21st century with 
the deluge of data collected every day. It goes beyond our ability to observe, 
analyze, and exploit them

• the machine learning and deep learning methods
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An overview of 8 different time series analysis methods

www.youtube.com/watch?v=d4Sn6ny_5LI
11 mn

http://www.youtube.com/watch?v=d4Sn6ny_5LI
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Introduction to time series analysis and forecasting
Course outline

Before exploring recent machine learning and deep learning methods, it is good idea to ensure 
you have tried classical and statistical time series forecasting methods. These methods are still 
performing well on a wide range of problems when the number of data is relatively limited

Course outline
I. Main characteristics of time series data

II. Time series decomposition

III. Basic time series modelling and forecasting methods

IV. Stochastic time series modelling and forecasting: ARIMA method
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Software requirements for the course 
We will make extensive use of Matlab and of the Econometrics Toolbox 
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Software requirements for the course 
We will also make use of the recent Econometrics Modeller App
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There is a wealth of books on time series !!!
(most are focused on using the R platform)
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Course website & recommended textbooks
• Website of the course

– w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching

• Recommended textbooks

The bible ! Free online textbook
otexts.com/fpp2/

A masterpiece
for Python fans

Free online videos
bit.ly/2qM9eHL
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Key takeaways from the course 
• Introduction to classical time series analysis methods along with 

implementation on real-life data examples
– Understand the importance of forecasting for planning and decision making
– Have a basic knowledge of the main fields where forecasting is used
– Be familiar with the difference between descriptive and forecasting goals
– Know how to visualize time series data for discovering their main components
– Be familiar with the concepts of stationarity and autocorrelation
– Know ARIMA methods and be able to choose adequate methods for different 

types of data
– Understand how different models and methods can be used for forecasting
– Know how to evaluate and compare the performance of forecasting methods

Time series modelling & forecasting 

is a discipline of Data Science

that requires practical skills and experience
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Do  not forget this quote from
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Course outline

Introduction to time series analysis and forecasting

I. Main characteristics of time series data

II. Time series decomposition

III. Basic time series modelling and forecasting methods

IV. Stochastic time series modelling and forecasting: 
The Box-Jenkins method for ARIMA models
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Steps in the statistical iterative modeling process

From Galit Schmueli
Practical time series forecasting with R
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Time series analysis: Goals

Description
• Determine the main features of the series: trend, seasonal, 

cyclical patterns
Explanation

• Understand the mechanism generating the series. Find a model 
to describe the time dependence in data, assess the impact of 
an event

Forecasting
• Forecast the future value(s) based on the past

Control
• of the process producing the time series

Predictive maintenance
• to predict when equipment failure might occur and to prevent its 

occurrence by performing maintenance
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Time series: Visualization

• The first thing to do is to make a time plot
and look for patterns

• The following may be observed: 
– a trend pattern, which is a long term increase or decrease in the 

variable of interest
– a seasonal/periodic pattern appears when a time series is affected 

by seasonal factors such as time of the year or the day of the week
– a cyclical pattern, which is one where there are rises and falls but 

not of regular period, generally thought of as longer in time, e.g., 
several years

– no special or random pattern, the irregular variation seems to be 
stochastic

Combinations of the above first three types of pattern occur frequently
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Polynomial pattern: example

It seems to be a simple linear pattern. It could be 
quadratic or cubic, …
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Seasonal pattern: example

It seems to be a clear annual periodicity: we talk about seasonal pattern, 
which occurs when time series are affected by seasonal factor (day of the 
week, month of the year. . . ). The period is fixed and known 

Minimum daily temperatures in Melbourne
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Combination of patterns: example

It seems to be a linear pattern and a seasonal pattern
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Cyclical pattern: example

It seems to be a cyclical pattern: rises and falls are every 11 years
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No special pattern: example

It seems to be no special pattern as it is often the 
case for daily stock market time series
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Pre-process data

Time series data often requires cleaning, scaling, and 
even transformation. For example: 

– Outliers 
• data can be corrupted or extreme outlier values that 

need to be detected and handled 
– Missing 

• Data can have gaps or missing data 
that need to be interpolated or imputed 

– Baseline (offset) removing
– Pattern removing
– Smoothing 
– Filtering
– Resampling

• Data can be provided at a frequency that is too high to 
model or is unevenly spaced through time requiring 
downsampling for use in some models or methods 

Downsampled Shampoo Sales dataset
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Partition the time series data

• To address the problem of overfitting,
an important preliminary step before
applying any forecasting method is 
data partitioning where the series is 
split into two periods

• The model is learned using the training dataset only
• The estimated model is used to make predictions on the validation dataset and see 

how it performs
• The evaluation of these predictions will provide a good indication for how the 

model will perform when it will be used operationally (in the future)
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Common predictive accuracy measures

• Video from Galit Schmueli:  bit.ly/2qM9eHL
– Performance 4: Predictive metrics & charts

• Given 𝑦", . . . , 𝑦# actual observations of a time series 𝑦! , and let '𝑦! be 
the forecast value at time t

• We can calculate the residuals or forecast errors and 𝑒! = 𝑦! − '𝑦!
• Common predictive accuracy measures based on the residuals are:

– Root Mean Square Error (RMSE)

RMSE= !
"
∑#$!" 𝑦# − %𝑦# %

– Mean Absolute Percentage Error (MAPE)

MAPE= !&&
"
∑#$!" '!( )'!

'!
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Course outline

Introduction to time series analysis and forecasting

I. Main characteristics of time series data

II. Time series decomposition

III. Basic time series modelling and forecasting methods

IV. Stochastic time series modelling and forecasting: 
The Box-Jenkins method for ARIMA models
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Time series: basic characteristics

• Trend component
• long-term increase or decrease in the data over time

• Seasonal component 
• influenced by seasonal factors (e.g. quarter of the year, month, or day 

of the week)
• exact repetition in regular pattern (seasonal series often called periodic, 

although they do not exactly repeat themselves)

• Cyclical component 
• data exhibit rises and falls that are not of a fixed period

• Random or stochastic component
• irregular variation data without any special pattern

• Correlation between the series and its past value
• we need to build a model that is able to deal with such dependencies
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Time series: standard decomposition model

- Data: 𝑦" where t indexes time, e.g. hour, day, month, year

- Standard model: 𝑦# = f(𝑚# , 𝑠# , 𝑥#)
• 𝑚! is a trend-cycle component
• 𝑠! is a seasonality component

• 𝑥! is a stationary random component

• Standard functional forms for f
• Additive (linear): 𝑦! = 𝑚! + 𝑠! + 𝑥!

• Multiplicative (non linear): 𝑦! = 𝑚! × 𝑠!× 𝑥!

• Mixed (non linear): 𝑦! = 𝑚! × 𝑠! + 𝑥!
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Time series: standard decomposition model

• Additive model
𝑦! = 𝑚! + 𝑠! + 𝑥!

– assumes constant variability of the time series

• Multiplicative model
𝑦! = 𝑚! × 𝑠!× 𝑥!

– assumes that variability (seasonal and random) 
is amplified with trend

• Mixed model
𝑦! = 𝑚! × 𝑠! + 𝑥!

– assumes that variability is amplified with trend
but the random component remains constant 
over time
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Guide to choose the model form

• Visual inspection can help to decide whether the model should be 
additive or multiplicative is given by the patterns below, suggested first 
by Pegels in 1969

– The additive model assumes constant variability of the time series
– The multiplicative model assumes that variability is amplified with trend 
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Time series analysis: 
The standard decomposition procedure 

- The primary goal of time series decomposition is to provide the analyst 
with a better understanding of the underlying behavior and patterns of 
the time series 

- Usual assumption: additive model

𝑦" = 𝑚" + 𝑠" + 𝑥"
- If the model is multiplicative, apply first a log transformation on the data

𝑌! = log(𝑦!)

- Standard parametric decomposition procedure

• 𝑚# and 𝑠# are first estimated 

• they are subtracted from 𝑦# to have left the stationary process 𝑥#
• 𝑥# can be further analyzed and modelled using time series modeling 

approaches if necessary
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Modelling the trend component

- Polynomial model (in t)
𝑚! = 𝛽& + 𝛽"𝑡 + 𝛽%𝑡% +⋯+ 𝛽'𝑡'

• Which polynomial order to select ? 
• Use model selection to select among the predicting variables (𝑡, 𝑡!,…, 𝑡")
• Cautious! Strong correlation among the predicting variables

• Commonly used small order polynomial (p=1 or 2)

• linear: 𝑚! = 𝛽" + 𝛽#𝑡
• quadratic:𝑚#= 𝛽$ + 𝛽%𝑡 + 𝛽!𝑡!

• Parameters
• Estimated by using linear regression where the predicting variables are (𝑡, 𝑡!,…, 𝑡")

- Exponential model (in t)
𝑚! = 𝑚&𝑒(!

• Parameters
• Estimated by using linear regression where the predicting variables are (𝑡, 𝑡!,…, 𝑡") 

after the use of the log for the exponential case

𝑦! = f(𝑚! , 𝑠! , 𝑥!)
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Modelling the seasonal component

- Single periodic component 
𝑠! = 𝑠!$)

• How to determine the period d ? 
• Visual inspection 
• Fourier analysis (see course on digital signal processing from last year)

• Harmonic seasonal model 
• uses of sine and cosine functions to describe the pattern of fluctuations 

seen across period

𝑠! = 1
$%#

&/(

𝑎$cos
2𝜋𝑖𝑡
𝑆 + 𝑏$sin

2𝜋𝑖𝑡
𝑆

• S is the number of seasons, 𝑎$ and 𝑏$ are the parameters to be estimated

𝑦! = f(𝑚! , 𝑠! , 𝑥!)
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Modelling the random component
Stationarity assumption

- 𝑥# is modelled as a realization of a stochastic process 𝑋#

- A stochastic process is a collection of random variables 𝑋#, 𝑡 ∈ 𝑇
defined on a probability space Ω, 𝐹, 𝑃

- The stochastic process 𝑋# is assumed to be stationary
- Its probability distribution does not change when shifted in time
- Realizations of a stationary stochastic process, vary over time in a stable 

manner about a fixed mean 
- It is (weakly) stationary if it can be described by its first two moments only

- Mean, variance
- AutoCorrelation Function (ACF)

- ACF is also very useful for describing/testing the stationary property of a 
random component

𝑦! = f(𝑚! , 𝑠! , 𝑥!)
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Some intuitions for (weak) stationary time series

- The properties of one section of a data are much like the properties of the 
other sections of the data
- no systematic change in the mean i.e., no trend

- no systematic change in variation

- no periodic fluctuations

- For non-stationary time series, some transformations (such as differencing, 
decomposition or logarithm, …) can be applied to get stationary time 
series
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Moments of a probability distribution
A brief review

• Moments of a random variable 𝑋 with density 𝑓𝑋 𝑥 :
– 𝑙-th moment

𝑚0
1 = Ε 𝑋0 = ∫(2

2 𝑥0𝑓𝑋 𝑥 𝑑𝑥
– 𝑙-th central moment

𝑚+ = Ε (𝑋 − 𝜇)+ = <
,-

-
(𝑥 − 𝜇)+𝑓𝑋 𝑥 𝑑𝑥

• Examples of low-order moments
• Expectation: 𝑚" = 𝜇 = Ε 𝑋
• Variance: 𝑚% = 𝜎% = Ε (𝑋 − 𝜇)%



H. Garnier41

Autocorrelation function (or correlogram)
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Autocovariance function: stationarity

• Autocovariance function of a stationary time series 𝑥#
𝛾3 ℎ =Cov 𝑥#45 , 𝑥# =Ε (𝑥#45−𝜇)(𝑥#−𝜇) ℎ < 𝑁

with the following 3 properties
1. 𝛾.(0) ≥ 0,
2. 𝛾.(ℎ) ≤ 𝛾.(0)
3. 𝛾. ℎ = 𝛾. −ℎ

• Autocorrelation function of a stationary time series 𝑥#

𝜌3 ℎ =
𝛾3(ℎ)
𝛾3(0)

0 ≤ ℎ < 𝑁

with all the properties of the autocovariance function, except 𝜌) 0 = 1
• They measure the linear correlation between 𝑥# and 𝑥#45

– It is of most interest in statistical time series analysis

0

𝛾. ℎ

ℎ
�̅�%

𝜎%

lag
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Sample or empirical statistics
• Given 𝑥!, . . . , 𝑥" observations of a stationary time series 𝑥# ,

estimate the sample mean, variance and autocovariance
– Sample mean

&𝜇 = �̅� = >
?
∑@A>? 𝑥@

– Sample variance

&𝜎B = >
?C>

∑@A>? 𝑥@ − &𝜇 B

– Sample autocovariance function 

%𝛾3 ℎ =
1
𝑁
<
6$!

"(5

𝑥645 − �̅� 𝑥6 − �̅� , 0 ≤ ℎ < 𝑁,

with '𝛾. ℎ = '𝛾. −ℎ , −𝑁 < ℎ ≤ 0
– Sample autocorrelation function

%𝜌3 ℎ =
%𝛾3(ℎ)
%𝛾3(0)

, ℎ < 𝑁
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• If the time series 𝑥! , 1≤	t	≤N, is a deterministic pure linear trend 
§ 𝑥! = 𝛽& + 𝛽"𝑡, then for all ℎ

'𝜌. ℎ #→$-
1

• If the time series 𝑥! , 1≤	t	≤N, is a deterministic pure seasonal pattern, as 
for example 

§ 𝑥! =cos %0!
1

, then for all ℎ

'𝜌. ℎ #→$-
cos

2𝜋ℎ
𝑇

• The presence of basic trend and seasonal patterns is easily observable in 
the autocorrelation plot
– It can also help to measure the value of the period of the seasonality

Autocorrelation function properties
of basic trend and seasonal patterns 
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• If there is seasonality, the ACF at the seasonal lag will be large and positive 
– Annual seasonality in monthly data can be observed from the ACF where a large value will 

be seen at lag 12 and possibly also at lags 24, 36, . . . 

Testing for seasonality in a time series 
from the ACF plot 
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White noise
• The most fundamental example of a (weakly) stationary process is a 

sequence of independent and identically distributed random 
variables
– Such a process may also be referred to as a white noise process 
– Its probability function can be uniform, Gaussian, …
– They are uncorrelated, have mean zero, and common variance
– Because independence implies that its variables are uncorrelated at

different times, its autocovariance function is simply a Kronecker
impulse

0

𝛾2 ℎ

ℎ
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Testing for white noise from ACF plots
• If a time series is white noise, it is unpredictable. The best forecast is zero

• If the series of forecast errors (=residuals) are not white noise, it suggests 
improvements could be made to the predictive model

– ACF shows some significant autocorrelation at lags 1, 2, 3,... 
– ACF at lag 12 may indicate some slight seasonality

These show the time series is not a white noise. There is information left in the residuals that should 
be used in computing forecasts 

• See also the Ljung-Box test for testing white noise
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Gaussian white noise

• It is a white noise whose probability function is Gaussian

• In Matlab
>> e=randn(200,1);
>> plot(e) >> autocorr(e)
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Gaussian probability function 
A brief review

f ( x ) = 1
σ 2π

e
−
1
2

x−m
σ

⎛

⎝
⎜

⎞

⎠
⎟

2

0
x

f(x)

mm-s m+s

P(m − σ ≤ x ≤ m + σ ) = 67%

P(m − 2σ ≤ x ≤ m + 2σ ) = 95%

P(m − 3σ ≤ x ≤ m + 3σ ) = 99%

P(m − 4σ ≤ x ≤ m + 4σ ) = 99 ,9%

ps 2
1

m : mean
s : standard-deviation
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• Important properties
– Two Gaussian random signals 𝑥3 and 𝑥+ for k ≠ l are uncorrelated

(property of white noise) and therefore independent (property of
Gaussian probability density)

– The Gaussian probability density is the only law for which there is
equivalence between non-correlation and independence

– Gaussian laws preserve their Gaussian character in any linear
operation: derivation, integration, convolution, filtering

Gaussian probability function 
Review
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Sampling distribution of autocorrelations
White noise case

• Sampling distribution of 𝛾2 ℎ for a white noise is asymptotically

Gaussian N 0, "
#

– 95% of all 𝛾* ℎ must lie within ± #.,-
.

– It is common to plot limit lines at ± #.,-
.

when plotting the ACF 𝛾* ℎ

– If this is not the case, the series is probably not WN

• Example: If N = 125, critical values at ± ".56
"%7

= ±0.175

– All ACF coefficients lie within these limits, confirming that the data are white
noise (more precisely, the data cannot be distinguished from white noise)
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Example of non-stationary time series:
The random walk

• A random walk 𝑧! is the cumulative sum of a white noise 𝑥! with 
mean 𝜇 and variance 𝜎%

𝑧!= 𝑧!," + 𝑥!
or

If 𝑥& = 0, 𝑧! = ∑89"! 𝑥8

• We cannot see any trend in the time plot !

• Its mean and variance vary with time
• Mean: Ε 𝑧! = 𝜇𝑡
• Variance: Var 𝑧! = 𝜎(t

• A random walk is a non-stationary process
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Random walk - Example

• In Matlab
>> z=cumsum(randn!2""#$%&
>> plot(z) >> autocorr(z)

Random walks are often highly correlated
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First difference of a random walk

• As seen before, a non-stationary 
random walk 𝑧! is defined as

𝑧!= 𝑧!," + 𝑥!
where 𝑥! is white noise

• The first difference of a random walk 
given by

𝑧!− 𝑧!," = 𝑥!
form a purely random process, which 
is stationary !
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Example of a time series exploratory analysis:
Average monthly Temperatures in Atlanta, USA

Time series: Average monthly temperature starting from 1878 until 2020
• Available from iWearherNet.com
• The National Weather Service began keeping weather records for Atlanta 

142 years ago on October 1, 1878
• Investigate the structure of the dataset. Is an additive model acceptable ?
• Perform a decomposition of the time series
• After removing trend and seasonality, is the residual stationary?
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Time series exploratory analysis: general approach 

1. Plot the series and check for a trend-cycle pattern, a seasonal component, any 
apparent sharp changes in behavior (accidental component), any outliers

2. Estimate the trend component and plot the detrended time series 

3. Plot the sample autocorrelation function of the detrended time series and 
check for a seasonal and cyclical pattern

4. Estimate the seasonal component from the detrended time series. 
Deseasonalize the time series by substracting the seasonality component from 
the original time series

5. Compute and plot the estimated random component or residuals

6. Plot the sample autocorrelation function of the residuals and check for 
stationary residuals close to a white noise  
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1. Plot of the original time series 

• Although temperature is slowly changing over years, global warming effects 
can be observed as the maximum temperatures are slightly higher since 1975 
than before 1925
➩ Needs to be modelled by a slight linear increase trend
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2. Plot of the detrended time series 

• The slight linear increase trend has been removed from the original time series
• There is still a clear and expected seasonal pattern of 1 year (12 months) which 

can be confirmed from the ACF of the detrended time series
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3. Sample autocorrelation function 
of the detrended time series 

• The seasonal pattern of 12 months is clearly observed from the ACF
➩ Needs to be modelled by a seasonal pattern of 1 year
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4. Plot of the detrended and deseasonalized
time series

• The estimated trend and seasonal patterns (=estimate of the random component) 
have now been removed from the original time series

• There is no obvious cyclical pattern
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5. Sample autocorrelation functions 
of the detrended and deseasonalized time series 

• There is no more obvious trend, seasonal or cyclical patterns
• The ACF shows that the residuals have some stationarity but they would need 

further modelling to capture the remaining correlation in the time series
➩ could be captured by an ARMA model (see next lectures)
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Time series decomposition
Monthly average temperature in Atlanta


